Articles | Volume 7, issue 4
https://doi.org/10.5194/gchron-7-591-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-591-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Investigation into the relationship between zircon structural damage and Pb mobility using chemical abrasion, SIMS, Raman spectroscopy, and atom probe tomography
Charles W. Magee Jr.
CORRESPONDING AUTHOR
Geoscience Australia, Canberra ACT, 2609, Australia
Lutz Nasdala
Institut für Mineralogie und Kristallographie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
Renelle Dubosq
Max-Planck-Institut für Nachhaltige Materialien GmbH, 40237 Düsseldorf, Germany
Department of Earth, Environmental, and Geographic Sciences, The University of British Colombia Okanagan, Kelowna, BC, V1V 1V7, Canada
Baptiste Gault
Max-Planck-Institut für Nachhaltige Materialien GmbH, 40237 Düsseldorf, Germany
Department of Materials, Royal School of Mines, Imperial College, London, SW7 2AZ, UK
now at: Univ Rouen Normandie, CNRS, INSA Rouen Normandie, Groupe de Physique des Matériaux, UMR 6634, 76000 Rouen, France
Simon Bodorkos
Geoscience Australia, Canberra ACT, 2609, Australia
Related authors
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.
Teerarat Pluthametwisute, Lutz Nasdala, Chutimun Chanmuang N., Manfred Wildner, Eugen Libowitzky, Gerald Giester, E. Gamini Zoysa, Chanenkant Jakkawanvibul, Waratchanok Suwanmanee, Tasnara Sripoonjan, Thanyaporn Tengchaisri, Bhuwadol Wanthanachaisaeng, and Chakkaphan Sutthirat
Solid Earth, 16, 81–96, https://doi.org/10.5194/se-16-81-2025, https://doi.org/10.5194/se-16-81-2025, 2025
Short summary
Short summary
For decades, gemologists have struggled to detect heat-treated sapphire. High-technology instruments like Fourier-transform infrared (FTIR) spectrometers are costly. As a result, luminescence under shortwave ultraviolet (SWUV) light and longwave ultraviolet (LWUV) light provides a cheaper and more practical technique for identifying heat-treated sapphire. This work highlights that blue luminescence under SWUV light could indicate heated sapphire, whereas purplish-red may also be helpful.
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.
Cited articles
Ávila, J. N., Holden, P., Ireland, T. R., Lanc, P., Schram, N., Latimore, A., Foster, J. J., Williams, I. S., Loiselle, L., and Fu, B.: High-precision oxygen isotope measurements of zircon reference materials with the SHRIMP-SI, Geostand. Geoanal. Res., 44, 85–102, https://doi.org/10.1111/ggr.12298, 2020.
Black, L., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., and Foudoulis, C.: Improved microprobe geochronology by the monitoring of a trace element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 205, 115–140, https://doi.org/10.1016/j.chemgeo.2004.01.003 , 2004.
Bodorkos, S., Stern, R. A., Kamo, S. L., Corfu, F., and Hickman, A. H.: OG1: A natural reference material for quantifying SIMS instrumental mass fractionation (IMF) of Pb isotopes during zircon dating, Eos Trans. AGU, 90, Fall Meet. Suppl., Abstract V33B-2044, 2009.
Chakoumakos, B. C., Murakami, T., Lumpkin, G. R., and Ewing, R. C.: Alpha-decay-induced fracturing in zircon: The transition from the crystalline to the metamict state, Science, 236, 1556–1559, 1987.
Dawson, P., Hargreave, M. M., and Wilkinson, G. F.: The vibrational spectrum of zircon (ZrSiO4), J. Phys. C, 4, 240–256, 1971.
Dubosq, R., Gault, B., Hatzoglou, C., Schweinar, K., Vurpillot, F., Rogowitz, A., Rantitsch, G., and Schneider, D. A.: Analysis of nanoscale fluid inclusions in geomaterials by atom probe tomography: Experiments and numerical simulations, Ultramicroscopy, 218, 113092, https://doi.org/10.1016/j.ultramic.2020.113092, 2020.
Ende, M., Chanmuang N., C., Reiners, P. W., Zamyatin, D. A., Gain, S. M., Wirth, R., and Nasdala, L.: Dry annealing of radiation-damaged zircon: Single-crystal X-ray and Raman spectroscopy study, Lithos, 406–407, 106523, https://doi.org/10.1016/j.lithos.2021.106523, 2021.
Exertier, F., La Fontaine, A., Corcoran, C., Piazolo, S., Belousova, E., Peng, Z., Gault, B., Saxey, D. W., Fougerouse, D., Reddy, S. M., and Pedrazzini, S.: Atom probe tomography analysis of the reference zircon gj-1: An interlaboratory study, Chem. Geol., 495, 27–35, https://doi.org/10.1016/j.chemgeo.2018.07.031, 2018.
François, C., Philippot, P., Rey, D., and Rubatto, D.: Burial and exhumation during Archean sagduction in the East Pilbara Granite-Greenstone Terrane, Earth Planet. Sc. Lett., 396, 235–251, https://doi.org/10.1016/j.epsl.2014.04.025, 2014.
