Articles | Volume 2, issue 1
https://doi.org/10.5194/gchron-2-81-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-2-81-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new 30 000-year chronology for rapidly deposited sediments on the Lomonosov Ridge using bulk radiocarbon dating and probabilistic stratigraphic alignment
Francesco Muschitiello
CORRESPONDING AUTHOR
Department of Geography, University of Cambridge, Cambridge CB2
3EN, UK
NORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, Norway
Matt O'Regan
Department of Geological Sciences, Stockholm University, Svante
Arrhenius väg 8, 106 91 Stockholm, Sweden
Jannik Martens
Department of Environmental Science, Stockholm University, Svante
Arrhenius väg 8, 106 91 Stockholm, Sweden
Gabriel West
Department of Geological Sciences, Stockholm University, Svante
Arrhenius väg 8, 106 91 Stockholm, Sweden
Örjan Gustafsson
Department of Environmental Science, Stockholm University, Svante
Arrhenius väg 8, 106 91 Stockholm, Sweden
Martin Jakobsson
Department of Geological Sciences, Stockholm University, Svante
Arrhenius väg 8, 106 91 Stockholm, Sweden
Related authors
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Francesco Muschitiello and Marco Antonio Aquino-Lopez
Clim. Past, 20, 1415–1435, https://doi.org/10.5194/cp-20-1415-2024, https://doi.org/10.5194/cp-20-1415-2024, 2024
Short summary
Short summary
The first continuously measured transfer functions that quantify the age difference between the Greenland ice-core chronology 2005 (GICC05) and the U–Th timescale are presented. The transfer functions were generated using a novel probabilistic algorithm for the synchronization of proxy signals. The results greatly improve the accuracy and precision of previous synchronization estimates and reveal that the annual-layer counting error of GICC05 is less systematic than previously assumed.
Francesco Muschitiello
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-116, https://doi.org/10.5194/cp-2021-116, 2021
Preprint withdrawn
Short summary
Short summary
The first continuously measured transfer functions that quantify the age difference between the Greenland Ice-Core Chronology 2005 (GICC05) and the U-Th timescale are presented. The transfer functions were generated using a novel probabilistic algorithm for the synchronization of proxy signals. The results greatly improve the accuracy and precision of previous synchronization estimates and reveal that the annual-layer counting error of GICC05 is less systematic than previously assumed.
Gabriel West, Darrell S. Kaufman, Francesco Muschitiello, Matthias Forwick, Jens Matthiessen, Jutta Wollenburg, and Matt O'Regan
Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, https://doi.org/10.5194/gchron-1-53-2019, 2019
Short summary
Short summary
We report amino acid racemization analyses of foraminifera from well-dated sediment cores from the Yermak Plateau, Arctic Ocean. Sample ages are compared with model predictions, revealing that the rates of racemization generally conform to a global compilation of racemization rates at deep-sea sites. These results highlight the need for further studies to test and explain the origin of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
F. J. Davies, H. Renssen, M. Blaschek, and F. Muschitiello
Clim. Past, 11, 571–586, https://doi.org/10.5194/cp-11-571-2015, https://doi.org/10.5194/cp-11-571-2015, 2015
Felicity Alice Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3839, https://doi.org/10.5194/egusphere-2024-3839, 2024
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low and high emissions scenario. Very high levels of surface melt under a high emissions future leads to a sea-level rise contribution an order of magnitude higher than under a low emissions future.
