Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-617-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-617-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
230Th ∕ U isochron dating of cryogenic cave carbonates
Paul Töchterle
CORRESPONDING AUTHOR
Institute of Geology, University of Innsbruck, Innsbruck, 6020,
Austria
Simon D. Steidle
Institute of Geology, University of Innsbruck, Innsbruck, 6020,
Austria
R. Lawrence Edwards
Department of Earth and Environmental Sciences, University of
Minnesota, Minneapolis, 55455, MN, USA
Yuri Dublyansky
Institute of Geology, University of Innsbruck, Innsbruck, 6020,
Austria
Christoph Spötl
Institute of Geology, University of Innsbruck, Innsbruck, 6020,
Austria
Xianglei Li
Department of Earth and Environmental Sciences, University of
Minnesota, Minneapolis, 55455, MN, USA
John Gunn
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
Gina E. Moseley
Institute of Geology, University of Innsbruck, Innsbruck, 6020,
Austria
Related authors
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Stuart Umbo, Franziska Lechleitner, Thomas Opel, Sevasti Modestou, Tobias Braun, Anton Vaks, Gideon Henderson, Pete Scott, Alexander Osintzev, Alexandr Kononov, Irina Adrian, Yuri Dublyansky, Alena Giesche, and Sebastian F. M. Breitenbach
Clim. Past, 21, 1533–1551, https://doi.org/10.5194/cp-21-1533-2025, https://doi.org/10.5194/cp-21-1533-2025, 2025
Short summary
Short summary
We use cave rocks to reconstruct northern Siberian climate in 8.68 ± 0.09 Ma. We show that when the global average temperature was about 4.5 °C warmer than today (similar to what is expected in the coming decades should carbon emissions continue unabated), the Siberian Arctic temperature increased by more than 18 °C.
Timothy J. Pollard, Jon D. Woodhead, Russell N. Drysdale, R. Lawrence Edwards, Xianglei Li, Ashlea N. Wainwright, Mathieu Pythoud, Hai Cheng, John C. Hellstrom, Ilaria Isola, Eleonora Regattieri, Giovanni Zanchetta, and Dylan S. Parmenter
Geochronology, 7, 335–355, https://doi.org/10.5194/gchron-7-335-2025, https://doi.org/10.5194/gchron-7-335-2025, 2025
Short summary
Short summary
The uranium–thorium (U–Th) and uranium–lead (U–Pb) radiometric dating methods are both suitable for dating carbonate samples ranging in age from about 400 000 to 650 000 years. Here we test agreement between the two methods by dating speleothems (i.e. secondary cave mineral deposits) that are well-suited to both methods. We demonstrate excellent agreement between them and discuss their relative strengths and weaknesses.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
Clim. Past, 21, 1235–1261, https://doi.org/10.5194/cp-21-1235-2025, https://doi.org/10.5194/cp-21-1235-2025, 2025
Short summary
Short summary
In this paper we present a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe in the last 16 500 years before present.
Carlos Sancho, Ánchel Belmonte, Maria Leunda, Marc Luetscher, Christoph Spötl, Juan Ignacio López-Moreno, Belén Oliva-Urcia, Jerónimo López-Martínez, Ana Moreno, and Miguel Bartolomé
EGUsphere, https://doi.org/10.5194/egusphere-2025-8, https://doi.org/10.5194/egusphere-2025-8, 2025
Short summary
Short summary
Ice caves, vital for paleoclimate studies, face rapid ice loss due to global warming. A294 cave, home to the oldest firn deposit (6100 years BP), shows rising air temperatures (~1.07–1.56 °C in 12 years), fewer freezing days, and melting rates (15–192 cm/year). Key factors include warmer winters, increased rainfall, and reduced snowfall. This study highlights the urgency of recovering data from these unique ice archives before they vanish forever.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Giselle Utida, Francisco W. Cruz, Mathias Vuille, Angela Ampuero, Valdir F. Novello, Jelena Maksic, Gilvan Sampaio, Hai Cheng, Haiwei Zhang, Fabio Ramos Dias de Andrade, and R. Lawrence Edwards
Clim. Past, 19, 1975–1992, https://doi.org/10.5194/cp-19-1975-2023, https://doi.org/10.5194/cp-19-1975-2023, 2023
Short summary
Short summary
