Articles | Volume 6, issue 4
https://doi.org/10.5194/gchron-6-621-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-621-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
µID-TIMS: spatially resolved high-precision U–Pb zircon geochronology
Sava Markovic
CORRESPONDING AUTHOR
Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland
Jörn-Frederik Wotzlaw
Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland
Dawid Szymanowski
Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland
Joakim Reuteler
Scientific Center for Optical and Electron Microscopy (ScopeM) ETH Zurich, 8093 Zurich, Switzerland
Peng Zeng
Scientific Center for Optical and Electron Microscopy (ScopeM) ETH Zurich, 8093 Zurich, Switzerland
Cyril Chelle-Michou
Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland
Related authors
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-25, https://doi.org/10.5194/gchron-2024-25, 2024
Revised manuscript under review for GChron
Short summary
Short summary
We performed a statistical analysis of high precision U-Pb zircon age distributions. This reveals that volcanic and porphyry zircon age distributions are skewed to younger ages, whereas plutonic age distributions are skewed to older ages. We show that this is caused by truncation of zircon crystallisation by magma evacuation, rather than differences in magmatic flux. Our contribution has key implications for modelling of magma dynamics and eruption ages using zircon age distributions.
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-25, https://doi.org/10.5194/gchron-2024-25, 2024
Revised manuscript under review for GChron
Short summary
Short summary
We performed a statistical analysis of high precision U-Pb zircon age distributions. This reveals that volcanic and porphyry zircon age distributions are skewed to younger ages, whereas plutonic age distributions are skewed to older ages. We show that this is caused by truncation of zircon crystallisation by magma evacuation, rather than differences in magmatic flux. Our contribution has key implications for modelling of magma dynamics and eruption ages using zircon age distributions.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Simon J. E. Large, Jörn-Frederik Wotzlaw, Marcel Guillong, Albrecht von Quadt, and Christoph A. Heinrich
Geochronology, 2, 209–230, https://doi.org/10.5194/gchron-2-209-2020, https://doi.org/10.5194/gchron-2-209-2020, 2020
Short summary
Short summary
The integration of zircon geochemistry and U–Pb geochronology (petrochronology) allows us to improve our understanding of magmatic processes. Here we could reconstruct the ~300 kyr evolution of the magma reservoir that sourced the magmas, fluids and metals to form the Batu Hijau porphyry Cu–Au deposit. The application of in situ LA-ICP-MS and high-precision CA–ID–TIMS geochronology to the same zircons further allowed an assessment of the strengths and limitations of the different techniques.
Marcel Guillong, Jörn-Frederik Wotzlaw, Nathan Looser, and Oscar Laurent
Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, https://doi.org/10.5194/gchron-2-155-2020, 2020
Short summary
Short summary
The dating of carbonates by laser ablation inductively coupled plasma mass spectrometry is improved by an additional, newly characterised reference material and adapted data evaluation protocols: the shape (diameter to depth) of the ablation crater has to be as similar as possible in the reference material used and the unknown samples to avoid an offset. Different carbonates have different ablation rates per laser pulse. With robust uncertainty propagation, precision can be as good as 2–3 %.
Related subject area
Longlived radio-isotope systems
Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments
Chemical abrasion: the mechanics of zircon dissolution
High-precision ID-TIMS cassiterite U–Pb systematics using a low-contamination hydrothermal decomposition: implications for LA-ICP-MS and ore deposit geochronology
Multimethod U–Pb baddeleyite dating: insights from the Spread Eagle Intrusive Complex and Cape St. Mary's sills, Newfoundland, Canada
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
Stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis of microfractured Hadean zircon
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
Alyssa J. McKanna, Isabel Koran, Blair Schoene, and Richard A. Ketcham
Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, https://doi.org/10.5194/gchron-5-127-2023, 2023
Short summary
Short summary
Acid leaching is commonly used to remove damaged portions of zircon crystals prior to U–Pb dating. However, a basic understanding of the microstructural processes that occur during leaching is lacking. We present the first 3D view of zircon dissolution based on X-ray computed tomography data acquired before and after acid leaching. These data are paired with images of etched grain surfaces and Raman spectral data. We also reveal exciting opportunities for imaging radiation damage zoning in 3D.