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Francesco Muschitiello and Marco Antonio Aquino-Lopez
Clim. Past, 20, 1415–1435, https://doi.org/10.5194/cp-20-1415-2024, https://doi.org/10.5194/cp-20-1415-2024, 2024
Short summary
Short summary
The first continuously measured transfer functions that quantify the age difference between the Greenland ice-core chronology 2005 (GICC05) and the U–Th timescale are presented. The transfer functions were generated using a novel probabilistic algorithm for the synchronization of proxy signals. The results greatly improve the accuracy and precision of previous synchronization estimates and reveal that the annual-layer counting error of GICC05 is less systematic than previously assumed.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Leonard Kirago, Örjan Gustafsson, Samuel Mwaniki Gaita, Sophie L. Haslett, Michael J. Gatari, Maria Elena Popa, Thomas Röckmann, Christoph Zellweger, Martin Steinbacher, Jörg Klausen, Christian Félix, David Njiru, and August Andersson
Atmos. Chem. Phys., 23, 14349–14357, https://doi.org/10.5194/acp-23-14349-2023, https://doi.org/10.5194/acp-23-14349-2023, 2023
Short summary
Short summary
This study provides ground-observational evidence that supports earlier suggestions that savanna fires are the main emitters and modulators of carbon monoxide gas in Africa. Using isotope-based techniques, the study has shown that about two-thirds of this gas is emitted from savanna fires, while for urban areas, in this case Nairobi, primary sources approach 100 %. The latter has implications for air quality policy, suggesting primary emissions such as traffic should be targeted.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Francesco Muschitiello
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-116, https://doi.org/10.5194/cp-2021-116, 2021
Preprint withdrawn
Short summary
Short summary
The first continuously measured transfer functions that quantify the age difference between the Greenland Ice-Core Chronology 2005 (GICC05) and the U-Th timescale are presented. The transfer functions were generated using a novel probabilistic algorithm for the synchronization of proxy signals. The results greatly improve the accuracy and precision of previous synchronization estimates and reveal that the annual-layer counting error of GICC05 is less systematic than previously assumed.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini
Geosci. Instrum. Method. Data Syst., 9, 375–384, https://doi.org/10.5194/gi-9-375-2020, https://doi.org/10.5194/gi-9-375-2020, 2020
Short summary
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Kelly A. Hogan, Martin Jakobsson, Larry Mayer, Brendan T. Reilly, Anne E. Jennings, Joseph S. Stoner, Tove Nielsen, Katrine J. Andresen, Egon Nørmark, Katrien A. Heirman, Elina Kamla, Kevin Jerram, Christian Stranne, and Alan Mix
The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, https://doi.org/10.5194/tc-14-261-2020, 2020
Short summary
Short summary
Glacial sediments in fjords hold a key record of environmental and ice dynamic changes during ice retreat. Here we use a comprehensive geophysical survey from the Petermann Fjord system in NW Greenland to map these sediments, identify depositional processes and calculate glacial erosion rates for the retreating palaeo-Petermann ice stream. Ice streaming is the dominant control on glacial erosion rates which vary by an order of magnitude during deglaciation and are in line with modern rates.
Martin Jakobsson, Matt O'Regan, Carl-Magnus Mörth, Christian Stranne, Elizabeth Weidner, Jim Hansson, Richard Gyllencreutz, Christoph Humborg, Tina Elfwing, Alf Norkko, Joanna Norkko, Björn Nilsson, and Arne Sjöström
Earth Surf. Dynam., 8, 1–15, https://doi.org/10.5194/esurf-8-1-2020, https://doi.org/10.5194/esurf-8-1-2020, 2020
Short summary
Short summary
We studied coastal sea floor terraces in parts of the Baltic Sea using various types of sonar data, sediment cores, and video. Terraces (~1 m high, > 100 m long) are widespread in depths < 15 m and are formed in glacial clay. Our study supports an origin from groundwater flow through silty layers, undermining overlying layers when discharged at the sea floor. Submarine groundwater discharge like this may be a significant source of freshwater to the Baltic Sea that needs to be studied further.
Gabriel West, Darrell S. Kaufman, Francesco Muschitiello, Matthias Forwick, Jens Matthiessen, Jutta Wollenburg, and Matt O'Regan
Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, https://doi.org/10.5194/gchron-1-53-2019, 2019
Short summary
Short summary
We report amino acid racemization analyses of foraminifera from well-dated sediment cores from the Yermak Plateau, Arctic Ocean. Sample ages are compared with model predictions, revealing that the rates of racemization generally conform to a global compilation of racemization rates at deep-sea sites. These results highlight the need for further studies to test and explain the origin of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
Christian Stranne, Matt O'Regan, Martin Jakobsson, Volker Brüchert, and Marcelo Ketzer
Solid Earth, 10, 1541–1554, https://doi.org/10.5194/se-10-1541-2019, https://doi.org/10.5194/se-10-1541-2019, 2019
Martin Jakobsson, Christian Stranne, Matt O'Regan, Sarah L. Greenwood, Bo Gustafsson, Christoph Humborg, and Elizabeth Weidner
Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, https://doi.org/10.5194/os-15-905-2019, 2019
Short summary
Short summary
The bottom topography of the Baltic Sea is analysed using the digital depth model from the European Marine Observation and Data Network (EMODnet) published in 2018. Analyses include depth distribution vs. area and seafloor depth variation on a kilometre scale. The limits for the Baltic Sea and analysed sub-basins are from HELCOM. EMODnet is compared with the previously most widely used depth model and the area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper.
Sarah Conrad, Johan Ingri, Johan Gelting, Fredrik Nordblad, Emma Engström, Ilia Rodushkin, Per S. Andersson, Don Porcelli, Örjan Gustafsson, Igor Semiletov, and Björn Öhlander
Biogeosciences, 16, 1305–1319, https://doi.org/10.5194/bg-16-1305-2019, https://doi.org/10.5194/bg-16-1305-2019, 2019
Short summary
Short summary
Iron analysis of the particulate, colloidal, and truly dissolved fractions along the Lena River freshwater plume showed that the particulate iron dominates close to the coast. Over 99 % particulate and about 90 % colloidal iron were lost, while the truly dissolved phase was almost constant. Iron isotopes suggest that the shelf acts as a sink for particles and colloids with negative iron isotope values, while colloids with positive iron isotope values travel further out into the Arctic Ocean.