We reconstruct the Intertropical Convergence Zone (ITCZ) behavior during the past 3000 years over northeastern Brazil based on oxygen stable isotopes of stalagmites. Paleoclimate changes were mainly forced by the tropical South Atlantic and tropical Pacific sea surface temperature variability. We describe an ITCZ zonal behavior active around 1100 CE and the period from 1500 to 1750 CE. The dataset also records historical droughts that affected modern human population in this area of Brazil.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Charlotte Honiat, Gabriella Koltai, Yuri Dublyansky, R. Lawrence Edwards, Haiwei Zhang, Hai Cheng, and Christoph Spötl
Clim. Past, 19, 1177–1199, https://doi.org/10.5194/cp-19-1177-2023, https://doi.org/10.5194/cp-19-1177-2023, 2023
Short summary
Short summary
A look at the climate evolution during the last warm period may allow us to test ground for future climate conditions. We quantified the temperature evolution during the Last Interglacial using a tiny amount of water trapped in the crystals of precisely dated stalagmites in caves from the southeastern European Alps. Our record indicates temperatures up to 2 °C warmer than today and an unstable climate during the first half of the Last Interglacial.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Kathleen A. Wendt, Xianglei Li, R. Lawrence Edwards, Hai Cheng, and Christoph Spötl
Clim. Past, 17, 1443–1454, https://doi.org/10.5194/cp-17-1443-2021, https://doi.org/10.5194/cp-17-1443-2021, 2021
Short summary
Short summary
In this study, we tested the upper limits of U–Th dating precision by analyzing three stalagmites from the Austrian Alps that have high U concentrations. The composite record spans the penultimate interglacial (MIS 7) with an average 2σ age uncertainty of 400 years. This unprecedented age control allows us to constrain the timing of temperature shifts in the Alps during MIS 7 while offering new insight into millennial-scale changes in the North Atlantic leading up to Terminations III and IIIa.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Chao-Jun Chen, Dao-Xian Yuan, Jun-Yun Li, Xian-Feng Wang, Hai Cheng, You-Feng Ning, R. Lawrence Edwards, Yao Wu, Si-Ya Xiao, Yu-Zhen Xu, Yang-Yang Huang, Hai-Ying Qiu, Jian Zhang, Ming-Qiang Liang, and Ting-Yong Li
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-20, https://doi.org/10.5194/cp-2021-20, 2021
Manuscript not accepted for further review
Xianglei Li, Kathleen A. Wendt, Yuri Dublyansky, Gina E. Moseley, Christoph Spötl, and R. Lawrence Edwards
Geochronology, 3, 49–58, https://doi.org/10.5194/gchron-3-49-2021, https://doi.org/10.5194/gchron-3-49-2021, 2021
Short summary
Short summary
In this study, we built a statistical model to determine the initial δ234U in submerged calcite crusts that coat the walls of Devils Hole 2 (DH2) cave (Nevada, USA) and, using a 234U–238U dating method, extended the chronology of the calcite deposition beyond previous well-established 230Th ages and determined the oldest calcite deposited in this cave, a time marker for cave genesis. The novel method presented here may be used in future speleothem studies in similar hydrogeological settings.
Lilian Schuster, Fabien Maussion, Lukas Langhamer, and Gina E. Moseley
Weather Clim. Dynam., 2, 1–17, https://doi.org/10.5194/wcd-2-1-2021, https://doi.org/10.5194/wcd-2-1-2021, 2021
Short summary
Short summary
Precipitation and moisture sources over an arid region in northeast Greenland are investigated from 1979 to 2017 by a Lagrangian moisture source diagnostic driven by reanalysis data. Dominant winter moisture sources are the North Atlantic above 45° N. In summer local and north Eurasian continental sources dominate. In positive phases of the North Atlantic Oscillation, evaporation and moisture transport from the Norwegian Sea are stronger, resulting in more precipitation.
Cited articles
Arienzo, M. M., Swart, P. K., Pourmand, A., Broad, K., Clement, A. C.,
Murphy, L. N., Vonhof, H. B., and Kakuk, B.: Bahamian speleothem reveals
temperature decrease associated with Heinrich stadials, Earth Planet. Sc.
