Articles | Volume 7, issue 4
https://doi.org/10.5194/gchron-7-513-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-513-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accuracy and validity of maximum depositional ages in light of tandem (laser ablation and isotope dilution) U–Pb detrital zircon geochronology, including results from northern Alaska
Trystan M. Herriott
CORRESPONDING AUTHOR
Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK 99709, United States of America
James L. Crowley
Department of Geosciences, Boise State University, Boise, ID 83725, United States of America
Marwan A. Wartes
Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK 99709, United States of America
David L. LePain
Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK 99709, United States of America
Mark D. Schmitz
Department of Geosciences, Boise State University, Boise, ID 83725, United States of America
Related authors
No articles found.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Robin B. Trayler, Stephen R. Meyers, Bradley B. Sageman, and Mark D. Schmitz
Geochronology, 6, 107–123, https://doi.org/10.5194/gchron-6-107-2024, https://doi.org/10.5194/gchron-6-107-2024, 2024
Short summary
Short summary
Developing models that relate stratigraphic position to time are important because they allow the rock record to be understood in terms of absolute time, allowing global comparisons. We developed a novel method for developing these models (called age–depth models) that uses two different types of chronologic information, dated rocks, and records of variations in the Earth's orbit (astrochronology). The resulting models are very precise, which can improve understanding of past climates.
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.
Cited articles
Abramson, I. S.: On bandwidth variation in kernel estimates – A square root law, Ann. Stat., 10, 1217–1223, https://www.jstor.org/stable/2240724 (last access: 9 October 2025), 1982.
Akinin, V. V., Miller, E. L., Toro, J., Prokopiev, A. V., Gottlieb, E. S., Pearcey, S., Polzunenkov, G. O., and Trunilina, V. A.: Episodicity and the dance of late Mesozoic magmatism and deformation along the northern circum-Pacific margin: North-eastern Russia to the Cordillera, Earth-Sci. Rev., 208, 103272, https://doi.org/10.1016/j.earscirev.2020.103272, 2020.
Allen, C. M. and Campbell, I. H.: Identification and elimination of a matrix-induced systematic error in LA-ICP-MS dating of zircon, Chem. Geol., 332–333, 157–165, https://doi.org/10.1016/j.chemgeo.2012.09.038, 2012.
Andersen, T. and Elburg, M. A.: Open-system behaviour of detrital zircon during weathering: An example from the Palaeoproterozoic Pretoria Group, South Africa, Geol. Mag., 159, 561–576, https://doi.org/10.1017/S001675682100114X, 2022.
Andersen, T., Elburg, M. A., and Magwaza, B. N.: Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction, Earth-Sci. Rev., 197, 102899, https://doi.org/10.1016/j.earscirev.2019.102899, 2019.
Bird, K. J. and Molenaar, C. M.: The North Slope foreland basin, Alaska, in: Foreland Basins and Foldbelts, edited by: Macqueen, R. W. and Leckie, D. A., AAPG Memoir 55, 363–393, https://doi.org/10.1306/M55563C14, 1992.
Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., and Foudoulis, C.: Improved microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 205, 115–140, https://doi.org/10.1016/j.chemgeo.2004.01.003, 2004.
Botev, Z. I., Grotowski, J. F., and Kroese, D. P.: Kernel density estimation via diffusion, Ann. Stat., 38, 2916–2957, https://doi.org/10.1214/10-AOS799, 2010.
Bowring, S. A. and Schmitz, M. D.: High-precision U–Pb zircon geochronology and the stratigraphic record, Rev. Mineral. Geochem., Zircon, 53, 305–326, https://doi.org/10.2113/0530305, 2003.
Bowring, S. A., Schoene, B., Crowley, J. L., Ramezani, J., and Condon, D. J.: High-precision U–Pb zircon geochronology and the stratigraphic record: Progress and promise, The Paleontological Society Papers, 12, 25–45, https://doi.org/10.1017/S1089332600001339, 2006.
Burgess, S. D. and Bowring, S. A.: High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction, Science Advances, 1, 15 pp., https://doi.org/10.1126/sciadv.1500470, 2015.
Cherniak, D. J. and Watson, E. B.: Pb diffusion in zircon, Chem. Geol., 172, 5–24, https://doi.org/10.1016/S0009-2541(00)00233-3, 2001.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.: The ICS International Chronostratigraphic Chart, Episodes, 36, 199–204, https://doi.org/10.18814/epiiugs/2013/v36i3/002, 2013 (updated v. 2024/12; https://stratigraphy.org/chart, last access: 9 October 2025).
Condon, D., Schoene, B., Schmitz, M., Schaltegger, U., Ickert, R. B., Amelin, Y., Augland, L. E., Chamberlain, K. R., Coleman, D. S., Connelly, J. N., Corfu, F., Crowley, J. L., Davies, J. H. F. L., Denyszyn, S. W., Eddy, M. P., Gaynor, S. P., Heaman, L. M., Huyskens, M. H., Kamo, S., Kasbohm, J., Keller, C. B., MacLennan, S. A., McLean, N. M., Noble, S., Ovtcharova, M., Paul, A., Ramezani, J., Rioux, M., Sahy, D., Scoates, J. S., Szymanowski, D., Tapster, S., Tichomirowa, M., Wall, C. J., Wotzlaw, J.-F., Yang, C., and Yin, Q.-Z.: Recommendations for the reporting and interpretation of isotope dilution U–Pb geochronological information, Geol. Soc. Am. Bull., 136, 4233–4251, https://doi.org/10.1130/B37321.1, 2024.