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Robert B. Sparkes, Melissa Maher, Jerome Blewett, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, and Bart E. van Dongen
The Cryosphere, 12, 3293–3309, https://doi.org/10.5194/tc-12-3293-2018, https://doi.org/10.5194/tc-12-3293-2018, 2018
Short summary
Short summary
Ongoing climate change in the Siberian Arctic region has the potential to release large amounts of carbon, currently stored in permafrost, to the Arctic Shelf. Degradation can release this to the atmosphere as greenhouse gas. We used Raman spectroscopy to analyse a fraction of this carbon, carbonaceous material, a group that includes coal, lignite and graphite. We were able to trace this carbon from the river mouths and coastal erosion sites across the Arctic shelf for hundreds of kilometres.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018, https://doi.org/10.5194/os-14-503-2018, 2018
Short summary
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.
Svetlana P. Pugach, Irina I. Pipko, Natalia E. Shakhova, Evgeny A. Shirshin, Irina V. Perminova, Örjan Gustafsson, Valery G. Bondur, Alexey S. Ruban, and Igor P. Semiletov
Ocean Sci., 14, 87–103, https://doi.org/10.5194/os-14-87-2018, https://doi.org/10.5194/os-14-87-2018, 2018
Short summary
Short summary
This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes on the ESAS. The strong correlation between DOC and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ. The direct estimation of DOM optical parameters in the surface ESAS waters provided by this study will be useful for validating remote sensing data.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Irina I. Pipko, Svetlana P. Pugach, Igor P. Semiletov, Leif G. Anderson, Natalia E. Shakhova, Örjan Gustafsson, Irina A. Repina, Eduard A. Spivak, Alexander N. Charkin, Anatoly N. Salyuk, Kseniia P. Shcherbakova, Elena V. Panova, and Oleg V. Dudarev
Ocean Sci., 13, 997–1016, https://doi.org/10.5194/os-13-997-2017, https://doi.org/10.5194/os-13-997-2017, 2017
Short summary
Short summary
The study of the outer shelf and the continental slope waters of the Eurasian Arctic seas has revealed a general trend in the surface pCO2 distribution, which manifested as an increase in pCO2 values eastward. It has been shown that the influence of terrestrial discharge on the carbonate system of East Siberian Arctic sea surface waters is not limited to the shallow shelf and that contemporary climate change impacts the carbon cycle of the Eurasian Arctic Ocean and influences air–sea CO2 flux.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Alexander N. Charkin, Michiel Rutgers van der Loeff, Natalia E. Shakhova, Örjan Gustafsson, Oleg V. Dudarev, Maxim S. Cherepnev, Anatoly N. Salyuk, Andrey V. Koshurnikov, Eduard A. Spivak, Alexey Y. Gunar, Alexey S. Ruban, and Igor P. Semiletov
The Cryosphere, 11, 2305–2327, https://doi.org/10.5194/tc-11-2305-2017, https://doi.org/10.5194/tc-11-2305-2017, 2017
Short summary
Short summary
This study tests the hypothesis that SGD exists in the Siberian Arctic shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The permafrost cements rocks, forms a confining bed, and as a result makes it difficult for the groundwater escape to the shelf surface. However, the discovery of subterranean outcrops of groundwater springs in the Buor-Khaya Gulf are clear evidence that a groundwater flow system exists in the environment.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Short summary
In this study we investigate land-to-ocean transfer and the fate of permafrost carbon in the East Siberian Sea from the early Holocene until the present day. Our results suggest that there was a high input of terrestrial organic carbon to the East Siberian Sea during the last glacial–interglacial period caused by permafrost destabilisation. This material was mainly characterised as relict Pleistocene permafrost deposited via coastal erosion as a result of the sea level rise.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Joan A. Salvadó, Tommaso Tesi, Marcus Sundbom, Emma Karlsson, Martin Kruså, Igor P. Semiletov, Elena Panova, and Örjan Gustafsson
Biogeosciences, 13, 6121–6138, https://doi.org/10.5194/bg-13-6121-2016, https://doi.org/10.5194/bg-13-6121-2016, 2016
Short summary
Short summary
Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. We assessed its fate and composition in different marine pools with a suite of biomarkers. The dissolved organic carbon is transporting off-shelf “young” and fresh vascular plant material, while sedimentary and near-bottom particulate organic carbon preferentially carries old organic carbon released from thawing permafrost.