Lett., 430, 377–386, https://doi.org/10.1016/j.epsl.2015.08.035, 2015.
Beck, J. W., Richards, D. A., Lawrence, R., Edwards, R. L., Silverman, B.
W., Smart, P. L., Donahue, D. J., Hererra-Osterheld, S., Burr, G. S.,
Calsoyas, L., Timothy, A. J., Jull, and Biddulph, D.: Extremely Large
Variations of Atmospheric 14C Concentration During the Last Glacial
Period, Science, 292, 2453–2458, https://doi.org/10.1126/science.1056649, 2001.
Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau,
S., Malang, J., and Tuen, A. A.: Varied Response of Western Pacific
Hydrology to Climate Forcings over the Last Glacial Period, Science, 340,
1564–1566, https://doi.org/10.1126/science.1233797, 2013.
Carolin, S. A., Cobb, K. M., Lynch-Stieglitz, J., Moerman, J. W., Partin, J.
W., Lejau, S., Malang, J., Clark, B., Tuen, A. A., and Adkins, J. F.:
Northern Borneo stalagmite records reveal West Pacific hydroclimate across
MIS 5 and 6, Earth Planet. Sc. Lett., 439, 182–193,
https://doi.org/10.1016/j.epsl.2016.01.028, 2016.
Chaykovskiy, I. I. and Kadebskaya, O.: Morphology of cryogenic calcite from
Rossiyskaya cave (Central Ural): Problems of mineralogy, petrography and
metallogeny, Scientific readings in memory of P.N. Chirvinsky, 18, 102–112, 2015 (in Russian).
Chaykovskiy, I. I., Kadebskaya, O., and Žák, K.: Morphology, composition, age and origin of carbonate spherulites from caves of Western Urals, Geochem. Int., 52, 336–346, https://doi.org/10.1134/S0016702914020049, 2014.
Cheng, H., Adkins, J. F., Edwards, R. L., and Boyle, E. A.: U-Th dating of
deep-sea corals, Geochim. Cosmochim. Ac., 64, 2401–2416,
https://doi.org/10.1016/S0016-7037(99)00422-6, 2000.
Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Calvin Alexander, E.: Improvements in 230Th dating, 230Th and
234U half-life values, and U–Th isotopic measurements by
multi-collector inductively coupled plasma mass spectrometry, Earth Planet.
Sc. Lett., 371–372, 82–91, https://doi.org/10.1016/j.epsl.2013.04.006, 2013.
Clark, C. D., Hughes, A. L.C., Greenwood, S. L., Jordan, C., and Sejrup, H.
P.: Pattern and timing of retreat of the last British-Irish Ice Sheet,
Quaternary Sci. Rev., 44, 112–146, https://doi.org/10.1016/j.quascirev.2010.07.019, 2012.
Cobb, K. M., Charles, C. D., Cheng, H., Kastner, M., and Edwards, R. L.:
U/Th-dating living and young fossil corals from the central tropical
Pacific, Earth Planet. Sc. Lett., 210, 91–103,
https://doi.org/10.1016/S0012-821X(03)00138-9, 2003.
Colucci, R. R., Luetscher, M., Forte, E., Guglielmin, M., Lenaz, D.,
Princivalle, F., and Vita, F.: First alpine evidence of in Situ voarse
cryogenic cave carbonates (CCC_coarse), Geogr. Fis. Din. Quat., 40, 53–59, 2017.
De Yoreo, J. J., Gilbert, P. U. P. A., Sommerdijk, N. A. J. M., Penn, R. L., Whitelam, S., Joester, D., Zhang, H., Rimer, J. D., Navrotsky, A., Banfield, J. F., Wallace, A. F., Michel, F. M., Meldrum, F. C., Cölfen, H., and Dove, P. M.: Crystallization by particle attachment in synthetic, biogenic, and geologic environments, Science, 349, aaa6760, https://doi.org/10.1126/science.aaa6760, 2015.
Dorale, J. A., Edwards, R. L., Alexander, E. C., Shen, C.-C., Richards, D.
A., and Cheng, H.: Uranium-Series Dating of Speleothems: Current Techniques,
Limits, & Applications, in: Studies of Cave Sediments: Physical and
Chemical Records of Paleoclimate, edited by: Sasowsky, I. D. and Mylroie, J.