Simon Tapster and Joshua W. G. Bright
Geochronology, 2, 425–441, https://doi.org/10.5194/gchron-2-425-2020, https://doi.org/10.5194/gchron-2-425-2020, 2020
Short summary
Short summary
Cassiterite is the primary tin ore mineral and is associated with other elements needed for green technology. The mineral is deposited from hydrothermal fluids released from magmas. Because it is extremely acid resistant, there has been difficulty dissolving the mineral for isotopic analysis. To improve the understanding of the timing and models of formation processes, we use a novel method to dissolve and extract radiogenic isotopes of the uranium-to-lead decay scheme from cassiterite.
Johannes E. Pohlner, Axel K. Schmitt, Kevin R. Chamberlain, Joshua H. F. L. Davies, Anne Hildenbrand, and Gregor Austermann
Geochronology, 2, 187–208, https://doi.org/10.5194/gchron-2-187-2020, https://doi.org/10.5194/gchron-2-187-2020, 2020
Short summary
Short summary
Baddeleyite is commonly used for U–Pb dating, but textural complexities, alteration features and discordance often make age interpretation difficult. Based on this case study, we discuss strategies for obtaining more accurate baddeleyite ages by high-precision and high spatial resolution methods, including analytical challenges and discordance interpretation. An evaluation of microtextures allows us to distinguish among seven different types of baddeleyite–zircon intergrowths.
Lee F. White, Kimberly T. Tait, Sandra L. Kamo, Desmond E. Moser, and James R. Darling
Geochronology, 2, 177–186, https://doi.org/10.5194/gchron-2-177-2020, https://doi.org/10.5194/gchron-2-177-2020, 2020
Short summary
Short summary
The generation of highly precise and accurate ages requires crushing of the original sample so that individual mineral grains may be separated out for dating. Here, we use a focused ion beam to extract grains directly from a subset of a sample, effectively performing microsurgery to isolate individual crystals from the rock itself. This approach opens the door to high-precision dating for a variety of precious planetary materials that have previously been challenging to date.
C. Brenhin Keller, Patrick Boehnke, Blair Schoene, and T. Mark Harrison
Geochronology, 1, 85–97, https://doi.org/10.5194/gchron-1-85-2019, https://doi.org/10.5194/gchron-1-85-2019, 2019
Short summary
Short summary
The oldest known minerals on Earth are Hadean (> 4.0 Ga) zircons from the Jack Hills, Australia. We present the first application to such Hadean zircons of stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis (stepwise CA-ID-TIMS-TEA). We examine the evolution in the U–Pb age and trace element chemistry of zircon domains accessed by successive chemical abrasion steps in the context of the geologic history of the Jack Hills zircons.
Cited articles
Barboni, M., Annen, C., and Schoene, B.: Evaluating the construction and evolution of upper crustal magma reservoirs with coupled zircon geochronology and thermal modeling: A case study from the Mt. Capanne pluton (Elba, Italy), Earth Planet. Sc. Lett., 432, 436–448, https://doi.org/10.1016/j.epsl.2015.09.043, 2015.
Black, L. P. and Gulson, B. I.: The age of the Mud Tank carbonatite, Strangways Range, Northern Territory, Journal of Australian Geology and Geophysics, 3, 227–232, 1978.
Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., and Foudoulis, C.: Improved microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 205, 115–140, https://doi.org/10.1016/j.chemgeo.2004.01.003, 2004.
Blackburn, T. J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J., McHone, G., Rasbury, E. T., and Et-Touhami, M.: Zircon U–Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province, Science, 340, 941–945, https://doi.org/10.1126/science.1234204, 2013.
Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U–Pb geochronology: Tripoli and U–Pb_Redux, Geochem. Geophy. Geosy., 12, Q0AA19, https://doi.org/10.1029/2010gc003479, 2011.
Bowring, S. A. and Schmitz, M. D.: High-precision U–Pb zircon geochronology and the stratigraphic record, Zircon, 53, 305–326, https://doi.org/10.2113/0530305, 2003.