Robert B. Sparkes, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, Negar Haghipour, Lukas Wacker, Timothy I. Eglinton, Helen M. Talbot, and Bart E. van Dongen
The Cryosphere, 10, 2485–2500, https://doi.org/10.5194/tc-10-2485-2016, https://doi.org/10.5194/tc-10-2485-2016, 2016
Short summary
Short summary
The permafrost in eastern Siberia contains large amounts of carbon frozen in soils and sediments. Continuing global warming is thawing the permafrost and releasing carbon to the Arctic Ocean. We used pyrolysis-GCMS, a chemical fingerprinting technique, to study the types of carbon being deposited on the continental shelf. We found large amounts of permafrost-sourced carbon being deposited up to 200 km offshore.
Lisa Bröder, Tommaso Tesi, Joan A. Salvadó, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Biogeosciences, 13, 5003–5019, https://doi.org/10.5194/bg-13-5003-2016, https://doi.org/10.5194/bg-13-5003-2016, 2016
Short summary
Short summary
Thawing permafrost may release large amounts of terrestrial organic carbon (TerrOC) to the Arctic Ocean. We assessed its fate in the marine environment with a suite of biomarkers. Across the Laptev Sea their concentrations in surface sediments decreased significantly and showed a trend to qualitatively more degraded TerrOC with increasing water depth. We infer that the degree of degradation of TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport.
Juliane Bischoff, Robert B. Sparkes, Ayça Doğrul Selver, Robert G. M. Spencer, Örjan Gustafsson, Igor P. Semiletov, Oleg V. Dudarev, Dirk Wagner, Elizaveta Rivkina, Bart E. van Dongen, and Helen M. Talbot
Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, https://doi.org/10.5194/bg-13-4899-2016, 2016
Short summary
Short summary
The Arctic contains a large pool of carbon that is vulnerable to warming and can be released by rivers and coastal erosion. We study microbial lipids (BHPs) in permafrost and shelf sediments to trace the source, transport and fate of this carbon. BHPs in permafrost deposits are released to the shelf by rivers and coastal erosion, in contrast to other microbial lipids (GDGTs) that are transported by rivers. Several further analyses are needed to understand the complex East Siberian Shelf system.
R. B. Sparkes, A. Doğrul Selver, J. Bischoff, H. M. Talbot, Ö. Gustafsson, I. P. Semiletov, O. V. Dudarev, and B. E. van Dongen
Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, https://doi.org/10.5194/bg-12-3753-2015, 2015
Short summary
Short summary
Siberian permafrost contains large amounts of organic carbon that may be released by climate warming. We collected and analysed samples from the East Siberian Sea, using GDGT biomarkers to trace the sourcing and deposition of organic carbon across the shelf. We show that branched GDGTs may be used to trace river erosion. Results from modelling show that organic carbon on the shelf is a complex process involving river-derived and coastal-derived material as well as marine carbon production.
F. J. Davies, H. Renssen, M. Blaschek, and F. Muschitiello
Clim. Past, 11, 571–586, https://doi.org/10.5194/cp-11-571-2015, https://doi.org/10.5194/cp-11-571-2015, 2015
E. N. Kirillova, A. Andersson, J. Han, M. Lee, and Ö. Gustafsson
Atmos. Chem. Phys., 14, 1413–1422, https://doi.org/10.5194/acp-14-1413-2014, https://doi.org/10.5194/acp-14-1413-2014, 2014
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Radiocarbon dating
Towards the construction of regional marine radiocarbon calibration curves: an unsupervised machine learning approach
New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA
The marine reservoir age of Greenland coastal waters
Marine reservoir ages for coastal West Africa
Spatial variability of the modern radiocarbon reservoir effect in the high-altitude lake Laguna del Peinado (southern Puna Plateau, Argentina)
Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits
Miniature radiocarbon measurements ( < 150 µg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age–depth models
Re-evaluating 14C dating accuracy in deep-sea sediment archives
Ana-Cristina Mârza, Laurie Menviel, and Luke C. Skinner
Geochronology, 6, 503–519, https://doi.org/10.5194/gchron-6-503-2024, https://doi.org/10.5194/gchron-6-503-2024, 2024
Short summary
Short summary
Radiocarbon serves as a powerful dating tool, but the calibration of marine radiocarbon dates presents significant challenges because the whole surface ocean cannot be represented by a single calibration curve. Here we use climate model outputs and data to assess a novel method for developing regional marine calibration curves. Our results are encouraging and point to a way forward for solving the marine radiocarbon age calibration problem without relying on model simulations of the past.
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
Geochronology, 6, 409–427, https://doi.org/10.5194/gchron-6-409-2024, https://doi.org/10.5194/gchron-6-409-2024, 2024
Short summary
Short summary
We fill a spatial data gap in the ice sheet retreat history of the Laurentide Ice Sheet after the Last Glacial Maximum and investigate a hypothesis that the ice sheet re-advanced into western New York, USA, at ~13 ka. With radiocarbon and optically stimulated luminescence (OSL) dating, we find that ice began retreating from its maximum extent after 20 ka, but glacial ice persisted in glacial landforms until ~15–14 ka when they finally stabilized. We find no evidence of a re-advance at ~13 ka.