Condon, D. J. and Schmitz, M. D.: One hundred years of isotope geochronology, and counting, Elements, 9, 15–17, https://doi.org/10.2113/gselements.9.1.15, 2013.
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R.: Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochim. Cosmochim. Ac., 164, 464–480, https://doi.org/10.1016/j.gca.2015.05.026, 2015.
Copeland, P.: On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata, Basin Res., 32, 1532–1546, https://doi.org/10.1111/bre.12441, 2020.
Cothren, H. R., Farrell, T. P., Sundberg, F. A., Dehler, C. M., and Schmitz, M. D.: Novel age constraints for the onset of the Steptoean Positive Isotopic Carbon Excursion (SPICE) and the late Cambrian time scale using high-precision U–Pb detrital zircon ages, Geology, 50, 1415–1420, https://doi.org/10.1130/G50434.1, 2022.
Coutts, D., Hubbard, S., Englert, R., Ward, P., and Matthews, W.: Dissecting 20 million years of deep-water forearc sediment routing using an integrated basin-wide Bayesian chronostratigraphic framework, Geol. Soc. Am. Bull., 136, 3485–3509, https://doi.org/10.1130/B37194.1, 2024.
Coutts, D. S., Matthews, W. A., and Hubbard, S. M.: Assessment of widely used methods to derive depositional ages from detrital zircon populations, Geosci. Front., 10, 1421–1435, https://doi.org/10.1016/j.gsf.2018.11.002, 2019.
Crowley, J. L., Schoene, B., and Bowring, S. A.: U–Pb dating of zircon in the Bishop Tuff at the millennial scale, Geology, 35, 1123–1126, https://doi.org/10.1130/G24017A.1, 2007.
Crowley, Q. G., Heron, K., Riggs, N., Kamber, B., Chew, D., McConnell, B., and Benn, K.: Chemical abrasion applied to LA-ICP-MS U–Pb zircon geochronology, Minerals, 4, 503–518, https://doi.org/10.3390/min4020503, 2014.
Daniels, B. G., Auchter, N. C., Hubbard, S. M., Romans, B. W., Matthews, W. A., and Stright, L.: Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile, Geol. Soc. Am. Bull., 130, 438–454, https://doi.org/10.1130/B31757.1, 2018.
Decker, P. L.: Brookian sequence stratigraphic correlations, Umiat Field to Milne Point Field, west-central North Slope, Alaska, Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2007-2, 19 pp., 1 sheet, https://doi.org/10.14509/15758, 2007.
Dehler, C., Schmitz, M., Bullard, A., Porter, S., Timmons, M., Karlstrom, K., and Cothren, H.: Precise U–Pb age models refine Neoproterozoic western Laurentian rift initiation, correlation, and Earth system changes, Precambrian Res., 396, 107156, https://doi.org/10.1016/j.precamres.2023.107156, 2023.
Detterman, R. L., Bickel, R. S., and Gryc, G.: Geology of the Chandler River region, Alaska, Geol. Surv. Prof. Paper 303-E, 233–324, 16 sheets, https://doi.org/10.3133/pp303E, 1963.
Dickinson, W. R. and Gehrels, G. E.: Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database, Earth Planet. Sc. Lett., 288, 115–125, https://doi.org/10.1016/j.epsl.2009.09.013, 2009.
Donaghy, E. E., Eddy, M. P., Moreno, F., and Ibañez-Mejia, M.: Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS, Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024, 2024.
Dröllner, M., Barham, M., Kirkland, C. L., and Ware, B.: Every zircon deserves a date: Selection bias in detrital geochronology, Geol. Mag., 158, 1135–1142, https://doi.org/10.1017/S0016756821000145, 2021.
Eddy, M. P., Bowring, S. A., Umhoefer, P. J., Miller, R. B., McLean, N. M., and Donaghy, E. E.: High-resolution temporal and stratigraphic record of Siletzia's accretion and triple junction migration from nonmarine sedimentary basins in central and western Washington, Geol. Soc. Am. Bull., 128, 425–441, https://doi.org/10.1130/B31335.1, 2016.
Eddy, M. P., Ibañez-Mejia, M., Burgess, S. D., Coble, M. A., Cordani, U. G., DesOrmeau, J., Gehrels, G. E., Li, X., MacLennan, S., Pecha, M., Sato, K., Schoene, B., Valencia, V. A., Vervoort, J. D., and Wang, T.: GHR1 zircon – A new Eocene natural reference material for microbeam U–Pb geochronology and Hf isotopic analysis of zircon, Geostand. Geoanal. Res., 43, 113–132, https://doi.org/10.1111/ggr.12246, 2019.
Fedo, C. M., Sircombe, K. N., and Rainbird, R. H.: Detrital zircon analysis of the sedimentary record, Rev. Mineral. Geochem., Zircon, 53, 277–303, https://doi.org/10.2113/0530277, 2003.
Finzel, E. S. and Rosenblume, J. A.: Dating lacustrine carbonate strata with detrital zircon U–Pb geochronology, Geology, 49, 294–298, https://doi.org/10.1130/G48070.1, 2021.
