Articles | Volume 7, issue 1
https://doi.org/10.5194/gchron-7-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: “U–Th Analysis” – open-source software dedicated to MC-ICP-MS U-series data treatment and evaluation
Inga Kristina Kerber
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Fabian Kontor
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Aaron Mielke
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
Sophie Warken
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
Norbert Frank
CORRESPONDING AUTHOR
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Related authors
No articles found.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Sophie F. Warken, Therese Weißbach, Tobias Kluge, Hubert Vonhof, Denis Scholz, Rolf Vieten, Martina Schmidt, Amos Winter, and Norbert Frank
Clim. Past, 18, 167–181, https://doi.org/10.5194/cp-18-167-2022, https://doi.org/10.5194/cp-18-167-2022, 2022
Short summary
Short summary
The analysis of fluid inclusions from a Puerto Rican speleothem provides quantitative information about past rainfall conditions and temperatures during the Last Glacial Period, when the climate was extremely variable. Our data show that the region experienced a climate that was generally colder and drier. However, we also reconstruct intervals when temperatures reached nearly modern values, and convective activity was comparable to or only slightly weaker than the present day.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Tobias Kluge, Tatjana S. Münster, Norbert Frank, Elisabeth Eiche, Regina Mertz-Kraus, Denis Scholz, Martin Finné, and Ingmar Unkel
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-47, https://doi.org/10.5194/cp-2020-47, 2020
Revised manuscript not accepted
Short summary
Short summary
A stalagmite from Hermes Cave (Greece) provides new insights into the climate evolution from 5.3−0.8 ka. Its close proximity to Mycenae and Corinth allows for a future comparative assessment of societal changes in a climatic context. Proxy data suggest significant centennial scale climate variability (i.e., wet vs. dry) with a long-term trend towards drier conditions from ca 3.7 to ~ 2.0 ka. The largest proxy variation of the whole record is found around the 4.2 ka event.
Steffen Therre, Jens Fohlmeister, Dominik Fleitmann, Albert Matter, Stephen J. Burns, Jennifer Arps, Andrea Schröder-Ritzrau, Ronny Friedrich, and Norbert Frank
Clim. Past, 16, 409–421, https://doi.org/10.5194/cp-16-409-2020, https://doi.org/10.5194/cp-16-409-2020, 2020
Short summary
Short summary
The radiocarbon (14C) levels of a stalagmite (grown 27–11 kyr before today) from Socotra Island (Arabian Sea) show drastic changes across the last termination. Our study highlights the influence of a warming climate with increasing precipitation towards the ending glacial on stalagmite 14C. High-resolution measurements suggest 14C is linked to a denser vegetation coverage on the island. Therefore, stalagmite 14C can be used as a climate tracer on millennial to sub-centennial timescales.
Related subject area
U-series
A new multimethod approach for dating cave calcite: application to the cave of Trou du Renard (Soyons, France)
DQPB: software for calculating disequilibrium U–Pb ages
230Th ∕ U isochron dating of cryogenic cave carbonates
A simplified isotope dilution approach for the U–Pb dating of speleogenic and other low-232Th carbonates by multi-collector ICP-MS
Novel method for determining 234U–238U ages of Devils Hole 2 cave calcite (Nevada)
Loïc Martin, Julius Nouet, Arnaud Dapoigny, Gaëlle Barbotin, Fanny Claverie, Edwige Pons-Branchu, Jocelyn Barbarand, Christophe Pécheyran, Norbert Mercier, Fanny Derym, Bernard Gély, and Hélène Valladas
Geochronology, 6, 247–263, https://doi.org/10.5194/gchron-6-247-2024, https://doi.org/10.5194/gchron-6-247-2024, 2024
Short summary
Short summary
Carbonate wall deposits of Trou du Renard cave (France) were dated using a multimethod approach: U–Th dating by bulk dissolution of samples and inductively coupled plasma mass spectrometry (ICP-MS), U–Th dating by laser ablation ICP-MS imaging, and radiocarbon dating. The samples were studied to ensure that they give reliable ages. Ages ranging from 187.9 ± 5.3 ka and 1.4 ± 0.1 ka were found. This approach should make it possible to establish more robust chronologies of archaeological caves.