Christof Pearce, Karen Søby Özdemir, Ronja Forchhammer Mathiasen, Henrieka Detlef, and Jesper Olsen
Geochronology, 5, 451–465, https://doi.org/10.5194/gchron-5-451-2023, https://doi.org/10.5194/gchron-5-451-2023, 2023
Short summary
Short summary
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with marine sediment cores, the most common dating tool for recent sediments is radiocarbon, but this requires calibration to convert it to calendar ages. This calibration requires knowledge of the marine radiocarbon reservoir age, and this is known to vary in space and time. In this study we provide 92 new radiocarbon measurements to improve our knowledge of the reservoir age around Greenland.
Guillaume Soulet, Philippe Maestrati, Serge Gofas, Germain Bayon, Fabien Dewilde, Maylis Labonne, Bernard Dennielou, Franck Ferraton, and Giuseppe Siani
Geochronology, 5, 345–359, https://doi.org/10.5194/gchron-5-345-2023, https://doi.org/10.5194/gchron-5-345-2023, 2023
Short summary
Short summary
The marine reservoir age (MRA) is the difference between the 14C age of the ocean and that of the atmosphere at a given time. In geochronology, knowing the local MRA is important to derive accurate calibrated ages for 14C-dated marine material. However, MRA values for coastal West Africa are scarce. From the 14C dating of known-age bivalves from museum collections, we calculated MRA values and populated the MRA dataset for coastal West Africa over a latitudinal transect from 33°N to 15°S.
Paula A. Vignoni, Francisco E. Córdoba, Rik Tjallingii, Carla Santamans, Liliana C. Lupo, and Achim Brauer
Geochronology, 5, 333–344, https://doi.org/10.5194/gchron-5-333-2023, https://doi.org/10.5194/gchron-5-333-2023, 2023
Short summary
Short summary
Radiocarbon dating is a widely used tool to establish chronologies for sediment records. We show that modern aquatic plants in the Laguna del Peinado lake system (Altiplano–Puna Plateau) give overestimated ages due to reservoir effects from the input of old groundwater and volcanic CO2. Our results reveal a spatial variability in the modern reservoir effect within the lake basin, which has implications for radiocarbon-based chronologies in paleoclimate studies in this (and similar) regions.
Lasse Sander, Alexander Kirdyanov, Alan Crivellaro, and Ulf Büntgen
Geochronology, 3, 171–180, https://doi.org/10.5194/gchron-3-171-2021, https://doi.org/10.5194/gchron-3-171-2021, 2021
Short summary
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Paul D. Zander, Sönke Szidat, Darrell S. Kaufman, Maurycy Żarczyński, Anna I. Poraj-Górska, Petra Boltshauser-Kaltenrieder, and Martin Grosjean
Geochronology, 2, 63–79, https://doi.org/10.5194/gchron-2-63-2020, https://doi.org/10.5194/gchron-2-63-2020, 2020
Short summary
Short summary
Recent technological advances allow researchers to obtain radiocarbon ages from smaller samples than previously possible. We investigate the reliability and precision of radiocarbon ages obtained from miniature (11–150 μg C) samples of terrestrial plant fragments taken from sediment cores from Lake Żabińskie, Poland. We further investigate how sampling density (the number of ages per 1000 years) and sample mass (which is related to age precision) influence the performance of age–depth models.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Cited articles
Alexanderson, H., Backman, J., Cronin, T. M., Funder, S., Ingolfsson, O.,
Jakobsson, M., Landvik, J. Y., Löwemark, L., Mangerud, J., and März,
C.: An Arctic perspective on dating Mid-Late Pleistocene environmental
history, Quat. Sci. Rev., 92, 9–31, 2014.
Backman, J., Jakobsson, M., Løvlie, R., Polyak, L., and Febo, L. A.: Is
the central Arctic Ocean a sediment starved basin?, Quat. Sci. Rev.,
23, 1435–1454, 2004.
Barletta, F., St-Onge, G., Channell, J. E. T., and Rochon, A.: Dating of
Holocene western Canadian Arctic sediments by matching paleomagnetic secular
variation to a geomagnetic field model, Quat. Sci. Rev., 29,
2315–2324, 2010.
Bauch, H. A., Mueller-Lupp, T., Taldenkova, E., Spielhagen, R. F., Kassens,
H., Grootes, P. M., Thiede, J., Heinemeier, J., and Petryashov, V. V:
Chronology of the Holocene transgression at the North Siberian margin, Glob.
Planet. Change, 31, 125–139, 2001.
Bradley, R. S. and England, J. H.: The Younger Dryas and the Sea of Ancient
Ice, Quat. Res., 70, 1–10, https://doi.org/10.1016/j.yqres.2008.03.002, 2008.
