Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 25992 List/Sylt, Germany
Alexander Kirdyanov
V.N. Sukachev Institute of Forest SB RAS, Federal Research Centre, 660036 Krasnoyarsk, Russia
Institute of Ecology and Geography, Siberian Federal University,
660041 Krasnoyarsk, Russia
Alan Crivellaro
Department of Geography, University of Cambridge, Cambridge CB2 3EN, United Kingdom
Forest Biometrics Laboratory, Faculty of Forestry, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania
Ulf Büntgen
Department of Geography, University of Cambridge, Cambridge CB2 3EN, United Kingdom
Swiss Federal Research Institute WSL, 8903 Birmensdorf,
Switzerland
Global Change Research Institute CAS, 603 00 Brno, Czech Republic
Faculty of Science, Department of Geography, Masaryk University, 611 37 Brno, Czech Republic
Related authors
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1632, https://doi.org/10.5194/egusphere-2024-1632, 2024
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and pore-water dataset from the Helgoland Mud Area (HMA), North Sea, to determine, which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea, but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019, https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary
Short summary
This study is dedicated to tidally induced dynamics in the Sylt-Rømø Bight with a focus on the non-linear component. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment, and the distribution of bedforms. The newly obtained high-quality bathymetric data supported the use of high-resolution grids (up to 2 m in the intertidal zone) and elaboration of the details of tidal energy transformation in the domain.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
EGUsphere, https://doi.org/10.5194/egusphere-2024-1632, https://doi.org/10.5194/egusphere-2024-1632, 2024
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and pore-water dataset from the Helgoland Mud Area (HMA), North Sea, to determine, which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea, but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Lara Klippel, Scott St. George, Ulf Büntgen, Paul J. Krusic, and Jan Esper
Clim. Past, 16, 729–742, https://doi.org/10.5194/cp-16-729-2020, https://doi.org/10.5194/cp-16-729-2020, 2020
Short summary
Short summary
The PAGES2k multiproxy database offers a new and unique opportunity to study the lack of long-term cooling trends in tree-ring data, which can be expected in Northern Hemisphere summers, particularly in the high latitudes, due to orbitally driven changes in solar irradiance. Tests of different influencing factors reveal that preserving millennial-scale cooling trends related to orbital forcing is not feasible in most tree-ring datasets.
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019, https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary
Short summary
This study is dedicated to tidally induced dynamics in the Sylt-Rømø Bight with a focus on the non-linear component. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment, and the distribution of bedforms. The newly obtained high-quality bathymetric data supported the use of high-resolution grids (up to 2 m in the intertidal zone) and elaboration of the details of tidal energy transformation in the domain.
Olga V. Churakova (Sidorova), Marina V. Fonti, Matthias Saurer, Sébastien Guillet, Christophe Corona, Patrick Fonti, Vladimir S. Myglan, Alexander V. Kirdyanov, Oksana V. Naumova, Dmitriy V. Ovchinnikov, Alexander V. Shashkin, Irina P. Panyushkina, Ulf Büntgen, Malcolm K. Hughes, Eugene A. Vaganov, Rolf T. W. Siegwolf, and Markus Stoffel
Clim. Past, 15, 685–700, https://doi.org/10.5194/cp-15-685-2019, https://doi.org/10.5194/cp-15-685-2019, 2019
Short summary
Short summary
We present a unique dataset of multiple tree-ring and stable isotope parameters, representing temperature-sensitive Siberian ecotones, to assess climatic impacts after six large stratospheric volcanic eruptions at 535, 540, 1257, 1640, 1815, and 1991 CE. Besides the well-documented effects of temperature derived from tree-ring width and latewood density, stable carbon and oxygen isotopes in tree-ring cellulose provide information about moisture and sunshine duration changes after the events.
Petr Dobrovolný, Rudolf Brázdil, Miroslav Trnka, Michal Rybníček, Tomáš Kolář, Martin Možný, Tomáš Kyncl, and Ulf Büntgen
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-160, https://doi.org/10.5194/cp-2018-160, 2018
Preprint withdrawn
Short summary
Short summary
Careful selection of available moisture-sensitive proxies resulted in a new reconstruction of short-term drought over the Czech Republic during the last 500 years. It consists of a synthesis of four different proxies and its high reconstruction skill demonstrates the clear advantage of a multi-proxy approach. The new chronology of Z-index shows that central Europe experienced the most severe 30-year late spring–early summer period of drought for the last 500 years.