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K., and Wang, W.: zircon geochronology and tempo of the end-Permian mass extinction, Science, 280, 1039–1045, https://doi.org/10.1126/science.280.5366.1039, 1998.
Chelle-Michou, C., Laurent, O., Moyen, J. F., Block, S., Paquette, J. L., Couzinié, S., Gardien, V., Vanderhaeghe, O., Villaros, A., and Zeh, A.: Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell, Gondwana Res., 46, 170–190, https://doi.org/10.1016/j.gr.2017.02.010, 2017.
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R.: Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochim. Cosmochim. Ac., 164, 464–480, https://doi.org/10.1016/j.gca.2015.05.026, 2015.
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P.: Atlas of zircon textures, Zircon, 53, 469–500, https://doi.org/10.2113/0530469, 2003.
Costa, F., Dohmen, R., and Chakraborty, S.: Time Scales of Magmatic Processes from Modeling the Zoning Patterns of Crystals, Minerals, Inclusions and Volcanic Processes, 69, 545–594, https://doi.org/10.2138/rmg.2008.69.14, 2008.
Costa, F., Shea, T., and Ubide, T.: Diffusion chronometry and the timescales of magmatic processes, Nature Reviews Earth & Environment, 1, 201–214, https://doi.org/10.1038/s43017-020-0038-x, 2020.
Crowley, J. L.: Laser cutting of zircon for CA-TIMS geochronology: adding spatial resolution to high-precision dates, GSA conference, Indianapolis, Indiana, USA, 4 November 2018, https://doi.org/10.1130/abs/2018AM-321517, 2018.
Curry, A., Gaynor, S. P., Davies, J. H. F. L., Ovtcharova, M., Simpson, G., and Caricchi, L.: Timescales and thermal evolution of large silicic magma reservoirs during an ignimbrite flare-up: perspectives from zircon, Contrib. Mineral. Petr., 176, 103, https://doi.org/10.1007/s00410-021-01862-w, 2021.
Davies, J. H. F. L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., and Schaltegger, U.: End-Triassic mass extinction started by intrusive CAMP activity, Nat. Commun., 8, 15596, https://doi.org/10.1038/ncomms15596, 2017.
Davis, W. J. and Davis, D. W.: Alpha Recoil Loss of Pb from Baddeleyite Evaluated by High-Resolution Ion Microprobe (SHRIMP II) Depth Profiling and Numerical Modeling: Implications for the Interpretation of U–Pb Ages in Small Baddeleyite Crystals, Geophys. Monogr. Ser., 232, 247–259, https://doi.org/10.1002/9781119227250, 2018.
Echlin, M. P., Straw, M., Randolph, S., Filevich, J., and Pollock, T. M.: The TriBeam system: Femtosecond laser ablation in situ SEM, Mater. Charact., 100, 1–12, https://doi.org/10.1016/j.matchar.2014.10.023, 2015.
Farina, F., Dini, A., Davies, J. H. F. L., Ovtcharova, M., Greber, N. D., Bouvier, A. S., Baumgartner, L., Ulianov, A., and Schaltegger, U.: Zircon petrochronology reveals the timescale and mechanism of anatectic magma formation, Earth Planet. Sc. Lett., 495, 213–223, https://doi.org/10.1016/j.epsl.2018.05.021, 2018.
Gain, S. E. M., Greau, Y., Henry, H., Belousova, E., Dainis, I., Griffin, W. L., and O'Reilly, S. Y.: Mud Tank Zircon: Long-Term Evaluation of a Reference Material for U–Pb Dating, Hf-Isotope Analysis and Trace Element Analysis, Geostand. Geoanal. Res., 43, 339–354, https://doi.org/10.1111/ggr.12265, 2019.
Gerstenberger, H. and Haase, G.: A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations, Chem. Geol., 136, 309–312, https://doi.org/10.1016/S0009-2541(96)00033-2, 1997.
Hawkesworth, C., George, R., Turner, S., and Zellmer, G.: Time scales of magmatic processes, Earth Planet. Sc. Lett., 218, 1–16, https://doi.org/10.1016/S0012-821x(03)00634-4, 2004.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: systematics in terrestrial U-bearing minerals, Science, 335, 1610–1614, https://doi.org/10.1126/science.1215507, 2012.