Cronin, T. M., Dwyer, G. S., Farmer, J., Bauch, H. A., Spielhagen, R. F.,
Jakobsson, M., Nilsson, J., Briggs Jr., W. M., and Stepanova, A.: Deep Arctic
Ocean warming during the last glacial cycle, Nat. Geosci., 5, 631–634, 2012.
Cronin, T. M., O'Regan, M., Pearce, C., Gemery, L., Toomey, M., Semiletov, I., and Jakobsson, M.: Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins, Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, 2017.
De Vernal, A., Hillaire-Marcel, C., and Darby, D. A.: Variability of sea ice
cover in the Chukchi Sea (western Arctic Ocean) during the Holocene,
Paleoceanography, 20, PA4018, https://doi.org/10.1029/2005PA001157, 2005.
Fahl, K. and Stein, R.: Modern seasonal variability and deglacial/Holocene
change of central Arctic Ocean sea-ice cover: new insights from biomarker
proxy records, Earth Planet. Sc. Lett., 351, 123–133, 2012.
Hanslik, D., Jakobsson, M., Backman, J., Björck, S., Sellén, E.,
O'Regan, M., Fornaciari, E., and Skog, G.: Pleistocene Arctic Ocean sea ice
and deep water isolation times, Quat. Sci. Rev, 29, 3430–3441,
2010.
Hastings, W. K.: Monte carlo sampling methods using Markov chains and their
applications, Biometrika, 57, 97–109, https://doi.org/10.1093/biomet/57.1.97, 1970.
Hilton, R. G., Galy, V., Gaillardet, J., Dellinger, M., Bryant, C., O'Regan,
M., Gröcke, D. R., Coxall, H., Bouchez, J., and Calmels, D.: Erosion of
organic carbon in the Arctic as a geological carbon dioxide sink, Nature,
524, 84–87, 2015.
Jakobsson, M., Long, A., Ingólfsson, Ó., Kjær, K. H., and
Spielhagen, R. F.: New insights on Arctic Quaternary climate variability
from palaeo-records and numerical modelling, Quat. Sci. Rev., 29,
3349–3358, 2010.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S.,
Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., and
Schenke, H. W.: The international bathymetric chart of the Arctic Ocean
(IBCAO) version 3.0, Geophys. Res. Lett., 39, LI2609, https://doi.org/10.1029/2012GL052219, 2012.
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., Dove, D.,
Dowdeswell, J. A., England, J. H., Funder, S., Hogan, K., Ingólfsson,
Ó., Jennings, A., Krog Larsen, N., Kirchner, N., Landvik, J. Y., Mayer,
L., Mikkelsen, N., Möller, P., Niessen, F., Nilsson, J., O'Regan, M.,
Polyak, L., Nørgaard-Pedersen, N., and Stein, R.: Arctic Ocean glacial
history, Quat. Sci. Rev., 92, 40–67, https://doi.org/10.1016/j.quascirev.2013.07.033, 2014.
Jakobsson, M., Pearce, C., Cronin, T. M., Backman, J., Anderson, L. G., Barrientos, N., Björk, G., Coxall, H., de Boer, A., Mayer, L. A., Mörth, C.-M., Nilsson, J., Rattray, J. E., Stranne, C., Semiletov, I., and O'Regan, M.: Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records, Clim. Past, 13, 991—1005, https://doi.org/10.5194/cp-13-991-2017, 2017.
Lin, L., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: Probabilistic
sequence alignment of stratigraphic records, Paleoceanography, 29, 976–989,
https://doi.org/10.1002/2014PA002713, 2014.
Lisé-Pronovost, A., St-Onge, G., Brachfeld, S., Barletta, F., and Darby,
D.: Paleomagnetic constraints on the Holocene stratigraphy of the Arctic
Alaskan margin, Glob. Planet. Change, 68, 85–99, 2009.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, 10.1029/2004PA001071, 2005.
Lund, S., Keigwin, L., and Darby, D.: Character of Holocene paleomagnetic
secular variation in the tangent cylinder: evidence from the Chukchi Sea,
Phys. Earth Planet. Inter., 256, 49–58, 2016.
Malinverno, A.: Data report: Monte Carlo correlation of sediment records
from core and downhole log measurements at Sites U1337 and U1338 (IODP
Expedition 321), 2013.
Martens, J., Wild, B., Pearce, C., Tesi, T., Andersson, A., Bröder, L.,
O'Regan, M., Jakobsson, M., Sköld, M., and Gemery, L.: Remobilization of
old permafrost carbon to Chukchi Sea sediments during the end of the last
deglaciation, Global Biogeochem. Cy., 33, 2–14, 2019.