E., Kluwe Academic/Plenum Publishers, 177–197,
https://doi.org/10.1007/978-1-4419-9118-8_10, 2004.
Dublyansky, Y., Moseley, G. E., Lyakhnitsky, Y., Cheng, H., Edwards, R. L.,
Scholz, D., Koltai, G., and Spötl, C.: Late Palaeolithic cave art and
permafrost in the Southern Ural, Scientific Reports, 8, 12080,
https://doi.org/10.1038/s41598-018-30049-w, 2018.
Edwards, R. L., Chen, J. H., and Wasserburg, G. J.: 238U–234U–230Th–232Th systematics and the precise measurement of time over the past 500,000 years, Earth Planet. Sc. Lett., 81, 175–192, https://doi.org/10.1016/0012-821X(87)90154-3, 1987.
Fensterer, C., Scholz, D., Hoffmann, D., Mangini, A., and Pajón, J. M.:
-dating of a late Holocene low uranium speleothem from Cuba,
Geochim. Cosmochim. Ac., 9, 12015, https://doi.org/10.1088/1755-1315/9/1/012015, 2010.
Frisia, S.: Microstratigraphic logging of calcite fabrics in speleothems as
tool for palaeoclimate studies, Int. J. Speleol., 44, 1–16,
https://doi.org/10.5038/1827-806X.44.1.1, 2015.
Frisia, S., Borsato, A., Fairchild, I. J., and McDermott, F.: Calcite
Fabrics, Growth Mechanisms, and Environments of Formation in Speleothems
from the Italian Alps and Southwestern Ireland, J. Sediment. Res., 70,
1183–1196, https://doi.org/10.1306/022900701183, 2000.
Gascoyne, M.: Palaeoclimate determination from cave calcite deposits,
Quaternary Sci. Rev., 11, 609–632, https://doi.org/10.1016/0277-3791(92)90074-I, 1992.
Gunn, J., Fairchild, I. J., Moseley, G. E., Töchterle, P., Ashley, K.
E., Hellstrom, J., and Edwards, R. L.: Palaeoenvironments in the central
White Peak District (Derbyshire, UK): evidence from Water Icicle Close
Cavern, Cave and Karst Science, 47, 153–168, 2020.
Hellstrom, J.: U–Th dating of speleothems with high initial 230Th
using stratigraphical constraint, Quat. Geochronol., 1, 289–295,
https://doi.org/10.1016/j.quageo.2007.01.004, 2006.
Henderson, G. M. and Slowey, N. C.: U-Th Isochron Dating of the Marine
Oxygen-Isotope Record, Mineral. Mag., 62A, 602–603, 1998.
Henderson, G. M. and Slowey, N. C.: Evidence from U–Th dating against
Northern Hemisphere forcing of the penultimate deglaciation, Nature, 404,
61–66, https://doi.org/10.1038/35003541, 2000.
Hirose, K., Kikawada, Y., and Igarashi, Y.: Temporal variation and
provenance of thorium deposition observed at Tsukuba, Japan, J. Environ.
Radioactiv., 108, 24–28, https://doi.org/10.1016/j.jenvrad.2011.10.004, 2012.
Hoffmann, D. L., Beck, J. W., Richards, D. A., Smart, P. L., Singarayer, J.
S., Ketchmark, T., and Hawkesworth, C. J.: Towards radiocarbon calibration
beyond 28ka using speleothems from the Bahamas, Earth Planet. Sc. Lett.,
289, 1–10, https://doi.org/10.1016/j.epsl.2009.10.004, 2010.
Hong, M., Xu, J., and Teng, H. H.: Evolution of calcite growth morphology in
the presence of magnesium: Implications for the dolomite problem, Geochim.
Cosmochim. Ac., 172, 55–64, https://doi.org/10.1016/j.gca.2015.09.022, 2016.
Hubert, A., Bourdon, B., Pili, E., and Meynadier, L.: Transport of
radionuclides in an unconfined chalk aquifer inferred from U-series
disequilibria, Geochim. Cosmochim. Ac., 70, 5437–5454,
https://doi.org/10.1016/j.gca.2006.08.008, 2006.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling,
A. M.: Precision Measurement of Half-Lives and Specific Activities of
235U and 238U, Phys. Rev. C, 4, 1889–1906, https://doi.org/10.1103/PhysRevC.4.1889, 1971.