Gale, A. S., Mutterlose, J., Batenburg, S., Gradstein, F. M., Agterberg, F. P., Ogg, J. G., and Petrizzo, M. R.: The Cretaceous Period, in: Geologic Time Scale 2020, vol. 2, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 1023–1086, https://doi.org/10.1016/B978-0-12-824360-2.00027-9, 2020.
Gaynor, S. P., Ruiz, M., and Schaltegger, U.: The importance of high precision in the evaluation of U–Pb zircon age spectra, Chem. Geol., 603, 120913, https://doi.org/10.1016/j.chemgeo.2022.120913, 2022.
Gehrels, G.: Detrital zircon U–Pb geochronology: Current methods and new opportunities, in: Tectonics of Sedimentary Basins: Recent Advances, edited by: Busby, C. and Azor, A., Blackwell Publishing, 2, 47–62, https://doi.org/10.1002/9781444347166.ch2, 2012.
Gehrels, G.: Detrital zircon U–Pb geochronology applied to tectonics, Annu. Rev. Earth Pl. Sc., 42, 127–149, https://doi.org/10.1146/annurev-earth-050212-124012, 2014.
Gehrels, G., Giesler, D., Olsen, P., Kent, D., Marsh, A., Parker, W., Rasmussen, C., Mundil, R., Irmis, R., Geissman, J., and Lepre, C.: LA-ICPMS U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona), Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, 2020.
Gehrels, G. E., Valencia, V. A., and Ruiz, J.: Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry, Geochem. Geophy. Geosy., 9, Q03017, https://doi.org/10.1029/2007GC001805, 2008.
Harris, E. E., Mull, C. G., Reifenstuhl, R. R., and Montayne, S.: Geologic map of the Dalton Highway (Atigun Gorge to Slope Mountain) area, southern Arctic Foothills, Alaska, Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2002-2, 1 sheet, https://doi.org/10.14509/2867, 2002.
Herriott, T. M., Wartes, M. A., Decker, P. L., Gillis, R. J., Shellenbaum, D. P., Willingham, A. L., and Mauel, D. J.: Geologic map of the Umiat–Gubik area, central North Slope, Alaska, Alaska Division of Geological & Geophysical Surveys Report of Investigation 2018-6, 55 pp., 1 sheet, https://doi.org/10.14509/30099, 2018.
Herriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., and Gillis, R. J.: Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA, Geology, 47, 1044–1048, https://doi.org/10.1130/G46312.1, 2019a.
Herriott, T. M., Wartes, M. A., O'Sullivan, P. B., and Gillis, R. J.: Detrital zircon maximum depositional dates for the Jurassic Chinitna and Naknek Formations, lower Cook Inlet, Alaska: A preliminary view, Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2019-5, 11 pp., https://doi.org/10.14509/30180, 2019b.
Herriott, T. M., Crowley, J. L., LePain, D. L., Wartes, M. A., Harun, N. T., and Schmitz, M. D.: Zircon geochronology of Torok and Nanushuk Formations sandstones at Slope Mountain and a Seabee Formation tephra deposit at Ninuluk Bluff, central North Slope, Alaska, Alaska Division of Geological & Geophysical Surveys Raw Data File 2024-33 [data set], 22 p. https://doi.org/10.14509/31152, 2024.
Herrmann, M., Söderlund, U., Scherstén, A., Næraa, T., Holm-Alwmark, S., and Alwmark, C.: The effect of low-temperature annealing on discordance of U–Pb zircon ages, Scientific Reports, 11, 7079, https://doi.org/10.1038/s41598-021-86449-y, 2021.
Horstwood, M. S., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J., and Schoene, B.: Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology – Uncertainty propagation, age interpretation and data reporting, Geostand. Geoanal. Res., 40, 311–332, https://doi.org/10.1111/j.1751-908X.2016.00379.x, 2016.
Houseknecht, D. W.: Evolution of the Arctic Alaska sedimentary basin, in: The Sedimentary Basins of the United States and Canada, 2nd edn., edited by: Miall, A. D., Elsevier, 719–745, https://doi.org/10.1016/B978-0-444-63895-3.00018-8, 2019a.
Houseknecht, D. W.: Petroleum systems framework of significant new oil discoveries in a giant Cretaceous (Aptian–Cenomanian) clinothem in Arctic Alaska, Am. Assoc. Petr. Geol. B, 103, 619–652, https://doi.org/10.1306/08151817281, 2019b.
Houseknecht, D. W. and Schenk, C. J.: Sedimentology and sequence stratigraphy of the Cretaceous Nanushuk, Seabee, and Tuluvak Formations exposed on Umiat Mountain, north-central Alaska, in: Studies by the U. S. Geological Survey in Alaska, 2004, edited by: Haeussler, P. J. and Galloway, J. P., Geol. Surv. Prof. Paper 1709-B, 18 pp., https://doi.org/10.3133/pp1709B, 2005.
Houseknecht, D. W., Bird, K. J., and Schenk, C. J.: Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope, Basin Res., 21, 644–654, https://doi.org/10.1111/j.1365-2117.2008.00392.x, 2009.
Houston, R. S. and Murphy, J. F.: Age and distribution of sedimentary zircon as a guide to provenance, Geol. Surv. Prof. Paper 525-D, D22–D26, https://doi.org/10.3133/pp525D, 1965.
Howard, B. L., Sharman, G. R., Crowley, J. L., and Reat Wersan, E.: The leaky chronometer: Evidence for systematic cryptic Pb loss in laser ablation U–Pb dating of zircon relative to CA-TIMS, Terra Nova, 37, 19–25, https://doi.org/10.1111/ter.12742, 2025.