Timothy Pollard, Jon Woodhead, John Hellstrom, John Engel, Roger Powell, and Russell Drysdale
Geochronology, 5, 181–196, https://doi.org/10.5194/gchron-5-181-2023, https://doi.org/10.5194/gchron-5-181-2023, 2023
Short summary
Short summary
When using the uranium–lead (U–Pb) radiometric dating method on very young materials (e.g. Quaternary age zircon and carbonate minerals), it is important to accurately account for the production and decay of intermediate
daughterisotopes in the uranium-series decay chain. DQPB is open-source software that allows users to easily perform such calculations for a variety of sample types and produce publication-ready graphical outputs of the resulting age information.
Paul Töchterle, Simon D. Steidle, R. Lawrence Edwards, Yuri Dublyansky, Christoph Spötl, Xianglei Li, John Gunn, and Gina E. Moseley
Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, https://doi.org/10.5194/gchron-4-617-2022, 2022
Short summary
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Andrew J. Mason, Anton Vaks, Sebastian F. M. Breitenbach, John N. Hooker, and Gideon M. Henderson
Geochronology, 4, 33–54, https://doi.org/10.5194/gchron-4-33-2022, https://doi.org/10.5194/gchron-4-33-2022, 2022
Short summary
Short summary
A novel technique for the uranium–lead dating of geologically young carbonates is described and tested. The technique expands our ability to date geological events such as fault movements and past climate records.
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Cited articles
Akers, P. D., Brook, G. A., Railsback, L. B., Liang, F. Y., Iannone, G., Webster, J. W., Reeder, P. P., Cheng, H., and Edwards, R. L.: An extended and higher-resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes, Palaeogeogr. Palaeocl., 459, 268–288, https://doi.org/10.1016/j.palaeo.2016.07.007, 2016.
Akers, P. D., Brook, G. A., Railsback, L. B., Cherkinksy, A., Liang, F., Ebert, C. E., Hoggarth, J. A., Awe, J. J., Cheng, H., and Edwards, R. L.: Integrating U-Th, 14C, and 210Pb methods to produce a chronologically reliable isotope record for the Belize River Valley Maya from a low-uranium stalagmite, Holocene, 29, 1234–1248, https://doi.org/10.1177/0959683619838047, 2019.
Andersen, M. B., Stirling, C. H., Potter, E. K., and Halliday, A. N.: Toward epsilon levels of measurement precision on by using MC-ICPMS, Int. J. Mass Spectrom., 237, 107–118, https://doi.org/10.1016/j.ijms.2004.07.004, 2004.
Beck, J. W., Richards, D. A., Edwards, R. L., Silverman, B. W., Smart, P. L., Donahue, D. J., Hererra-Osterheld, S., Burr, G. S., Calsoyas, L., Jull, A. J., and Biddulph, D.: Extremely large variations of atmospheric 14C concentration during the last glacial period, Science, 292, 2453–2458, https://doi.org/10.1126/science.1056649, 2001.
Bourdon, B., Turner, S., Henderson, G. M., and Lundstrom, C. C.: Introduction to U-series Geochemistry, Rev. Miner. Geochem., 52, 1–21, https://doi.org/10.2113/0520001, 2003.
Breton, T., Lloyd, N. S., Trinquier, A., Bouman, C., and Schwieters, J. B.: Improving Precision and Signal/Noise Ratios for MC-ICP-MS, Proced. Earth Plan. Sc., 13, 240–243, https://doi.org/10.1016/j.proeps.2015.07.056, 2015.
Cheng, H., Adkins, J., Edwards, R. L., and Boyle, E. A.: U-Th dating of deep-sea corals, Geochim. Cosmochim. Ac., 64, 2401–2416, https://doi.org/10.1016/S0016-7037(99)00422-6, 2000a.
Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., and Asmerom, Y.: The half-lives of uranium-234 and thorium-230, Chem. Geol., 169, 17–33, https://doi.org/10.1016/s0009-2541(99)00157-6, 2000b.