Ulf Büntgen and Paul J. Krusic
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-265, https://doi.org/10.5194/bg-2017-265, 2017
Revised manuscript not accepted
Short summary
Short summary
Changes in autumnal climate affecting the diversity and productivity of the ecosphere are arguably as important as vernal climatic changes. Here we present three examples of innovative, recent research in wildlife biology (big-game hunting), wood anatomy (tree-ring formation) and mycology (mushroom inventory), which refine our ability to better understand how varying environmental and climatic conditions impact the phenology, productiviy and diversity of different organisms in autumn.
O. Bouriaud, M. Teodosiu, A. V. Kirdyanov, and C. Wirth
Biogeosciences, 12, 6205–6217, https://doi.org/10.5194/bg-12-6205-2015, https://doi.org/10.5194/bg-12-6205-2015, 2015
Short summary
Short summary
Annual variations in wood density partially compensated ring-width variations in Picea abies. If neglected, annual biomass increment was underestimated by up to 15%. The relative prediction interval of plot-level annual biomass increment ranged from 20 to 40%. The uncertainty related to the allometric models parameters was only about 10%. The errors related to variations in wood density were much larger, the biggest component being the variability between trees.
Related subject area
Radiocarbon dating
Towards the construction of regional marine radiocarbon calibration curves: an unsupervised machine learning approach
New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA
The marine reservoir age of Greenland coastal waters
Marine reservoir ages for coastal West Africa
Spatial variability of the modern radiocarbon reservoir effect in the high-altitude lake Laguna del Peinado (southern Puna Plateau, Argentina)
A new 30 000-year chronology for rapidly deposited sediments on the Lomonosov Ridge using bulk radiocarbon dating and probabilistic stratigraphic alignment
Miniature radiocarbon measurements ( < 150 µg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age–depth models
Re-evaluating 14C dating accuracy in deep-sea sediment archives
Ana-Cristina Mârza, Laurie Menviel, and Luke C. Skinner
Geochronology, 6, 503–519, https://doi.org/10.5194/gchron-6-503-2024, https://doi.org/10.5194/gchron-6-503-2024, 2024
Short summary
Short summary
Radiocarbon serves as a powerful dating tool, but the calibration of marine radiocarbon dates presents significant challenges because the whole surface ocean cannot be represented by a single calibration curve. Here we use climate model outputs and data to assess a novel method for developing regional marine calibration curves. Our results are encouraging and point to a way forward for solving the marine radiocarbon age calibration problem without relying on model simulations of the past.
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
Geochronology, 6, 409–427, https://doi.org/10.5194/gchron-6-409-2024, https://doi.org/10.5194/gchron-6-409-2024, 2024
Short summary
Short summary
We fill a spatial data gap in the ice sheet retreat history of the Laurentide Ice Sheet after the Last Glacial Maximum and investigate a hypothesis that the ice sheet re-advanced into western New York, USA, at ~13 ka. With radiocarbon and optically stimulated luminescence (OSL) dating, we find that ice began retreating from its maximum extent after 20 ka, but glacial ice persisted in glacial landforms until ~15–14 ka when they finally stabilized. We find no evidence of a re-advance at ~13 ka.
Christof Pearce, Karen Søby Özdemir, Ronja Forchhammer Mathiasen, Henrieka Detlef, and Jesper Olsen
Geochronology, 5, 451–465, https://doi.org/10.5194/gchron-5-451-2023, https://doi.org/10.5194/gchron-5-451-2023, 2023
Short summary
Short summary
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with marine sediment cores, the most common dating tool for recent sediments is radiocarbon, but this requires calibration to convert it to calendar ages. This calibration requires knowledge of the marine radiocarbon reservoir age, and this is known to vary in space and time. In this study we provide 92 new radiocarbon measurements to improve our knowledge of the reservoir age around Greenland.