Huang, C., Dashtgard, S. E., Haggart, J. W., and Girotto, K.: Synthesis of chronostratigraphic data and methods in the Georgia Basin, Canada, with implications for convergent-margin basin chronology, Earth-Sci. Rev., 231, 104076, https://doi.org/10.1016/j.earscirev.2022.104076, 2022.
Huffman, A. C., Ahlbrandt, T. S., Pasternack, I., Stricker, G. D., Bartsch-Winkler, S., Fox, J. E., May, F. E., and Scott, R. A.: Measured sections in the Cretaceous Nanushuk and Colville groups undivided, central North Slope, Alaska, U. S. Geological Survey Open-File Report 81-177, 162 pp., https://doi.org/10.3133/ofr81177, 1981.
Huffman Jr., A. C. (Ed.): Geology of the Nanushuk Group and related rocks, North Slope, Alaska, U. S. Geological Survey Bulletin 1614, 129 pp., https://doi.org/10.3133/b1614, 1985.
Isakson, V. H., Schmitz, M. D., Dehler, C. M., Macdonald, F. A., and Yonkee, W. A.: A robust age model for the Cryogenian Pocatello Formation of southeastern Idaho (northwestern USA) from tandem in situ and isotope dilution U–Pb dating of volcanic tuffs and epiclastic detrital zircons, Geosphere, 18, 825–849, https://doi.org/10.1130/GES02437.1, 2022.
Johnsson, M. J. and Sokol, N. K.: Stratigraphic variation in petrographic composition of Nanushuk Group sandstones at Slope Mountain, North Slope, Alaska, in: Geologic Studies in Alaska by the U. S. Geological Survey, 1998, edited by: Kelley, K. D. and Gough, L. P., Geol. Surv. Prof. Paper 1615, 83–100, https://doi.org/10.3133/pp1615, 2000.
Johnstone, S. A., Schwartz, T. M., and Holm-Denoma, C. S.: A stratigraphic approach to inferring depositional ages from detrital geochronology data, Front. Earth Sci., 7, 57, https://doi.org/10.3389/feart.2019.00057, 2019.
Jones, D. L. and Gryc, G.: Upper Cretaceous pelecypods of the genus Inoceramus from northern Alaska, Geol. Surv. Prof. Paper 334-E, 149–165, https://doi.org/10.3133/pp334E, 1960.
Karlstrom, K., Hagadorn, J., Gehrels, G., Matthews, W., Schmitz, M., Madronich, L., Mulder, J., Pecha, M., Giesler, D., and Crossey, L.: Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons, Nat. Geosci., 11, 438–443, https://doi.org/10.1038/s41561-018-0131-7, 2018.
Karlstrom, K. E., Mohr, M. T., Schmitz, M. D., Sundberg, F. A., Rowland, S. M., Blakey, R., Foster, J. R., Crossey, L. J., Dehler, C. M., and Hagadorn, J. W.: Redefining the Tonto Group of Grand Canyon and recalibrating the Cambrian time scale, Geology, 48, 425–430, https://doi.org/10.1130/G46755.1, 2020.
Keller, A. S., Morris, R. H., and Detterman, R. L.: Geology of the Shaviovik and Sagavanirktok rivers region, Alaska, Geol. Surv. Prof. Paper 303-D, 169–222, 6 sheets, https://doi.org/10.3133/pp303D, 1961.
Keller, C. B.: Technical Note: Pb-loss-aware Eruption/Deposition Age Estimation, Geochronology Discuss. [preprint], https://doi.org/10.5194/gchron-2023-9, 2023.
Keller, C. B., Schoene, B., and Samperton, K. M.: A stochastic sampling approach to zircon eruption age interpretation, Geochemical Perspective Letters, 8, 31–35, https://doi.org/10.7185/geochemlet.1826, 2018.
Keller, C. B., Boehnke, P., Schoene, B., and Harrison, T. M.: Stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis of microfractured Hadean zircon, Geochronology, 1, 85–97, https://doi.org/10.5194/gchron-1-85-2019, 2019.
Klein, B. Z. and Eddy, M. P.: What's in an age? Calculation and interpretation of ages and durations from U–Pb zircon geochronology of igneous rocks, Geol. Soc. Am. Bull., 136, 93–109, https://doi.org/10.1130/B36686.1, 2024.
Klötzli, U., Klötzli, E., Günes, Z., and Kosler, J.: Accuracy of laser ablation U–Pb zircon dating: Results from a test using five different reference zircons, Geostand. Geoanal. Res., 33, 5–15, https://doi.org/10.1111/j.1751-908X.2009.00921.x, 2009.
Koch, J. T. and Brenner, R. L.,: Evidence for glacioeustatic control of large, rapid sea-level fluctuations during the Albian-Cenomanian: Dakota Formation, eastern margin of western interior seaway, USA, Cretaceous Res., 30, 411–423, https://doi.org/10.1016/j.cretres.2008.08.002, 2009.
Kooymans, C., Magee Jr., C. W., Waltenberg, K., Evans, N. J., Bodorkos, S., Amelin, Y., Kamo, S. L., and Ireland, T.: Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses, Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, 2024.