Horstwood, M. S., Kosler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., and Vermeesch, P.: Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology–Uncertainty Propagation, Age Interpretation and Data Reporting, Geostand. Geoanal. Res., 40, 311–332, 2016.
Iizuka, T., Yamaguchi, A., Haba, M. K., Amelin, Y., Holden, P., Zink, S., Huyskens, M. H., and Ireland, T. R.: Timing of global crustal metamorphism on Vesta as revealed by high-precision U–Pb dating and trace element chemistry of eucrite zircon, Earth Planet. Sc. Lett., 409, 182–192, https://doi.org/10.1016/j.epsl.2014.10.055, 2015.
Ishitani, T. and Yaguchi, T.: Cross-sectional sample preparation by focused ion beam: A review of ion-sample interaction, Microsc. Res. Techniq., 35, 320–333, https://doi.org/10.1002/(SICI)1097-0029(19961101)35:4<320::AID-JEMT3>3.0.CO;2-Q, 1996.
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A.: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chem. Geol., 211, 47–69, https://doi.org/10.1016/j.chemgeo.2004.06.017, 2004.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M.: Precision Measurement of Half-Lives and Specific Activities of 235U and 238U, Phys. Rev. C, 4, 1889–1906, 1971.
Jain, J. C., Neal, C. R., and Hanchar, J. M.: Problems associated with the determination of rare earth elements of a “Gem” quality zircon by inductively coupled plasma-mass spectrometry, Geostandard. Newslett., 25, 229–237, https://doi.org/10.1111/j.1751-908X.2001.tb00598.x, 2001.
Kemp, A. I. S., Vervoort, J. D., Bjorkman, K. E., and Iaccheri, L. M.: Hafnium Isotope Characteristics of Palaeoarchaean Zircon OG1/OGC from the Owens Gully Diorite, Pilbara Craton, Western Australia, Geostand. Geoanal. Res., 41, 659–673, https://doi.org/10.1111/ggr.12182, 2017.
Kennedy, A. K., Wotzlaw, J. F., Schaltegger, U., Crowley, J. L., and Schmitz, M.: Eocene Zircon Reference Material for Microanalysis of U-Th-Pb Isotopes and Trace Elements, Can. Mineral., 52, 409–421, https://doi.org/10.3749/canmin.52.3.409, 2014.
Kovacs, N., Allan, M. M., Crowley, J. L., Colpron, M., Hart, C. J. R., Zagorevski, A., and Creaser, R. A.: Carmacks Copper Cu-Au-Ag Deposit: Mineralization and Postore Migmatization of a Stikine Arc Porphyry Copper System in Yukon, Canada, Econ. Geol., 115, 1413–1442, https://doi.org/10.5382/econgeo.4756, 2020.
Krogh, T. E.: A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmochim. Ac., 37, 485–494, 1973.
Laurent, O., Björnsen, J., Wotzlaw, J. F., Bretscher, S., Silva, M. P., Moyen, J. F., Ulmer, P., and Bachmann, O.: Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions, Nat. Geosci., 13, 163–169, https://doi.org/10.1038/s41561-019-0520-6, 2020.
McKanna, A. J., Schoene, B., and Szymanowski, D.: Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments, Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, 2024.
McLean, N. M., Bowring, J. F., and Bowring, S. A.: An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophy. Geosy., 12, Q0AA18, https://doi.org/10.1029/2010gc003478, 2011.
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II), Geochim. Cosmochim. Ac., 164, 481–501, https://doi.org/10.1016/j.gca.2015.02.040, 2015.
Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., and Kober, B.: Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage, Contrib. Mineral. Petr., 141, 125–144, https://doi.org/10.1007/s004100000235, 2001.