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Calvin Alexander, E.: Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, Earth Planet. Sc. Lett., 371–372, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Chiang, H.-W., Lu, Y., Wang, X., Lin, K., and Liu, X.: Optimizing MC-ICP-MS with SEM protocols for determination of U and Th isotope ratios and 230Th ages in carbonates, Quat. Geochronol., 50, 75–90, https://doi.org/10.1016/j.quageo.2018.10.003, 2019.
Douville, E., Sallé, E., Frank, N., Eisele, M., Pons-Branchu, E., and Ayrault, S.: Rapid and accurate U–Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry, Chem. Geol., 272, 1–11, https://doi.org/10.1016/j.chemgeo.2010.01.007, 2010.
Dreybrodt, W.: Chemical kinetics, speleothem growth and climate, Boreas, 28, 347–356, 1999.
Dutton, A., Rubin, K., McLean, N., Bowring, J., Bard, E., Edwards, R. L., Henderson, G. M., Reid, M. R., Richards, D. A., Sims, K. W. W., Walker, J. D., and Yokoyama, Y.: Data reporting standards for publication of U-series data for geochronology and timescale assessment in the earth sciences, Quat. Geochronol., 39, 142–149, https://doi.org/10.1016/j.quageo.2017.03.001, 2017.
Fensterer, C., Scholz, D., Hoffmann, D., Mangini, A., and Pajón, J. M.: 230 -dating of a late Holocene low uranium speleothem from Cuba, IOP C. Ser. Earth Env., 9, 012015, https://doi.org/10.1088/1755-1315/9/1/012015, 2010.
Frank, N., Paterne, M., Ayliffe, L., van Weering, T., Henriet, J.-P., and Blamart, D.: Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ14C during the Holocene, Earth Planet. Sc. Lett., 219, 297–309, https://doi.org/10.1016/s0012-821x(03)00721-0, 2004.
Hellstrom, J.: Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS, J. Anal. Atom. Spectrom., 18, 1346–1351, https://doi.org/10.1039/b308781f, 2003.
Hellstrom, J.: U–Th dating of speleothems with high initial 230Th using stratigraphical constraint, Quat. Geochronol., 1, 289–295, 2006.
Hoffmann, D. L., Prytulak, J., Richards, D. A., Elliott, T., Coath, C. D., Smart, P. L., and Scholz, D.: Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS, Int. J. Mass Spectrom., 264, 97–109, https://doi.org/10.1016/j.ijms.2007.03.020, 2007.
Huang, S., Cai, Y., Cheng, H., Xue, G., Cheng, X., He, M., Li, R., Ma, L., Wei, Y., Lu, Y., Yang, L., and Edwards, R. L.: An integrated study of constraining the initial 230Th of a stalagmite and its implications, Quat. Geochronol., 80, 101497, https://doi.org/10.1016/j.quageo.2024.101497, 2024.
Huber, P. J.: Robust statistics, John Wiley & Sons, ISBN 9780470129906, https://doi.org/10.1002/9780470434697, 2004.
Ivanovich, M. and Harmon, R.: Uranium series disequilibrium. Applications to environmental problems, Clarendon, ISBN 0 19 854278 X, 1992.
Kaufmann, G.: Stalagmite growth and palaeo-climate: the numerical perspective, Earth Planet. Sc. Lett., 214, 251–266, https://doi.org/10.1016/s0012-821x(03)00369-8, 2003.
Kerber, I. K., Arps, J., Eichstädter, R., Kontor, F., Dornick, C., Schröder-Ritzrau, A., Babu, A., Warken, S., and Frank, N.: Simultaneous U and Th isotope measurements for U-series dating using MCICPMS, Nucl. Instrum. Meth. B, 539, 169–178, https://doi.org/10.1016/j.nimb.2023.04.003, 2023.
Kerber, I. K., Kontor, F., Arps, J., Mielke, A., Eichstädter, R., Warken, S., andFrank, N.: UTh-Analysis: UTh Dating Analysis algorithm with GUI (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.14506748, 2024.
Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L.: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, J. Exp. Soc. Psychol., 49, 764–766, https://doi.org/10.1016/j.jesp.2013.03.013, 2013.
Li, T.-Y., Wang, X., Chen, C.-J., Tan, M., and Wu, Y.: Testing the initial 230Th/232Th for “Known Age Carbonate” and its significance for 230Th dating and paleoclimate research, Quatern. Int., 607, 113–119, 2022.
Ludwig, K. and Paces, J.: Uranium-series dating of pedogenic silica and carbonate, Crater Flat, Nevada, Geochim. Cosmochim. Ac., 66, 487–506, 2002.
Ludwig, K. R. and Titterington, D. M.: Calculation of (230) Isochrons, Ages, and Errors, Geochim. Cosmochim. Ac., 58, 5031–5042, https://doi.org/10.1016/0016-7037(94)90229-1, 1994.
Mallick, R. and Frank, N.: A new technique for precise uranium-series dating of travertine micro-samples, Geochim. Cosmochim. Ac., 66, 4261–4272, https://doi.org/10.1016/S0016-7037(02)00999-7, 2002.
Matos, L., Mienis, F., Wienberg, C., Frank, N., Kwiatkowski, C., Groeneveld, J., Thil, F., Abrantes, F., Cunha, M. R., and Hebbeln, D.: Interglacial occurrence of cold-water corals off Cape Lookout (NW Atlantic): First evidence of the Gulf Stream influence, Deep-Sea Res. Pt. I, 105, 158–170, https://doi.org/10.1016/j.dsr.2015.09.003, 2015.
McLean, N. M., Bowring, J. F., and Gehrels, G.: Algorithms and software for U-Pb geochronology by LA-ICPMS, Geochem. Geophy. Geosy., 17, 2480–2496, https://doi.org/10.1002/2015GC006097, 2016.
Merz, N., Hubig, A., Kleinen, T., Therre, S., Kaufmann, G., and Frank, N.: How the climate shapes stalagmites – A comparative study of model and speleothem at the Sofular Cave, Northern Turkey, Front. Earth Sci., 10, 969211, https://doi.org/10.3389/feart.2022.969211, 2022.
Moseley, G. E., Richards, D. A., Smart, P. L., Standish, C. D., Hoffmann, D. L., ten Hove, H., and Vinn, O.: Early–middle Holocene relative sea-level oscillation events recorded in a submerged speleothem from the Yucatán Peninsula, Mexico, Holocene, 25, 1511–1521, 2015.
Ogliore, R., Huss, G., and Nagashima, K.: Ratio estimation in SIMS analysis, Nucl. Instrum. Meth. B, 269, 1910–1918, 2011.
Pourmand, A., Tissot, F. L. H., Arienzo, M., and Sharifi, A.: Introducing a Comprehensive Data Reduction and Uncertainty Propagation Algorithm for U-Th Geochronometry with Extraction Chromatography and Isotope Dilution MC-ICP-MS, Geostand. Geoanal. Res., 38, 129–148, https://doi.org/10.1111/j.1751-908X.2013.00266.x, 2014.
Rivera-Collazo, I., Winter, A., Scholz, D., Mangini, A., Miller, T., Kushnir, Y., and Black, D.: Human adaptation strategies to abrupt climate change in Puerto Rico ca. 3.5 ka, Holocene, 25, 627–640, https://doi.org/10.1177/0959683614565951, 2015.
Riverbank Computing Limited: PyQt5 – Comprehensive python Bindings for Qtv5, Riverbank Computing Limited [code], https://www.riverbankcomputing.com/software/pyqt (last access: 11 October 2024), 2024.
Rousseeuw, P. J. and Croux, C.: Alternatives to the Median Absolute Deviation, J. Am. Stat. Assoc., 88, 1273–1283, https://doi.org/10.1080/01621459.1993.10476408, 1993.
Roy-Barman, M. and Pons-Branchu, E.: Improved U–Th dating of carbonates with high initial 230Th using stratigraphical and coevality constraints, Quat. Geochronol., 32, 29–39, https://doi.org/10.1016/j.quageo.2015.12.002, 2016.