Gault, B., Moody, M. P., De Geuser, F., La Fontaine, A., Stephenson, L. T., Haley, D., and Ringer, S. P.: Spatial resolution in atom probe tomography, Microsc. Microanal., 16, 99–110, https://doi.org/10.1017/S1431927609991267, 2010.
Gault, B., Chiaramonti, A., Cojocaru-Mirédin, O., Stender, P., Dubosq, R., Freysoldt, C., Kumar Makineni, S., Li, T., Moody, M. P., and Cairney, J. M.: Atom probe tomography, Nat. Rev. Methods Primers, 1, 51, https://doi.org/10.1038/s43586-021-00047-w, 2021.
Ginster, U., Reiners, P. W., Nasdala, L., and Chanmuang, N. C.: Annealing kinetics of radiation damage in zircon, Geochim. Cosmochim. Ac., 249, 225–246, https://doi.org/10.1016/j.gca.2019.01.033, 2019.
Greer, J., Zhang, B., Isheim, D., Seidman, D. N., Bouvier, A., and Heck, P. R.: 4.46 Ga zircons anchor chronology of lunar magma ocean, Geochem. Perspect. Lett., 27, 49–53, https://doi.org/10.7185/geochemlet.2334, 2023.
Kemp, A. I. S., Vervoort, J. D., Bjorkman, K., and Iaccheri, L. M.: Hafnium isotope characteristics of Palaeoarchaean zircon OG1/PGC from the Owens Gully Diorite, Pilbara Craton, Western Australia, Geostand. Geoanal. Res., 41, 659–673, https://doi.org/10.1111/ggr.12182, 2017.
Kim, Y., Lee, E. J., Roy, S., Sharbirin, A. S., Ranz, L.-G., Dieing, T., and Kim, J.: Measurement of lateral and axial resolution of confocal Raman microscope using dispersed carbon nanotubes and suspended graphene, Curr. Appl. Phys., 20, 71–77, https://doi.org/10.1016/j.cap.2019.10.012, 2020.
Kooymans, C., Magee Jr., C. W., Waltenberg, K., Evans, N. J., Bodorkos, S., Amelin, Y., Kamo, S. L., and Ireland, T.: Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses, Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, 2024.
Lee, J. K. W. and Tromp, J.: Self-induced fracture generation in zircon, J. Geophys. Res.-Sol. Ea., 100, 17753–17770, 1995.
Lenz, C. and Nasdala, L.: A photoluminescence study of REE3+ emissions in radiation-damaged zircon, Am. Mineral., 100, 1123–1133, https://doi.org/10.2138/am-2015-4894CCBYNCND, 2015.
Magee, C. W., Withnall, I. W., Hutton, L. J., Perkins, W. G., Donchak, P. J. T., Parsons, A., Blake, P. R., Sweet, I. P., and Carson, C. J.: Joint GSQ–GA geochronology project, Mount Isa Region, 2008–2009, Queensland Geological Record, 7, 1–134, 2012.
Magee Jr., C. W., Danišík, M., and Mernagh, T.: Extreme isotopologue disequilibrium in molecular SIMS species during SHRIMP geochronology, Geosci. Instrum. Method. Data Syst., 6, 523–536, https://doi.org/10.5194/gi-6-523-2017, 2017.
Magee Jr., C. W., Bodorkos, S., Lewis, C. J., Crowley, J. L., Wall, C. J., and Friedman, R. M.: Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS, Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, 2023.
Magee, C. W. J.: Data for Magee et al. Technical note: Investigation into the relationship between zircon structural damage and Pb mobility using chemical abrasion, SIMS, Raman spectroscopy, and atom probe tomography, Zenodo [data set], https://doi.org/10.5281/zenodo.17430613, 2025.
McKanna, A. J., Koran, I., Schoene, B., and Ketcham, R. A.: Chemical abrasion: the mechanics of zircon dissolution, Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, 2023.
McKanna, A. J., Schoene, B., and Szymanowski, D.: Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments, Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, 2024.
McLaren, A. C., Gerald, J. F., and Williams, I. S.: The microstructure of zircon and its influence on the age determination from isotopic ratios measured by ion microprobe. Geochim. Cosmochim. Ac., 58, 993–1005, https://doi.org/10.1016/0016-7037(94)90521-5, 1994.
Nasdala, L., Irmer, G., and Wolf, D.: The degree of metamictization in zircons: a Raman spectroscopic study, Eur. J. Mineral., 7, 471–478, 1995.
Nasdala, L., Lengauer, C. L., Hanchar, J. M., Kronz, A., Wirth, R., Blanc, P., Kennedy, A. K., and Seydoux-Guillaume, A.-M.: Annealing radiation damage and the recovery of cathodoluminescence, Chem. Geol., 191, 121–140, 2002.