Nasdala, L., Corfu, F., Schoene, B., Tapster, S. R., Wall, C. J., Schmitz, M. D., Ovtcharova, M., Schaltegger, U., Kennedy, A. K., Kronz, A., Reiners, P. W., Yang, Y. H., Wu, F. Y., Gain, S. E. M., Griffin, W. L., Szymanowski, D., Chanmuang, N. C., Ende, M., Valley, J. W., Spicuzza, M. J., Wanthanachaisaeng, B., and Giester, G.: GZ7 and GZ8-Two Zircon Reference Materials for SIMS U–Pb Geochronology, Geostand. Geoanal. Res., 42, 431–457, https://doi.org/10.1111/ggr.12239, 2018.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometric data, J. Anal. Atom. Spectrom., 26, 2508–2518, https://doi.org/10.1039/c1ja10172b, 2011.
Rioux, M., Garber, J. M., Searle, M., Crowley, J. L., Stevens, S., Schmitz, M., Kylander-Clark, A., Leal, K., Ambrose, T., and Smye, A. J.: The temporal evolution of subduction initiation in the Samail ophiolite: High-precision U–Pb zircon petrochronology of the metamorphic sole, J. Metamorph. Geol., 41, 817–847, https://doi.org/10.1111/jmg.12719, 2023.
Romer, R. L.: Alpha-recoil in U–Pb geochronology: effective sample size matters, Contrib. Mineral. Petr., 145, 481–491, https://doi.org/10.1007/s00410-003-0463-0, 2003.
Samperton, K. M., Schoene, B., Cottle, J. M., Keller, C. B., Crowley, J. L., and Schmitz, M. D.: Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological-geochemical constraints from the Bergell Intrusion, Central Alps, Chem. Geol., 417, 322–340, https://doi.org/10.1016/j.chemgeo.2015.10.024, 2015.
Schaltegger, U., Guex, J., Bartolini, A., Schoene, B., and Ovtcharova, M.: Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery, Earth Planet. Sc. Lett., 267, 266–275, https://doi.org/10.1016/j.epsl.2007.11.031, 2008.
Schaltegger, U., Schmitt, A. K., and Horstwood, M. S. A.: U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities, Chem. Geol., 402, 89–110, https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015a.
Schaltegger, U., Ulianov, A., Müntener, O., Ovtcharova, M., Peytcheva, I., Vonlanthen, P., Vennemann, T., Antognini, M., and Girlanda, F.: Megacrystic zircon with planar fractures in miaskite-type nepheline pegmatites formed at high pressures in the lower crust (Ivrea Zone, southern Alps, Switzerland), Am. Mineral., 100, 83–94, https://doi.org/10.2138/am-2015-4773, 2015b.
Schoene, B.: U–Th–Pb Geochronology, Treatise on Geochemistry, 4, 341–378, 2014.
Schoene, B. and Baxter, E. F.: Petrochronology and TIMS, Rev. Mineral. Geochem., 83, 231–260, https://doi.org/10.2138/rmg.2017.83.8, 2017.
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring, S. A., Khadri, S. F. R., and Gertsch, B.: U–Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction, Science, 347, 182–184, https://doi.org/10.1126/science.aaa0118, 2015.
Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., and Khadri, S. F. R.: U–Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction, Science, 363, 862–866, https://doi.org/10.1126/science.aau2422, 2019.
Sergeev, S. A. and Steiger, R. H.: The microtome: an innovative tool prerequisite for applying multiple high-precision/resolution analytical techniques to wafers of same sub-grain scale sample, Mineral. Mag., 63, 1365–1366, 1998.
Sergeev, S. A., Komarov, A. N., Bickel, R. A., and Steiger, R. H.: A new microtome for cutting hard submillimeter-sized crystalline objects for promoting high-resolution instrumental microanalysis, Eur. J. Mineral., 9, 449–456, 1997.
Slama, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J.: Plesovice zircon - A new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1–35, https://doi.org/10.1016/j.chemgeo.2007.11.005, 2008.
Smith, N. S., Notte, J. A., and Steele, A. V.: Advances in source technology for focused ion beam instruments, Mrs. Bull., 39, 329–335, https://doi.org/10.1557/mrs.2014.53, 2014.
Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H., and Corfu, F.: Measurement of SIMS Instrumental Mass Fractionation of Pb Isotopes During Zircon Dating, Geostand. Geoanal. Res., 33, 145–168, https://doi.org/10.1111/j.1751-908X.2009.00023.x, 2009.