Kaufman, A., Wasserburg, G. J., Porcelli, D., Bar-Matthews, M., Ayalon, A.,
and Halicz, L.: U-Th isotope systematics from the Soreq cave, Israel and
climatic correlations, Earth Planet. Sc. Lett., 156, 141–155,
https://doi.org/10.1016/S0012-821X(98)00002-8, 1998.
Kluge, T., Affek, H. P., Zhang, Y. G., Dublyansky, Y., Spötl, C.,
Immenhauser, A., and Richter, D. K.: Clumped isotope thermometry of
cryogenic cave carbonates, Geochim. Cosmochim. Ac., 126, 541–554,
https://doi.org/10.1016/j.gca.2013.11.011, 2014.
Koltai, G., Spötl, C., Jarosch, A. H., and Cheng, H.: Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation, Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, 2021.
Li, W.-X., Lundberg, J., Dickin, A. P., Ford, D. C., Schwarcz, H. P.,
McNutt, R., and Williams, D.: High-precision mass-spectrometric
uranium-series dating of cave deposits and implications for palaeoclimate
studies, Nature, 339, 534–536, https://doi.org/10.1038/339534a0, 1989.
Lin, J. C., Broecker, W. S., Hemming, S. R., Hajdas, I., Anderson, R. F.,
Smith, G. I., Kelley, M., and Bonani, G.: A Reassessment of U-Th and
14C Ages for Late-Glacial High-Frequency Hydrological Events at Searles
Lake, California, Quaternary Res., 49, 11–23, https://doi.org/10.1006/qres.1997.1949, 1998.
Ludwig, K. R. and Titterington, D. M.: Calculation of
isochrons, ages, and errors, Geochim. Cosmochim. Ac., 58, 5031–5042,
https://doi.org/10.1016/0016-7037(94)90229-1, 1994.
Luetscher, M., Borreguero, M., Moseley, G. E., Spötl, C., and Edwards, R. L.: Alpine permafrost thawing during the Medieval Warm Period identified from cryogenic cave carbonates, The Cryosphere, 7, 1073–1081, https://doi.org/10.5194/tc-7-1073-2013, 2013.
Mercedes-Martín, R., Rogerson, M., Prior, T. J., Brasier, A. T.,
Reijmer, J. J. G., Billing, I., Matthews, A., Love, T., Lepley, S., and
Pedley, M.: Towards a morphology diagram for terrestrial carbonates:
Evaluating the impact of carbonate supersaturation and alginic acid in
calcite precipitate morphology, Geochim. Cosmochim. Ac., 306, 340–361,
https://doi.org/10.1016/j.gca.2021.04.010, 2021.
Moore, W. S.: The thorium isotope content of ocean water, Earth Planet. Sc.
Lett., 53, 419–426, https://doi.org/10.1016/0012-821X(81)90046-7, 1981.
Moore, W. S. and Sackett, W. M.: Uranium and thorium series inequilibrium in
sea water, J. Geophys. Res., 69, 5401–5405, https://doi.org/10.1029/JZ069i024p05401, 1964.
Moseley, G. E., Spötl, C., Svensson, A., Cheng, H., Brandstätter, S., and Edwards, R. L.: Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3, Geology, 42, 1043–1046, https://doi.org/10.1130/G36063.1, 2014.
Moseley, G. E., Spötl, C., Cheng, H., Boch, R., Min, A., and Edwards, R.
L.: Termination-II interstadial/stadial climate change recorded in two
stalagmites from the north European Alps, Quaternary Sci. Rev., 127,
229–239, https://doi.org/10.1016/j.quascirev.2015.07.012, 2015.
Munroe, J., Kimble, K., Spötl, C., Marks, G. S., McGee, D., and Herron,
D.: Cryogenic cave carbonate and implications for thawing permafrost at
Winter Wonderland Cave, Utah, USA, Scientific Reports, 11, 6430,
https://doi.org/10.1038/s41598-021-85658-9, 2021.
Olley, J. M., Roberts, R. G., and Murray, A. S.: Disequilibria in the
uranium decay series in sedimentary deposits at Allen's cave, nullarbor
plain, Australia: Implications for dose rate determinations, Radiat. Meas.,
27, 433–443, https://doi.org/10.1016/S1350-4487(96)00114-X, 1997.
