Articles | Volume 7, issue 4
https://doi.org/10.5194/gchron-7-493-2025
https://doi.org/10.5194/gchron-7-493-2025
Research article
 | 
22 Oct 2025
Research article |  | 22 Oct 2025

Diffusion kinetics of 3He in pyroxene and plagioclase and applications to cosmogenic exposure dating and paleothermometry in mafic rocks

Marie Bergelin, Andrew L. Gorin, Greg Balco, and William S. Cassata

Related authors

Cosmogenic 3He exposure dating in mafic rocks by 'Virtual mineral separation' of pyroxene
Marie Bergelin, Greg Balco, and Richard A. Ketcham
EGUsphere, https://doi.org/10.5194/egusphere-2025-3033,https://doi.org/10.5194/egusphere-2025-3033, 2025
Short summary
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024,https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024,https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary

Cited articles

Ackert Jr., R. P., Barclay, D. J., Borns Jr., H. W., Calkin, P. E., Kurz, M. D., Fastook, J. L., and Steig, E. J.: Measurements of Past Ice Sheet Elevations in Interior West Antarctica, Science, 286, 276–280, https://doi.org/10.1126/science.286.5438.276, 1999. 
Balco, G., Hidy, A. J., Struble, W. T., and Roering, J. J.: Short communication: Cosmogenic noble gas depletion in soils by wildfire heating, Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, 2024. 
Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H., and Jackson, M. S.: A 14.5-million-year record of East Antarctic Ice Sheet fluctuations from the central Transantarctic Mountains, constrained with cosmogenic 3He, 10Be, 21Ne, and 26Al, The Cryosphere, 14, 2647–2672, https://doi.org/10.5194/tc-14-2647-2020, 2020. 
Balter-Kennedy, A., Schaefer, J. M., Schwartz, R., Lamp, J. L., Penrose, L., Middleton, J., Hanley, J., Tibari, B., Blard, P.-H., Winckler, G., Hidy, A. J., and Balco, G.: Cosmogenic 10Be in pyroxene: laboratory progress, production rate systematics, and application of the 10Be3He nuclide pair in the Antarctic Dry Valleys, Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, 2023. 
Baxter, E. F.: Diffusion of Noble Gases in Minerals, Rev. Mineral. Geochem., 72, 509–557, https://doi.org/10.2138/rmg.2010.72.11, 2010. 
Download
Short summary
Helium gas accumulates over time in minerals, but loss can occur depending on temperature. If partially retained, its loss can potentially be used for determining past surface temperatures. This study uses a model that accounts for complex gas loss to analyze helium retention in two minerals commonly found on the surface of Antarctica. We find one of the minerals retains helium, while the other loses nearly all of the gas within 100 years, making it unsuitable as a climate reconstruction.
Share