Košler, J., Sláma, J., Belousova, E., Corfu, F., Gehrels, G. E., Gerdes, A., Horstwood, M. S. A., Sircombe, K. N., Sylvester, P. J., Tiepolo, M., Whitehouse, M. J., and Woodhead, J. D.: U–Pb detrital zircon analysis – Results of an inter-laboratory comparison, Geostand. Geoanal. Res., 37, 243–259, https://doi.org/10.1111/j.1751-908X.2013.00245.x, 2013.
Kryza, R., Crowley, Q. G., Larionov, A., Pin, C., Oberc-Dziedzic, T., and Mochnacka, K.: Chemical abrasion applied to SHRIMP zircon geochronology: An example from the Variscan Karkonosze granite (Sudetes, SW Poland), Gondwana Res., 21, 757–767, https://doi.org/10.1016/j.gr.2011.07.007, 2012.
Landing, E., Schmitz, M. D., Geyer, G., Trayler, R. B., and Bowring, S. A.: Precise early Cambrian U–Pb zircon dates bracket the oldest trilobites and archaeocyaths in Moroccan West Gondwana, Geol. Mag., 158, 219–238, https://doi.org/10.1017/S0016756820000369, 2021.
Lanphere, M. A. and Tailleur, I. L.: K-Ar ages of bentonites in the Seabee Formation, northern Alaska: A Late Cretaceous (Turonian) time-scale point, Cretaceous Res., 4, 361–370, https://doi.org/10.1016/S0195-6671(83)80004-4, 1983.
Lease, R. O., Houseknecht, D. W., and Kylander-Clark, A. R. C.: Quantifying large-scale continental shelf margin growth and dynamics across middle-Cretaceous Arctic Alaska with detrital zircon U–Pb dating, Geology, 50, 620–625, https://doi.org/10.1130/G49118.1, 2022.
Lease, R. O., Whidden, K. J., Dumoulin, J. A., Houseknecht, D. W., Botterell, P. J., Dreier, M. F., Griffis, N. P., Mundil, R., Kylander-Clark, A. R. C., Sanders, M. M., Counts, J. W., Self-Trail, J. M., Gooley, J. T., Rouse, W. A., Smith, R. A., and DeVera, C. A.: Arctic Alaska deepwater organic carbon burial and environmental changes during the late Albian–early Campanian (103–82 Ma), Earth Planet. Sc. Lett., 646, 118948, https://doi.org/10.1016/j.epsl.2024.118948, 2024.
LePain, D. L. and Kirkham, R. A.: Measured stratigraphic section, upper Nanushuk Formation (Cenomanian), Ninuluk Bluff, Alaska, Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2024-3, 28 pp., 1 sheet, https://doi.org/10.14509/31150, 2024.
LePain, D. L., McCarthy, P. J., and Kirkham, R. A.: Sedimentology and sequence stratigraphy of the middle Albian–Cenomanian Nanushuk Formation in outcrop, central North Slope, Alaska, Alaska Division of Geological & Geophysical Surveys Report of Investigation 2009-1 (version 2), 76 pp., 1 sheet, https://doi.org/10.14509/19761, 2009.
LePain, D. L., Kirkham, R. A., and Montayne, S.: Measured stratigraphic section, Nanushuk Formation (Albian–Cenomanian), Nanushuk River (Rooftop Ridge), Alaska, Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2021-5, 8 pp., 1 sheet, https://doi.org/10.14509/30744, 2021.
LePain, D. L., Harun, N. T., and Kirkham, R. A.: Measured stratigraphic section, lower Nanushuk Formation (Albian), Slope Mountain (Marmot syncline), Alaska, Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2022-1, 21 pp., 1 sheet, https://doi.org/10.14509/30871, 2022.
Lowey, G. W.: Bias in detrital zircon geochronology: A review of sampling and non-sampling errors, Int. Geol. Rev., 66, 1259–1279, https://doi.org/10.1080/00206814.2023.2233017, 2024.
Macdonald, F. A., Ryan-Davis, J., Coish, R. A., Crowley, J. L., and Karabinos, P.: A newly identified Gondwanan terrane in the northern Appalachian Mountains: Implications for the Taconic orogeny and closure of the Iapetus Ocean, Geology, 42, 539–542, https://doi.org/10.1130/G35659.1, 2014.
Marillo-Sialer, E., Woodhead, J., Hergt, J., Greig, A., Guillong, M., Gleadow, A., Evans, N., and Paton, C.: The zircon `matrix effect': Evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS, J. Anal. Atom. Spectrom., 29, 981–989, https://doi.org/10.1039/C4JA00008K, 2014.
Marillo-Sialer, E., Woodhead, J., Hanchar, J. M., Reddy, S. M., Greig, A., Hergt, J., and Kohn, B.: An investigation of the laser-induced zircon `matrix effect', Chem. Geol., 438, 11–24, https://doi.org/10.1016/j.chemgeo.2016.05.014, 2016.
Mattinson, J. M.: Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 47–66, https://doi.org/10.1016/j.chemgeo.2005.03.011, 2005.
Mattinson, J. M.: Extending the Krogh legacy: Development of the CA-TIMS method for zircon U–Pb geochronology, Can. J. Earth Sci., 48, 95–105, https://doi.org/10.1139/E10-023, 2011.
Mattinson, J. M.: Revolution and evolution: 100 years of U–Pb geochronology, Elements, 9, 53–57, https://doi.org/10.2113/gselements.9.1.53, 2013.