Orvošová, M., Deininger, M., and Milovský, R.: Permafrost
occurrence during the Last Permafrost Maximum in the Western Carpathian
Mountains of Slovakia as inferred from cryogenic cave carbonate, Boreas, 43,
750–758, https://doi.org/10.1111/bor.12042, 2014.
Pavuza, R. and Spötl, C.: Neue Daten zu Vorkommen und Entstehung
kryogener Calcite in ostalpinen Höhlen, Die Höhle, 68, 100–106, 2017.
Richards, D. A. and Dorale, J. A.: Uranium-series Chronology and
Environmental Applications of Speleothems, Rev. Mineral. Geochem., 52,
407–460, https://doi.org/10.2113/0520407, 2003.
Richter, D. K. and Riechelmann, D. F.: Late Pleistocene cryogenic calcite
spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany):
origin, unusual internal structure and stable C-O isotope composition, Int.
J. Speleol., 37, 119–129, 2008.
Richter, D. K., Meissner, P., Immenhauser, A., Schulte, U., and Dorsten, I.: Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods: a case study from the Herbstlabyrinth-Advent Cave system (Germany), The Cryosphere, 4, 501–509, https://doi.org/10.5194/tc-4-501-2010, 2010.
Richter, D. K., Harder, M., Niedermayr, A., and Scholz, D.: Zopfsinter in
der Zoolithenhöhle: Erstfund kryogener Calcite in der Fränkischen
Alb (in German), Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., 60, 36–41, 2014.
Richter, D. K., Goll, K., Grebe, W., Niedermayr, A., Platte, A., and Scholz, D.: Weichselzeitliche Kryocalcite als Hinweise für Eisseen in der Hüttenbläserschachthöhle (Iserlohn/NRW), E&G Quaternary Sci. J., 64, 67–81, https://doi.org/10.3285/eg.64.2.02, 2015.
Richter, D. K., Knolle, F., Meyer, S., and Scholz, D.: Erste
weichselzeitliche Kryocalcit-Vorkommen in Höhlen des Iberg/Winterberg
Riffkomplexes (Harz), Mitteilungen des Verbandes der deutschen Höhlen- und Karstforscher e.V., 63, 52–57, 2017 (in German).
Richter, D. K., Scholz, D., Jöns, N., Neuser, R. D., and Breitenbach, S.
F. M.: Coarse-grained cryogenic aragonite as end-member of mineral formation
in dolomite caves, Sediment. Geol., 376, 136–146,
https://doi.org/10.1016/j.sedgeo.2018.08.006, 2018.
Richter, D. K., Mueller, M., Platte, A., and Scholz, D.: Erste
weichselzeitliche Kryocalcite im Attendorn-Elsper Riffkomplex
(Frettermühler Wasserhöhle, Südwestfalen) (in German), Geologie und Paläontologie in Westfalen, 93, 1–16, 2019.
Richter, D. K., Schudelski, A., Neuser, R. D., and Scholz, D.:
Weichelzeitliche Umbrellacalcite aus der Höhle “Malachitdom” (NE-Sauerland): vom Kaltwasser- zum Ausfrierstdium in Pools
auf Eis, Geologie und Paläontologie in Westfalen, 94, 1–14, 2021 (in German).
Sand, K. K., Rodriguez-Blanco, J. D., Makovicky, E., Benning, L. G., and
Stipp, S. L. S.: Crystallization of CaCO3 in Water–Alcohol Mixtures:
Spherulitic Growth, Polymorph Stabilization, and Morphology Change, Cryst.
Growth Des., 12, 842–853, https://doi.org/10.1021/cg2012342, 2012.
Scott, M. R.: Thorium and uranium concentrations and isotope ratios in river
sediments, Earth Planet. Sc. Lett., 4, 245–252,
https://doi.org/10.1016/0012-821X(68)90042-3, 1968.
Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R. L., Hsieh, Y.-T., Gallet, S.,
Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., and Spötl, C.:
High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS
with SEM protocols, Geochim. Cosmochim. Ac., 99, 71–86,
https://doi.org/10.1016/j.gca.2012.09.018, 2012.