Matthiessen, J., Knies, J., Nowaczyk, N. R., and Stein, R.: Late Quaternary
dinoflagellate cyst stratigraphy at the Eurasian continental margin, Arctic
Ocean: indications for Atlantic water inflow in the past 150,000 years,
Glob. Planet. Change, 31, 65–86, 2001.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of state calculations by fast computing machines, J.
Chem. Phys., 21, 1087, https://doi.org/10.1063/1.1699114, 1953.
Müller, C. and Stein, R.: Variability of fluvial sediment supply to the
Laptev Sea continental margin during Late Weichselian to Holocene times:
Implications from clay-mineral records, Int. J. Earth Sci., 89, 592–604,
https://doi.org/10.1007/s005310000112, 2000.
Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and Lohmann, G.:
Towards quantitative sea ice reconstructions in the northern North Atlantic:
A combined biomarker and numerical modelling approach, Earth Planet. Sc.
Lett., 306, 137–148, https://doi.org/10.1016/j.epsl.2011.04.011, 2011.
Muschitiello, F., Pausata, F. S. R., Watson, J. E., Smittenberg, R. H.,
Salih, A. A. M., Brooks, S. J., Whitehouse, N. J.,
Karlatou-Charalampopoulou, A., and Wohlfarth, B.: Fennoscandian freshwater
control on Greenland hydroclimate shifts at the onset of the Younger Dryas,
Nat. Commun., 6, 8939, https://doi.org/10.1038/ncomms9939, 2015.
Muschitiello, F., D'Andrea, W. J., Schmittner, A., Heaton, T. J., Balascio,
N. L., deRoberts, N., Caffee, M. W., Woodruff, T. E., Welten, K. C.,
Skinner, L. C., Simon, M. H., and Dokken, T. M.: Deep-water circulation
changes lead North Atlantic climate during deglaciation, Nat. Commun., 10, 1272, https://doi.org/10.1038/s41467-019-09237-3, 2019.
Muschitiello, F., O'Regan, M., Gustafsson, Ö., and Martens, J.: Age model and physical properties of sediment from the Arctic Siberian margin, core SWERUS-L2-31PC, Dataset version 1.0, Bolin Centre Database, available at: https://doi.org/10.17043/muschitiello-2020, last access: 20 April, 2020.
Nørgaard-Pedersen, N., Spielhagen, R. F., Erlenkeuser, H., Grootes, P.
M., Heinemeier, J., and Knies, J.: Arctic Ocean during the Last Glacial
Maximum: Atlantic and polar domains of surface water mass distribution and
ice cover, Paleoceanography, 18, 1063, https://doi.org/10.1029/2002pa000781, 2003.
Nørgaard-Pedersen, N., Spielhagen, R. F., Thiede, J., and Kassens, H.:
Central Arctic surface ocean environment during the past 80,000 years,
Paleoceanography, 13, 193–204, https://doi.org/10.1029/97PA03409, 1998.
O'Regan, M., Coxall, H., Hill, P., Hilton, R., Muschitiello, F., and
Swärd, H.: Early Holocene sea level in the Canadian Beaufort Sea
constrained by radiocarbon dates from a deep borehole in the Mackenzie
Trough, Arctic Canada, Boreas, 47, 1102–1117, 2018.
O'Regan, M., Coxall, H. K., Cronin, T. M., Gyllencreutz, R., Jakobsson, M.,
Kaboth, S., Löwemark, L., Wiers, S., and West, G.: Stratigraphic
Occurrences of Sub-Polar Planktonic Foraminifera in Pleistocene Sediments on
the Lomonosov Ridge, Arctic Ocean, Front. Earth Sci., 7, 71, https://doi.org/10.3389/feart.2019.00071, 2019.
Pearce, C., Varhelyi, A., Wastegård, S., Muschitiello, F., Barrientos, N., O'Regan, M., Cronin, T. M., Gemery, L., Semiletov, I., Backman, J., and Jakobsson, M.: The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea, Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, 2017.
Poirier, R. K., Cronin, T. M., Briggs, W. M., and Lockwood, R.: Corrigendum to ‘‘Central Arctic paleoceanography for the last 50 kyr based on ostracode faunal assemblages’’ [Mar. Micropaleon. 88–89C (May 2012) 65–76], Mar.
Micropaleontol., 101, 194, https://doi.org/10.1016/j.marmicro.2012.08.001, 2013.
Polyak, L., Bischof, J., Ortiz, J. D., Darby, D. A., Channell, J. E. T.,
Xuan, C., Kaufman, D. S., Løvlie, R., Schneider, D. A., Eberl, D. D.,
Adler, R. E., and Council, E. A.: Late Quaternary stratigraphy and
sedimentation patterns in the western Arctic Ocean, Glob. Planet. Change,
68, 5–17, https://doi.org/10.1016/j.gloplacha.2009.03.014, 2009.