McIntosh, W. C. and Ferguson, C. A.: Sanidine, single crystal, laser-fusion geochronology database for the Superstition Volcanic Field, central Arizona, Arizona Geological Survey Open File Report 98-27, 74 pp., https://hdl.handle.net/10150/629959, 1998.
McKanna, A. J., Koran, I., Schoene, B., and Ketcham, R. A.: Chemical abrasion: the mechanics of zircon dissolution, Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, 2023.
McKanna, A. J., Schoene, B., and Szymanowski, D.: Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments, Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, 2024.
McLean, N. M., Bowring, J. F., and Bowring, S. A.: An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophy. Geosy., 12, Q0AA18, https://doi.org/10.1029/2010GC003478, 2011.
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II), Geochim. Cosmochim. Ac., 164, 481–501, https://doi.org/10.1016/j.gca.2015.02.040, 2015.
Miall, A. D., Holbrook, J. M., and Bhattacharya, J. P.: The stratigraphy machine, J. Sediment. Res., 91, 595–610, https://doi.org/10.2110/jsr.2020.143, 2021.
Moore, T. E., Wallace, W. K., Bird, K. J., Karl, S. M., Mull, C. G., and Dillon, J. T.: Geology of northern Alaska, in: The Geology of Alaska: The Geology of North America, edited by: Plafker, G. and Berg, H. C., Geological Society of America, G-1, 49–140, https://doi.org/10.1130/DNAG-GNA-G1.49, 1994.
Mull, C. G., Houseknecht, D. W., and Bird, K. J.: Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville basin, northern Alaska, Geol. Surv. Prof. Paper 1673, 59 pp., https://doi.org/10.3133/pp1673, 2003.
Mundil, R., Ludwig, K. R., Metcalfe, I., and Renne, P. R.: Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons, Science, 305, 1760–1763, https://doi.org/10.1126/science.1101012, 2004.
Pamukçu, A. S., Schoene, B., Deering, C. D., Keller, C. B., and Eddy, M. P.: Volcano-pluton connections at the Lake City magmatic center (Colorado, USA), Geosphere, 18, 1–18, https://doi.org/10.1130/GES02467.1, 2022.
Puetz, S. J. and Spencer, C. J.: Evaluating U–Pb accuracy and precision by comparing zircon ages from 12 standards using TIMS and LA-ICP-MS methods, Geosystems and Geoenvironment, 2, 100177, https://doi.org/10.1016/j.geogeo.2022.100177, 2023.
Ramezani, J., Beveridge, T. L., Rogers, R. R., Eberth, D. A., and Roberts, E. M.: Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology, Scientific Reports, 12, 16026, https://doi.org/10.1038/s41598-022-19896-w, 2022.
Rasmussen, C., Mundil, R., Irmis, R. B., Geisler, D., Gehrels, G. E., Olsen, P. E., Kent, D. V., Lepre, C., Kinney, S. T., Geissmann, J. W., and Parker, W. G.: U–Pb zircon geochronology and depositional age models for the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, USA): Implications for Late Triassic paleoecological and paleoenvironmental change, Geol. Soc. Am. Bull., 133, 539–558, https://doi.org/10.1130/B35485.1, 2021.
Reifenstuhl, R. R. and Plumb, E. W.: Micropaleontology of 38 outcrop samples from the Chandler Lake, Demarcation Point, Mt. Michelson, Philip Smith Mountains, and Sagavanirktok quadrangles, northeast Alaska, Alaska Division of Geological & Geophysical Surveys Public Data File 93-30B, 15 pp., 4 sheets, https://doi.org/10.14509/1565, 1993.
Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., and Schoene, B.: Interpretational approaches: Making sense of data, in: Geochronology and Thermochronology, edited by: Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., and Schoene, B., John Wiley & Sons Ltd., 65–82, https://doi.org/10.1002/9781118455876.ch4, 2017.
Rossignol, C., Hallot, E., Bourquin, S., Poujol, M., Jolivet, M., Pellenard, P., Ducassou, C., Nalpas, T., Heilbronn, G., Yu, J., and Dabard, M.-P.: Using volcaniclastic rocks to constrain sedimentation ages: To what extent are volcanism and sedimentation synchronous?, Sediment. Geol., 381, 46–64, https://doi.org/10.1016/j.sedgeo.2018.12.010, 2019.
Ruiz, M., Schaltegger, U., Gaynor, S. P., Chiaradia, M., Abrecht, J., Gisler, C., Giovanoli, F., and Wiederkehr, M.: Reassessing the intrusive tempo and magma genesis of the late Variscan Aar batholith: U–Pb geochronology, trace element and initial Hf isotope composition of zircon, Swiss J. Geosci., 115, 20, https://doi.org/10.1186/s00015-022-00420-1, 2022.
Schaltegger, U., Schmitt, A. K., and Horstwood, M. S. A.: U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities, Chem. Geol., 402, 89–110, https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015.
Schaltegger, U., Ovtcharova, M., Gaynor, S. P., Schoene, B., Wotzlaw, J. F., Davies, J. F. H. L., Farina, F., Greber, N. D., Szymanowski, D., and Chelle-Michou, C.: Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology, J. Anal. Atom. Spectrom., 36, 1466–1477, https://doi.org/10.1039/D1JA00116G, 2021.
Schenk, C. J. and Bird, K. J.: Depositional sequences in Lower Cretaceous rocks, Atigun Syncline and Slope Mountain areas, Alaskan North Slope, in: Geologic Studies in Alaska by the U. S. Geological Survey, 1992, edited by: Dusel-Bacon, C. and Till, A. B., U. S. Geological Survey Bulletin 2068, 48–58, https://doi.org/10.3133/b2068, 1993.