Guillaume Soulet, Philippe Maestrati, Serge Gofas, Germain Bayon, Fabien Dewilde, Maylis Labonne, Bernard Dennielou, Franck Ferraton, and Giuseppe Siani
Geochronology, 5, 345–359, https://doi.org/10.5194/gchron-5-345-2023, https://doi.org/10.5194/gchron-5-345-2023, 2023
Short summary
Short summary
The marine reservoir age (MRA) is the difference between the 14C age of the ocean and that of the atmosphere at a given time. In geochronology, knowing the local MRA is important to derive accurate calibrated ages for 14C-dated marine material. However, MRA values for coastal West Africa are scarce. From the 14C dating of known-age bivalves from museum collections, we calculated MRA values and populated the MRA dataset for coastal West Africa over a latitudinal transect from 33°N to 15°S.
Paula A. Vignoni, Francisco E. Córdoba, Rik Tjallingii, Carla Santamans, Liliana C. Lupo, and Achim Brauer
Geochronology, 5, 333–344, https://doi.org/10.5194/gchron-5-333-2023, https://doi.org/10.5194/gchron-5-333-2023, 2023
Short summary
Short summary
Radiocarbon dating is a widely used tool to establish chronologies for sediment records. We show that modern aquatic plants in the Laguna del Peinado lake system (Altiplano–Puna Plateau) give overestimated ages due to reservoir effects from the input of old groundwater and volcanic CO2. Our results reveal a spatial variability in the modern reservoir effect within the lake basin, which has implications for radiocarbon-based chronologies in paleoclimate studies in this (and similar) regions.
Francesco Muschitiello, Matt O'Regan, Jannik Martens, Gabriel West, Örjan Gustafsson, and Martin Jakobsson
Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, https://doi.org/10.5194/gchron-2-81-2020, 2020
Short summary
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
Paul D. Zander, Sönke Szidat, Darrell S. Kaufman, Maurycy Żarczyński, Anna I. Poraj-Górska, Petra Boltshauser-Kaltenrieder, and Martin Grosjean
Geochronology, 2, 63–79, https://doi.org/10.5194/gchron-2-63-2020, https://doi.org/10.5194/gchron-2-63-2020, 2020
Short summary
Short summary
Recent technological advances allow researchers to obtain radiocarbon ages from smaller samples than previously possible. We investigate the reliability and precision of radiocarbon ages obtained from miniature (11–150 μg C) samples of terrestrial plant fragments taken from sediment cores from Lake Żabińskie, Poland. We further investigate how sampling density (the number of ages per 1000 years) and sample mass (which is related to age precision) influence the performance of age–depth models.
Bryan C. Lougheed, Philippa Ascough, Andrew M. Dolman, Ludvig Löwemark, and Brett Metcalfe
Geochronology, 2, 17–31, https://doi.org/10.5194/gchron-2-17-2020, https://doi.org/10.5194/gchron-2-17-2020, 2020
Short summary
Short summary
The current geochronological state of the art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation, which could affect palaeoclimate interpretations made from deep-sea sediment. We use a computer model that simulates the 14C activity and bioturbation history of millions of single foraminifera at the sea floor, allowing us to evaluate the current state of the art at the most fundamental level.
Cited articles
Alix, C.: A critical resource: wood use and technology in the North American
Arctic, in: The Oxford handbook of the prehistoric Arctic, edited by: Friesen, T. M. and Mason, O. K., Oxford, Oxford University Press, 109–130, 2016.
Andreev, A. A. and Klimanov, V. A.: Quantitative Holocene climatic
reconstruction from Arctic Russia, J. Paleolimnol., 24, 81–91,
https://doi.org/10.1023/A:1008121917521, 2000.
Andreev, A. A., Schirrmeister, L., Tarasov, P. E., Ganopolski, A., Brovkin,
V., Siegert, C., Wetterich, S., and Hubberten, H.-W.: Vegetation and climate
history in the Laptev Sea region (Arctic Siberia) during
Late Quaternary inferred from pollen records, Quaternary Sci. Rev., 30,
2182–2199, https://doi.org/10.1016/j.quascirev.2010.12.026, 2011.
Ashik, I. M. and Vanda, Y. A.: Catastrophic storm surges in the southern part
of the Laptev Sea, in: Russian-German Cooperation: Laptev Sea System, edited
by: Kassens, H., Piepenburg, D., Tiede, J., Timokhov, L., Hubberten, H.-W.,
and Priamikov, S. M., Rep. Pol. Res., 176, 43–46,
https://doi.org/10.2312/BzP_0176_1995, 1995.
Benkova, V. E. and Schweingruber, F. H.: Anatomy of Russian woods,
Haupt, Bern, 456 pp., 2004.