Shtukenberg, A. G., Punin, Y. O., Gunn, E., and Kahr, B.: Spherulites, Chem.
Rev., 112, 1805–1838, https://doi.org/10.1021/cr200297f, 2012.
Skřivánek, F. (Ed.): Jeskyně na Chlumu v Českém krasu (Caves
at Chlum in the Bohemian Karst), Československý kras, 7, 24–34, 1954 (in
Czech).
Spötl, C.: Long-term performance of the Gasbench isotope ratio mass
spectrometry system for the stable isotope analysis of carbonate microsamples, Rapid Commun. Mass Sp., 25, 1683–1685, https://doi.org/10.1002/rcm.5037, 2011.
Spötl, C. and Cheng, H.: Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated, high-elevation cave in the Austrian Alps, Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, 2014.
Spötl, C. and Vennemann, T. W.: Continuous-flow isotope ratio mass
spectrometric analysis of carbonate minerals, Rapid Commun. Mass Sp., 17,
1004–1006, https://doi.org/10.1002/rcm.1010, 2003.
Spötl, C., Koltai, G., Jarosch, A. H., and Cheng, H.: Increased autumn
and winter precipitation during the Last Glacial Maximum in the European
Alps, Nat. Commun., 12, 1839, https://doi.org/10.1038/s41467-021-22090-7, 2021.
Sunagawa, I.: Crystals: Growth, morphology, and perfection, Cambridge
University Press, Cambridge, United Kingdom, https://doi.org/10.1017/CBO9780511610349, 2005.
Töchterle, P.: Cryogenic cave carbonates from the Ural Mountains
(Russia), MSc thesis, University of Innsbruck, Austria, https://doi.org/10.5281/zenodo.5807542, 2018.
UK METoffice: Climatic Research Unit (CRU) Time-Series (TS) version 4.04 of
high-resolution gridded data of month-by-month variation in climate (Jan.
1901-Dec. 2019), Centre for Environmental Data Analysis [data set],
https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9, last access: 6 October 2020.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Chem.
Geol., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Wedepohl, H.: The composition of the continental crust, Geochim. Cosmochim.
Ac., 59, 1217–1232, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
Weij, R., Woodhead, J., Hellstrom, J., and Sniderman, K.: An exploration of
the utility of speleothem age distributions for palaeoclimate assessment,
Quat. Geochronol., 60, 101112, https://doi.org/10.1016/j.quageo.2020.101112, 2020.
Žák, K., Onac, B. P., and Perşoiu, A.: Cryogenic carbonates in
cave environments: A review, Quatern. Int., 187, 84–96, https://doi.org/10.1016/j.quaint.2007.02.022, 2008.
Žák, K., Hercman, H., Orvošová, M., and Jačková, I.: Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian, Int. J. Speleol., 38, 139–152, https://doi.org/10.5038/1827-806X.38.2.5, 2009.
Žák, K., Richter, D. K., Filippi, M., Živor, R., Deininger, M., Mangini, A., and Scholz, D.: Coarsely crystalline cryogenic cave carbonate – a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe, Clim. Past, 8, 1821–1837, https://doi.org/10.5194/cp-8-1821-2012, 2012.
Žák, K., Urban, J., Cı́lek, V., and Hercman, H.: Cryogenic cave calcite from several Central European caves: Age, carbon and oxygen isotopes and a genetic model, Chem. Geol., 206, 119–136, https://doi.org/10.1016/j.chemgeo.2004.01.012, 2004.
Žák, K., Onac, B. P., Kadebskaya, O., Filippi, M., Dublyansky, Y.,
and Luetscher, M.: Cryogenic Mineral Formation in Caves, in: Ice caves,
edited by: Perşoiu, A. and Lauritzen, S.-E., Elsevier, Amsterdam,
Oxford, Cambridge, Mass., https://doi.org/10.1016/B978-0-12-811739-2.00035-8, 2018.
Short summary
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their formation age is determined by Th / U dating. However, samples can be contaminated with small amounts of Th at formation, which can cause inaccurate ages and require correction. We analysed multiple CCCs and found that varying degrees of contamination can cause an apparent spread of ages, when samples actually formed within distinguishable freezing events. A correction method using isochrons is presented.
Cryogenic cave carbonates (CCCs) provide a marker for past permafrost conditions. Their...