Schmitz, M. D. and Kuiper, K. F.: High-precision geochronology, Elements, 9, 25–30, https://doi.org/10.2113/gselements.9.1.25, 2013.
Schmitz, M. D., Singer, B. S., and Rooney, A. D.: Radioisotope geochronology, in: Geologic Time Scale 2020, vol. 1, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 193–209, https://doi.org/10.1016/B978-0-12-824360-2.00006-1, 2020.
Schoene, B.: U-Th-Pb geochronology, in: Treatise on Geochemistry, The Crust, 2nd edn., vol. 4, edited by: Rudnick, R. L., Elsevier, 341–378, https://doi.org/10.1016/B978-0-08-095975-7.00310-7, 2014.
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A.: Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data, Geochim. Cosmochim. Ac., 70, 426–445, https://doi.org/10.1016/j.gca.2005.09.007, 2006.
Schoene, B., Condon, D. J., Morgan, L., and McLean, N.: Precision and accuracy in geochronology, Elements, 9, 19–24, https://doi.org/10.2113/gselements.9.1.19, 2013.
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring, S. A., Khadri, S. F. R., and Gertsch, B.: U–Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction, Science, 347, 182–184, https://doi.org/10.1126/science.aaa0118, 2015.
Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., and Khadri, S. F. R.: U–Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction, Science, 363, 862–866, https://doi.org/10.1126/science.aau2422, 2019.
Schoene, B., Eddy, M. P., Keller, C. B., and Samperton, K. M.: An evaluation of Deccan Traps eruption rates using geochronologic data, Geochronology, 3, 181–198, https://doi.org/10.5194/gchron-3-181-2021, 2021.
Schröder-Adams, C.: The Cretaceous Polar and Western Interior seas: Paleoenvironmental history and paleoceanographic linkages, Sediment. Geol., 301, 26–40, https://doi.org/10.1016/j.sedgeo.2013.12.003, 2014.
Schwartz, T. M., Souders, A. K., Lundstern, J. E., Gilmer, A. K., and Thompson, R. A.: Revised age and regional correlations of Cenozoic strata on Bat Mountain, Death Valley region, California, USA, from zircon U–Pb geochronology of sandstones and ash-fall tuffs, Geosphere, 19, 235–257, https://doi.org/10.1130/GES02543.1, 2023.
Sharman, G. R. and Malkowski, M. A.: Needles in a haystack: Detrital zircon U–Pb ages and the maximum depositional age of modern global sediment, Earth-Sci. Rev., 203, 103109, https://doi.org/10.1016/j.earscirev.2020.103109, 2020.
Sharman, G. R. and Malkowski, M. A.: Modeling apparent Pb loss in zircon U–Pb geochronology, Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024, 2024.
Shimer, G. T., Benowitz, J. A., Layer, P. W., McCarthy, P. J., Hanks, C. L., and Wartes, M.: ages and geochemical characterization of Cretaceous bentonites in the Nanushuk, Seabee, Tuluvak, and Schrader Bluff formations, North Slope, Alaska, Cretaceous Res., 57, 325–341, https://doi.org/10.1016/j.cretres.2015.04.008, 2016.
Sliwinski, J. T., Guillong, M., Liebske, C., Dunkl, I., von Quadt, A., and Bachmann, O.: Improved accuracy of LA-ICP-MS U–Pb ages of Cenozoic zircons by alpha dose correction, Chem. Geol., 472, 8–21, https://doi.org/10.1016/j.chemgeo.2017.09.014, 2017.
Sliwinski, J. T., Guillong, M., Horstwood, M. S. A., and Bachmann, O.: Quantifying long-term reproducibility of zircon reference materials by U–Pb LA-ICP-MS dating, Geostand. Geoanal. Res., 46, 401–409, https://doi.org/10.1111/ggr.12442, 2022.
Solari, L. A., Ortega-Obregón, C., and Bernal, J. P.: U–Pb zircon geochronology by LAICPMS combined with thermal annealing: Achievements in precision and accuracy on dating standard and unknown samples, Chem. Geol., 414, 109–123, https://doi.org/10.1016/j.chemgeo.2015.09.008, 2015.
Spencer, C. J., Kirkland, C. L., and Taylor, R. J. M.: Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology, Geosci. Front., 7, 581–589, https://doi.org/10.1016/j.gsf.2015.11.006, 2016.
Steely, A. N., Hourigan, J. K., and Juel, E.: Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS: Sub-micron U–Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation, Chem. Geol., 372, 92–108, https://doi.org/10.1016/j.chemgeo.2014.02.021, 2014.
Sundell, K. E., Gehrels, G. E., and Pecha, M. E.: Rapid U–Pb geochronology by laser ablation multi-collector ICP-MS, Geostand. Geoanal. Res., 45, 37–57, https://doi.org/10.1111/ggr.12355, 2021.
Sundell, K. E., Gehrels, G. E., Blum, M., Saylor, J. E., Pecha, M. E., and Hundley, B. P.: An exploratory study of “large-n” detrital zircon geochronology of the Book Cliffs, UT via rapid (3 s/analysis) U–Pb dating, Basin Res., 36, e12840, https://doi.org/10.1111/bre.12840, 2024.