Bennike, O.: Holocene sea-ice variations in Greenland: onshore evidence, Holocene, 14, 607–613, https://doi.org/10.1191/0959683604hl722rr, 2004.
Biskaborn, B. K., Subetto, D., Savelieva, L. A., Vakhrameeva, P. S., Hansche,
A., Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L., Meyer, H.,
Kuhn, G., and Diekmann, B.: Late Quaternary vegetation and lake system
dynamics in north-eastern Siberia: Implications for seasonal climate
variability, Quaternary Sci. Rev., 147, 406–421, https://doi.org/10.1016/j.quascirev.2015.08.014, 2016.
Brehm, N., Bayliss, A., Christl, M., Synal, H.-A., Adolphi, F., Beer, J.,
Kromer, B., Muscheler, R., Solanki, S. K., Usoskin, I., Bleicher, N.,
Bollhalder, S., Tyers, C., and Wacker, L.: Eleven-year solar cycles over the
last millennium revealed by radiocarbon in tree rings, Nat. Geosci.,
14, 10–15, https://doi.org/10.1038/s41561-020-00674-0, 2021.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary
Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon,
51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Büntgen, U., Kirdyanov, A. V., Hellmann, L., Nikolayev, A., and Tegel W.:
Cruising an archive: on the palaeoclimatic value of the Lena Delta,
Holocene, 24, 627–630, https://doi.org/10.1177/0959683614523805, 2014.
Büntgen, U., Wacker, L., Galván, J. D., Arnold, S.,
Arseneault, D., Baillie, D., Beer, J., Bernabei, M., Bleicher, N., Boswijk,
G., Bräuning, A., Career, M., Charpentier Ljungqvist, F., Cherubini, P.,
Christl, M., Christie, D. A., Clark, P. W., Cook, E. R., D'Arrigo, R., Davi,
N., Eggertsson, Ó., Esper, J., Fowler, A. M., Gedalof, Z., Gennaretti,
F., Grießinger, J., Grissino-Mayer, H., Grudd, H., Gunnarson, B.E.,
Hantemirov, R., Herzig, F., Hessl, A., Heussner, K.-U., Jull, A. J. T.,
Kirdyanov, A., Kolář, T., Krusic, P. J., Kyncl, T., Lara, A.,
LeQuesne, C., Linderholm, H. W., Loader, N., Luckman, B., Miyake, F., Myglan,
V., Nicolussi, K., Oppenheimer, C., Palmer, J., Panyushkina, I., Pederson,
N., Rybníček, M., Schweingruber, F. H., Seim, A., Sigl, M.,
Churakova (Sidorova), O., Speer, J. H., Synal, H.-A., Tegel, W., Treydte, K.,
Villalba, R., Wiles, G., Wilson, R., Winship, L. J., Wunder, J., Yang, B.,
and Young, B.: Tree rings reveal globally coherent signature of cosmogenic
radiocarbon events in 774 and 993 CE, Nat. Commun., 9, 3605, https://doi.org/10.1038/s41467-018-06036-0, 2018.
Costard, F., Gautier, E., Fedorov, A., Konstantinov, P., and Dupeyrat, L.:
An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia),
Permafrost Periglac., 25, 162–171, https://doi.org/10.1002/ppp.1812, 2014.
Dumond, D. E. and Griffin, D. G.: Measurements of the Marine Reservoir Effect
on Radiocarbon Ages in the Eastern Bering Sea, Arctic, 55, 77–86, https://doi.org/10.14430/arctic692, 2002.
Dyke, A. S., Morris, T. F., and Green, D. E. C.: Postglacial tectonic and sea
level history of the central Canadian Arctic, Geol. Surv. Can. Bull., 397, 56 pp., https://doi.org/10.4095/132168, 1991.
Dyke, A. S., England, J., Reimnitz, E., and Jetté, H.: Changes in
driftwood delivery to the Canadian Arctic Archipelago: the hypothesis of
postglacial oscillations of the Transpolar Drift, Arctic, 50, 1–16,
https://doi.org/10.14430/arctic1086, 1997.
Eggertsson, Ó.: Mackenzie River driftwood – A dendrochronological study,
Arctic, 47, 128–136, https://doi.org/10.14430/arctic1282, 1994.