Schorndorf, N., Frank, N., Ritter, S. M., Warken, S. F., Scholz, C., Keppler, F., Scholz, D., Weber, M., Aviles Olguin, J., and Stinnesbeck, W.: Mid-to late Holocene sea-level rise recorded in Hells Bells ratio and geochemical composition, Sci. Rep., 13, 10011, https://doi.org/10.1038/s41598-023-36777-y, 2023.
Shao, Q.-F., Li, C.-H., Huang, M.-J., Liao, Z.-B., Arps, J., Huang, C.-Y., Chou, Y.-C., and Kong, X.-G.: Interactive programs of MC-ICPMS data processing for 230 geochronology, Quat. Geochronol., 51, 43–52, https://doi.org/10.1016/j.quageo.2019.01.004, 2019.
Shen, C.-C., Lawrence Edwards, R., Cheng, H., Dorale, J. A., Thomas, R. B., Bradley Moran, S., Weinstein, S. E., and Edmonds, H. N.: Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry, Chem. Geol., 185, 165–178, https://doi.org/10.1016/S0009-2541(01)00404-1, 2002.
Shen, C.-C., Wu, C.-C., Cheng, H., Lawrence Edwards, R., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., and Spötl, C.: High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86, https://doi.org/10.1016/j.gca.2012.09.018, 2012.
Shen, C.-C., Li, K.-S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y.-T., Fan, T.-Y., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, H.-W., and Kilbourne, K. H.: Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals, Geochim. Cosmochim. Ac., 72, 4201–4223, https://doi.org/10.1016/j.gca.2008.06.011, 2008.
Skiba, V. and Fohlmeister, J.: Contemporaneously growing speleothems and their value to decipher in-cave processes – A modelling approach, Geochim. Cosmochim. Ac., 348, 381–396, 2023.
Steidle, S. D., Warken, S. F., Schorndorf, N., Förstel, J., Schröder-Ritzrau, A., Moseley, G. E., Spötl, C., Aviles, J., Stinnesbeck, W., and Frank, N.: Reconstruction of Middle to Late Quaternary sea level using submerged speleothems from the northeastern Yucatán Peninsula, J. Quatern. Sci., 36, 1190–1200, https://doi.org/10.1002/jqs.3365, 2021.
Stinnesbeck, W., Rennie, S. R., Avilés Olguín, J., Stinnesbeck, S. R., Gonzalez, S., Frank, N., Warken, S., Schorndorf, N., Krengel, T., and Velázquez Morlet, A.: New evidence for an early settlement of the Yucatán Peninsula, Mexico: The Chan Hol 3 woman and her meaning for the Peopling of the Americas, Plos one, 15, e0227984, https://doi.org/10.1371/journal.pone.0227984, 2020.
Taylor, S. R. and McLennan, S. M.: The continental crust: its composition and evolution, ISBN 0 632 01148 3, 1985.
Töchterle, P., Steidle, S. D., Edwards, R. L., Dublyansky, Y., Spötl, C., Li, X., Gunn, J., and Moseley, G. E.: 230Th ∕ U isochron dating of cryogenic cave carbonates, Geochronology, 4, 617–627, https://doi.org/10.5194/gchron-4-617-2022, 2022.
Tukey, J. W.: Exploratory Data Analysis, Bd. 2, Addison-Wesley Publishing Company, ISBN 9780201076165, 1977.
Vieten, R. and Hernandez, F.: StalGrowth – A Program to Estimate Speleothem Growth Rates and Seasonal Growth Variations, Geosciences, 11, 187, https://doi.org/10.3390/geosciences11050187, 2021.
Vieten, R., Winter, A., Warken, S. F., Schröder-Ritzrau, A., Miller, T. E., and Scholz, D.: Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico, Int. J. Speleol., 45, 259–273, https://doi.org/10.5038/1827-806x.45.3.1983, 2016.
Vieten, R., Warken, S., Winter, A., Schröder-Ritzrau, A., Scholz, D., and Spötl, C.: Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico, J. Geophys. Res.-Biogeo., 123, 879–888, https://doi.org/10.1002/2017jg004218, 2018a.