Nasdala, L., Hanchar, J. M., Rhede, D., Kennedy, A. K., and Váczi, T.: Retention of uranium in complexly altered zircon: An example from Bancroft, Ontario, Chem. Geol., 269, 290–300, https://doi.org/10.1016/j.chemgeo.2009.10.004, 2010.
Peterman, Z. E., Zartman, R. E., and Sims, P. K.: A protracted Archean history in the Watersmeet gneiss dome, northern Michigan, Bull. U.S. Geol. Surv., 1622, 51–64, 1986.
Peterman, E. M., Reddy, S. M., Saxey, D. W., Snoeyenbos, D. R., Rickard, W. D., Fougerouse, D., and Kylander-Clark, A. R.: Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops, Sci. Adv., 2, e1601318, https://doi.org/10.1126/sciadv.1601318, 2016.
Peterman, E. M., Reddy, S. M., Saxey, D. W., Fougerouse, D., Quadir, M. Z., and Jercinovic, M. J.: Trace-element segregation to dislocation loops in experimentally heated zircon. Am. Mineral., 106, 1971–1979, https://doi.org/10.2138/am-2021-7654, 2021.
Petersson, A., Kemp, A. I. S., Hickman, A. H., Whitehouse, M. J., Martin, L., and Gray, C. M.: A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton, Chem. Geol., 511, 51–70, https://doi.org/10.1016/j.chemgeo.2019.01.021, 2019.
Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R., and Cairney, J. M.: Deformation-induced trace element redistribution in zircon revealed using atom probe tomography, Nat. Commun., 7, 10490, https://doi.org/10.1038/ncomms10490, 2016.
Saxey, D. W., Reddy, S. M., Fougerouse, D., and Rickard, W. D.: The optimization of zircon analyses by laser-assisted atom probe microscopy: Insights from the 91500 zircon standard, in: Microstructural Geochronology: Planetary records down to atom scale, edited by: Moser, D. E., Corfu, F., Darling, J. R., Reddy, S. M., and Tait, K., Geophysical Monograph Series, AGU, 293–313, https://doi.org/10.1002/9781119227250.ch14, 2018.
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A.: Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data, Geochim. Cosmochim. Ac., 70, 426–445, https://doi.org/10.1016/j.gca.2005.09.007, 2006.
Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H., and Corfu, F.: Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating, Geostand. Geoanal. Res., 33, 145–168, https://doi.org/10.1111/j.1751-908X.2009.00023.x, 2009.
Thompson, K., Lawrence, D., Larson, D. J., Olson, J. D., Kelly, T. F., and Gorman, B.: In situ site-specific specimen preparation for atom probe tomography, Ultramicroscopy, 107, 131–139, https://doi.org/10.1016/J.ULTRAMIC.2006.06.008, 2007.
Váczi, T.: A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles, Appl. Spectrosc., 68, 1274–1278, https://doi.org/10.1366/13-07275, 2014.
Valley, J. W., Cavosie, A. J., Ushikubo, T., Reinhard, D. A., Lawrence, D. F., Larson, D. J., Clifton, P. H., Kelly, T. F., Wilde, S. A., Moser, D. E., and Spicuzza, M. J.: Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography, Nat. Geosci., 7, 219–223, https://doi.org/10.1038/ngeo2075, 2014.
Wang, X., Hatzoglou, C., Sneed, B., Fan, Z., Guo, W., Jin, K., Chen, D., Bei, H., Wang, Y., Weber, W. J., and Zhang, Y.: Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements, Nat. Commun., 11, 1022, https://doi.org/10.1038/s41467-020-14832-w, 2020.
Wilkes, T. J., Titchmarsh, J. M., Smith, G. D. W., Smith, D. A., Morris, R. F., Johnson, S., Godfrey, T. J., and Birdseye, P.: The fracture of field-ion microscope specimens, J. Phys. D, 5, 2226, https://doi.org/10.1088/0022-3727/5/12/312, 1972.
Zeug, M., Nasdala, L., Wanthanachaisaeng, B., Balmer, W. A., Corfu, F., and Wildner, M.: Blue zircon from Ratanakiri, Cambodia, J. Gemmol., 36, 112–132, https://doi.org/10.15506/JoG.2018.36.2.112, 2018.
Zhang, M., Salje, E. K. H., Capitani, G. C., Leroux, H., Clark, A. M., Schlüter, J., and Ewing, R. C.: Annealing of α-decay damage in zircon: a Raman spectroscopic study, J. Phys.-Condens. Matter, 12, 3131–3148, https://doi.org/10.1088/0953-8984/12/13/321, 2000.
Short summary
Chemical abrasion (CA) is a two-step method for reducing Pb loss where zircon is annealed then partially dissolved. We use secondary ion mass spectrometry (SIMS) to find closed- and open-system zircon domains in zircon that has been chemically abraded, annealed only, or untreated. Raman mapping identifies lattice damage in SIMS spots. Atom probe tomography (APT) results from both the discordant spots and the concordant ones are all homogeneous and identical. Thus, APT cannot distinguish discordant and concordant zircon.
Chemical abrasion (CA) is a two-step method for reducing Pb loss where zircon is annealed then...