Poore, R. Z., Osterman, L., Curry, W. B., and Phillips, R. L.: Late
Pleistocene and Holocene meltwater events in the western Arctic Ocean,
Geology, 27, 759–762, https://doi.org/10.1130/0091-7613(1999)027<0759:LPAHME>2.3.CO;2, 1999.
Rachor, E.: Scientific cruise report of the Arctic expedition ARK-XI/1 of
RV “Polarstern” in 1995, Reports Polar Res. Alfred Wegener Inst. Polar Mar.
Res. Bremerhaven, 226 pp., 1997.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer,
H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos.,
111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer,
B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal
BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J.,
Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E.,
Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D.
S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and
Vinther, B. M.: Consistently dated records from the Greenland GRIP, GISP2
and NGRIP ice cores for the past 104 ka reveal regional millennial-scale
δ18O gradients with possible Heinrich event imprint, Quat. Sci.
Rev., 106, 29–46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014.
Sellén, E., O'Regan, M., and Jakobsson, M.: Spatial and temporal Arctic
Ocean depositional regimes: a key to the evolution of ice drift and current
patterns, Quat. Sci. Rev., 29, 3644–3664, 2010.
Sessford, E. G., Jensen, M. F., Tisserand, A. A., Muschitiello, F., Dokken,
T., Nisancioglu, K. H., and Jansen, E.: Consistent fluctuations in
intermediate water temperature off the coast of Greenland and Norway during
Dansgaard-Oeschger events, Quat. Sci. Rev., 223, 105887, https://doi.org/10.1016/j.quascirev.2019.105887, 2019.
Stein, R. and Fahl, K.: Holocene accumulation of organic carbon at the
Laptev Sea continental margin (Arctic Ocean): Sources, pathways, and sinks,
Geo-Marine Lett., 20, 27–36, https://doi.org/10.1007/s003670000028, 2000.
Stein, R., Boucsein, B., Fahl, K., Garcia de Oteyza, T., Knies, J., and
Niessen, F.: Accumulation of particulate organic carbon at the Eurasian
continental margin during late Quaternary times: Controlling mechanisms and
paleoenvironmental significance, Glob. Planet. Change, 31, 87–104,
https://doi.org/10.1016/S0921-8181(01)00114-X, 2001.
Stein, R., Fahl, K.. and Müller, J.: Proxy reconstruction of Cenozoic
Arctic Ocean sea ice history–from IRD to IP25, Polarforschung, 82,
37–71, 2012.
Stuiver, M., Polach, H. A., Godwin, H., Stuiver, M., and Robinson, S. W.:
Discussion Reporting of 14C Data, Radiocarbon, 19, 355–363,
https://doi.org/10.1017/S0033822200003672, 1977.
Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 14C Calibration Program, 2018.
Tesi, T., Muschitiello, F., Smittenberg, R. H., Jakobsson, M., Vonk, J. E.,
Hill, P., Andersson, A., Kirchner, N., Noormets, R., Dudarev, O., Semiletov,
I., and Gustafsson: Massive remobilization of permafrost carbon during
post-glacial warming, Nat. Commun., 7, 13653, https://doi.org/10.1038/ncomms13653, 2016.
Vihola, M.: Robust adaptive Metropolis algorithm with coerced acceptance
rate, Stat. Comput., 22, 997–1008, https://doi.org/10.1007/s11222-011-9269-5, 2012.
Wegner, C., Bennett, K. E., de Vernal, A., Forwick, M., Fritz, M.,
Heikkilä, M., Łącka, M., Lantuit, H., Laska, M., Moskalik, M.,
O'Regan, M., Pawłowska, J., Promińska, A., Rachold, V., Vonk, J. E.,
and Werner, K.: Variability in transport of terrigenous material on the
shelves and the deep Arctic Ocean during the Holocene, Polar Res., 34, 24964,
https://doi.org/10.3402/polar.v34.24964, 2015.
West, G., Kaufman, D. S., Muschitiello, F., Forwick, M., Matthiessen, J., Wollenburg, J., and O'Regan, M.: Amino acid racemization in Quaternary foraminifera from the Yermak Plateau, Arctic Ocean, Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, 2019.
Wohlfarth, B., Muschitiello, F., L. Greenwood, S., Andersson, A., Kylander,
M., Smittenberg, R. H., Steinthorsdottir, M., Watson, J., and Whitehouse, N.
J.: Hässeldala – a key site for Last Termination climate events in
northern Europe, Boreas, 46, 143–161, https://doi.org/10.1111/bor.12207, 2017.
Xiao, X., Stein, R., and Fahl, K.: MIS 3 to MIS 1 temporal and LGM spatial
variability in Arctic Ocean sea ice cover: Reconstruction from biomarkers,
Paleoceanography, 30, 969–983, https://doi.org/10.1002/2015PA002814, 2015.
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
In this study we present a new marine chronology of the last ~30 000 years for a sediment core...