Vieten, R., Warken, S., Winter, A., Scholz, D., Miller, T., Spötl, C., and Schröder-Ritzrau, A.: Monitoring of Cueva Larga, Puerto Rico – A First Step to Decode Speleothem Climate Records, in: Karst Groundwater Contamination and Public Health, edited by: White, W. B., Herman, J. S., Herman, E. K., and Rutigliano, M., Advances in Karst Science, Springer International Publishing, Cham, 319–331, https://doi.org/10.1007/978-3-319-51070-5_36, 2018b.
Vieten, R., Warken, S. F., Zanchettin, D., Winter, A., Scholz, D., Black, D., Koltai, G., and Spötl, C.: Northeastern Caribbean rainfall variability linked to solar and volcanic forcing, Paleoceanography and Paleoclimatology, 39, e2023PA004720, https://doi.org/10.1029/2023PA004720, 2024.
Warken, S. F., Vieten, R., Winter, A., Spötl, C., Miller, T. E., Jochum, K. P., Schröder-Ritzrau, A., Mangini, A., and Scholz, D.: Persistent Link Between Caribbean Precipitation and Atlantic Ocean Circulation During the Last Glacial Revealed by a Speleothem Record From Puerto Rico, Paleoceanography and Paleoclimatology, 35, e2020PA003944, https://doi.org/10.1029/2020pa003944, 2020.
Warken, S. F., Weißbach, T., Kluge, T., Vonhof, H., Scholz, D., Vieten, R., Schmidt, M., Winter, A., and Frank, N.: Last glacial millennial-scale hydro-climate and temperature changes in Puerto Rico constrained by speleothem fluid inclusion δ18O and δ2H values, Clim. Past, 18, 167–181, https://doi.org/10.5194/cp-18-167-2022, 2022a.
Warken, S. F., Kuchalski, L., Schröder-Ritzrau, A., Vieten, R., Schmidt, M., Höpker, S. N., Hartland, A., Spötl, C., Scholz, D., and Frank, N.: The impact of seasonal and event-based infiltration on transition metals (Cu, Ni, Co) in tropical cave drip water, Rapid Commun. Mass Spectrom., 36, e9278, https://doi.org/10.1002/rcm.9278, 2022b.
Wefing, A.-M., Arps, J., Blaser, P., Wienberg, C., Hebbeln, D., and Frank, N.: High precision U-series dating of scleractinian cold-water corals using an automated chromatographic U and Th extraction, Chem. Geol., 475, 140–148, https://doi.org/10.1016/j.chemgeo.2017.10.036, 2017.
Wenz, S., Scholz, D., Sürmelihindi, G., Passchier, C. W., Jochum, K. P., and Andreae, M. O.: 230 -dating of carbonate deposits from ancient aqueducts, Quat. Geochronol., 32, 40–52, 2016.
Wortham, B. E., Banner, J. L., James, E. W., Edwards, R. L., and Loewy, S.: Application of cave monitoring to constrain the value and source of detrital 230Th/232Th in speleothem calcite: Implications for U-series geochronology of speleothems, Palaeogeogr. Palaeocl., 596, 110978, https://doi.org/10.1016/j.palaeo.2022.110978, 2022.
Zhao, J.-X., Yu, K.-F., and Feng, Y.-X.: High-precision 238U–234U–230Th disequilibrium dating of the recent past: a review, Quat. Geochronol., 4, 423–433, https://doi.org/10.1016/j.quageo.2009.01.012, 2009.
Short summary
A stand-alone data analysis application for Th/U dating on multi-collector inductively coupled plasma mass spectrometers features a Python-based algorithm with a graphical user interface. It handles data treatment, corrections, age calculus, and error estimation and supports various detector layouts including Faraday and electron multiplier detectors. Key features include reproducibility, user-friendly reanalysis, and automated data storage. A case study demonstrates the software’s performance.
A stand-alone data analysis application for Th/U dating on multi-collector inductively coupled...