Szymanowski, D., Wotzlaw, J. F., Ellis, B. S., Bachmann, O., Guillong, M., and von Quadt, A.: Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs, Nat. Geosci., 10, 777–782, https://doi.org/10.1038/Ngeo3020, 2017.
Szymanowski, D., Forni, F., Phua, M., Jicha, B., Lee, D. W. J., Hsu, Y. J., Rifai, H., Schoene, B., and Bouvet de Maisonneuve, C.: A shifty Toba magma reservoir: Improved eruption chronology and petrochronological evidence for lateral growth of a giant magma body, Earth Planet. Sc. Lett., 622, 118408, https://doi.org/10.1016/j.epsl.2023.118408, 2023.
Tavazzani, L., Wotzlaw, J. F., Economos, R., Sinigoi, S., Demarchi, G., Szymanowski, D., Laurent, O., Bachmann, O., and Chelle-Michou, C.: High-precision zircon age spectra record the dynamics and evolution of large open-system silicic magma reservoirs, Earth Planet. Sc. Lett., 623, 118432, https://doi.org/10.1016/j.epsl.2023.118432, 2023.
von Quadt, A., Wotzlaw, J.-F., Buret, Y., Large, S. J. E., Peytcheva, I., and Trinquier, A.: High-precision zircon geochronology by ID-TIMS using new 1013 ohm resistors, J. Anal. Atom. Spectrom., 31, 658–665, https://doi.org/10.1039/c5ja00457h, 2016.
White, L. F., Tait, K. T., Kamo, S. L., Moser, D. E., and Darling, J. R.: Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS), Geochronology, 2, 177–186, https://doi.org/10.5194/gchron-2-177-2020, 2020.
White, N., Eder, K., Byrnes, J., Cairney, J. M., and McCarroll, I. E.: Laser ablation sample preparation for atom probe tomography and transmission electron microscopy, Ultramicroscopy, 220, 113161, https://doi.org/10.1016/j.ultramic.2020.113161, 2021.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C., and Spiegel, W.: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostandard. Newslett., 19, 1–23, https://doi.org/10.1111/j.1751-908X.1995.tb00147.x, 1995.
Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J. P., Greenwood, R. C., Hinton, R., Kita, N., Mason, P. R. D., Norman, M., Ogasawara, M., Piccoli, R., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skar, O., Spicuzza, M. J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., and Zheng, Y. F.: Further characterisation of the 91500 zircon crystal, Geostand. Geoanal. Res., 28, 9–39, https://doi.org/10.1111/j.1751-908X.2004.tb01041.x, 2004.
Woodhead, J. D. and Hergt, J. M.: A preliminary appraisal of seven natural zircon reference materials for Hf isotope determination, Geostand. Geoanal. Res., 29, 183–195, https://doi.org/10.1111/j.1751-908X.2005.tb00891.x, 2005.
Wotzlaw, J. F., Bindeman, I. N., Schaltegger, U., Brooks, C. K., and Naslund, H. R.: High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex, Earth Planet. Sc. Lett., 355, 199–212, https://doi.org/10.1016/j.epsl.2012.08.043, 2012.
Wotzlaw, J. F., Bindeman, I. N., Stern, R. A., D'Abzac, F. X., and Schaltegger, U.: Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions, Sci. Rep.-UK, 5, 14026, https://doi.org/10.1038/srep14026, 2015.
Wotzlaw, J. F., Buret, Y., Large, S. J. E., Szymanowski, D., and von Quadt, A.: ID-TIMS U–Pb geochronology at the 0.1 ‰ level using 1013Ω resistors and simultaneous U and isotope ratio determination for accurate UO2 interference correction, J. Anal. Atom. Spectrom., 32, 579–586, https://doi.org/10.1039/c6ja00278a, 2017.
Short summary
We present a pioneering method for high-precision U–Pb dating of individual growth zones in zircon. These micrometer zones in single grains can record key geological processes from magma priming prior to eruptions to planetary formation, yet dating them at high precision has so far been technically challenging. Our method employs two cutting-edge microbeam techniques to microsample these growth zones for high-precision dating, allowing us to tackle a number of outstanding research questions.
We present a pioneering method for high-precision U–Pb dating of individual growth zones in...