Tian, H., Fan, M., Valencia, V., Chamberlain, K., Waite, L., Stern, R. J., and Loocke, M.: Rapid early Permian tectonic reorganization of Laurentia's plate margins: Evidence from volcanic tuffs in the Permian Basin, USA, Gondwana Res., 111, 76–94, https://doi.org/10.1016/j.gr.2022.07.003, 2022.
Tilton, G. R.: The interpretation of lead-age discrepancies by acid-washing experiments, EOS T. Am. Geophys. Un., 37, 224–230, https://doi.org/10.1029/TR037i002p00224, 1956.
Tilton, G. R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D., and Larsen Jr., E.: Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite, Geol. Soc. Am. Bull., 66, 1131–1148, https://doi.org/10.1130/0016-7606(1955)66[1131:ICADOL]2.0.CO;2, 1955.
Trayler, R. B., Schmitz, M. D., Cuitiño J. I., Kohn, M. J., Bargo, M. S., Kay, R. F., Strömberg, C. A. E., and Vizcaíno, S. F.: An improved approach to age-modeling in deep time: Implications for the Santa Cruz Formation, Argentina, Geol. Soc. Am. Bull., 132, 233–244, https://doi.org/10.1130/B35203.1, 2020.
Ver Hoeve, T. J., Scoates, J. S., Wall, C. J., Weis, D., and Amini, M.: Evaluating downhole fractionation corrections in LA-ICP-MS U–Pb zircon geochronology, Chem. Geol., 483, 201–217, https://doi.org/10.1016/j.chemgeo.2017.12.014, 2018.
Vermeesch, P.: On the visualisation of detrital age distributions, Chem. Geol., 312–313, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vermeesch, P.: Maximum depositional age estimation revisited, Geosci. Front., 12, 843–850, https://doi.org/10.1016/j.gsf.2020.08.008, 2021.
von Quadt, A., Gallhofer, D., Guillong, M., Peytcheva, I., Waelle, M., and Sakata, S.: U–Pb dating of CA/non-CA treated zircons obtained by LA-ICPMS and CA-TIMS techniques: Impact for their geological interpretation, J. Anal. Atom. Spectrom., 29, 1618–1629, https://doi.org/10.1039/C4JA00102H, 2014.
Wang, T., Ramezani, J., Yang, C., Yang, J., Wu, Q., Zhang, Z., Lv, D., and Wang, C.: High-resolution geochronology of sedimentary strata by U–Pb CA-ID-TIMS zircon geochronology: A review, Earth-Sci. Rev., 245, 104550, https://doi.org/10.1016/j.earscirev.2023.104550, 2023.
Wartes, M. A.: Evaluation of stratigraphic continuity between the Fortress Mountain and Nanushuk Formations in the central Brooks Range foothills – Are they partly correlative?, in: Preliminary Results of Recent Geologic Field Investigations in the Brooks Range Foothills and North Slope, Alaska, edited by: Wartes, M. A. and Decker, P. L., Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2008-1C, 25–39, https://doi.org/10.14509/16087, 2008.
Watts, K. E., Coble, M. A., Vazquez, J. A., Henry, C. D., Colgan, J. P., and John, D. A.: Chemical abrasion-SIMS (CA-SIMS) U–Pb dating of zircon from the late Eocene Caetano caldera, Nevada, Chem. Geol., 439, 139–151, https://doi.org/10.1016/j.chemgeo.2016.06.013, 2016.
Wendt, I. and Carl, C.: The statistical distribution of the mean squared weighted deviation, Chem. Geol., Isotope Geoscience section, 86, 275–285, https://doi.org/10.1016/0168-9622(91)90010-T, 1991.
Wetherill, G. W.: Discordant uranium-lead ages, I, EOS T. Am. Geophys. Un., 37, 320–326, https://doi.org/10.1029/TR037i003p00320, 1956.
Widmann, P., Davies, J. H. F. L., and Schaltegger, U.: Calibrating chemical abrasion: Its effects on zircon crystal structure, chemical composition and U–Pb age, Chem. Geol., 511, 1–10, https://doi.org/10.1016/j.chemgeo.2019.02.026, 2019.
Wotzlaw, J.-F., Schaltegger, U., Frick, D. A., Dungan, M. A., Gerdes, A., and Günther, D.: Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption, Geology, 41, 867–870, https://doi.org/10.1130/G34366.1, 2013.
Wotzlaw, J.-F., Hüsing, S. K., Hilgen, F. J., and Schaltegger, U.: High-precision zircon U–Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene, Earth Planet. Sc. Lett., 407, 19–34, https://doi.org/10.1016/j.epsl.2014.09.025, 2014.
Editor
This paper is a careful and detailed study of U-Pb systematics of zircon using LA-ICPMS and conventional methods. It illustrated with great clarity how the data has to be evaluated to be useful for high precision and high resolution geochronology.
This paper is a careful and detailed study of U-Pb systematics of zircon using LA-ICPMS and...
Short summary
Paired moderate- and high-precision U–Pb geochronology is used to explore sources of young bias in laser-ablation-based detrital zircon maximum depositional ages (MDAs). We redefine the reference value for MDA accuracy as the age of the youngest analyzed population and reframe MDA algorithm assessments around validity. This study highlights opportunities to refine MDA research and anticipates continued community efforts to further improve accuracy of laser ablation zircon geochronology.
Paired moderate- and high-precision U–Pb geochronology is used to explore sources of young bias...