Forman, S. L., Lubinski, D., Miller, G. H., Matishov, G. G., Korsun, S.,
Snyder, J., Herlihy, F., Weihe, R., and Myslivets, V.: Postglacial emergence
of western Franz Josef Land, Russia, and retreat of the Barents Sea Ice
sheet, Quaternary Sci. Rev., 15, 77–90, https://doi.org/10.1016/0277-3791(95)00090-9,
1996.
Forman, S. L., Weihe, R., Lubinski, D., Tarasov, G., Korsun, S., and
Matishov, G.: Holocene relative sea-level history of Franz Josef Land,
Russia, Geol. Soc. Am. Bull., 109, 1116–1133, https://doi.org/10.1130/0016-7606(1997)109< 1116:HRSLHO>2.3.CO;2, 2007.
Forman, S. L. and Polyak, L.: Radiocarbon content of pre-bomb marine mollusks
and variations in the reservoir age for coastal areas of the Barents and
Kara Seas, Russia, Geophys. Res. Lett., 24, 885–888,
https://doi.org/10.1029/97GL00761, 1997.
Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K. H., Korsgaard,
N. J., Larsen, N. K., Linderson, H., Lyså, A., Möller, P., Olsen, J., and Willerslev, E.: A 10,000-year record of Arctic Ocean sea-ice
variability – A view from the beach, Science, 333, 747–750,
https://doi.org/10.1126/science.1202760, 2011.
Günther, F., Overduin, P. P., and Sandakov A.: Topographical surveys for
coastal dynamics studies, in: Russian-German Cooperation: System Laptev Sea,
The expedition Eastern Laptev Sea-Buor Khaya Peninsula 2010, edited by:
Wetterich, S., Overduin, P. P., and Grigoriev, M., Rep. Pol. Mar. Res., 629,
94 pp., https://doi.org/10.2312/BzPM_0629_2011, 2011.
Grigoriev, M. N., Rachold, V., Schirrmeister, L., and Hubberten, H. W.:
Organic carbon input to the Arctic Seas through coastal erosion, in: The
organic carbon cycle in the Arctic Ocean, edited by: Stein, R. and Macdonald,
R. W., Berlin, Springer, 41–45, 2004.
Gurnell, A. M., Piégay, H., Swanson, F. J., and Gregory, S. V.: Large wood and fluvial processes, Freshwater Biol., 47, 601–619, https://doi.org/10.1046/j.1365-2427.2002.00916.x, 2002.
Häggblom, A.: Driftwood in Svalbard as an indicator of sea ice
conditions: a preliminary report, Geogr. Ann. A., 64, 81–94,
https://doi.org/10.1080/04353676.1982.11880057, 1982.
Harper, J. R., Henry, R. F., and Stewart, G. G.: Maximum storm surge elevations in the Tuktoyaktuk region of the Canadian Beaufort Sea, Arctic, 41, 48–52, https://doi.org/10.14430/arctic1691, 1988.
Hellmann, L., Tegel, W., Eggertsson, Ó., Schweingruber, F. H.,
Blanchette, R., Kirdyanov, A., Gärtner, H., and Büntgen, U.: Tracing
the origin of Arctic driftwood, J. Geophys. Res.-Biogeo., 118, 68–76,
https://doi.org/10.1002/jgrg.20022, 2013.
Hellmann, L., Kirdyanov, A., and Büntgen, U.: Effects of
boreal timber rafting on the composition
of arctic driftwood, Forests, 7, 257, https://doi.org/10.3390/f7110257, 2016a.
Hellmann, L., Agafonov, L., Churakova (Sidorova), O., Düthorn, E.,
Eggertsson, Ó., Esper, J., Kirdyanov, A. V., Knorre, A. A., Moiseev, P.,
Myglan, V. S., Nikolaev, A. N., Reinig, F., Schweingruber, F., Solomina, O.,
Tegel, W., and Büntgen, U.: Regional coherency of boreal forest growth
defines Arctic driftwood provenancing, Dendrochronologia, 39, 3–9, https://doi.org/10.1016/j.dendro.2015.12.010, 2016b.
Hellmann, L., Tegel, W., Geyer, J., Kirdyanov, A. V., Nikolaev, A. N.,
Eggertsson, Ó, Altman, J., Reinig, F., Morganti, S., and Büntgen,
U.: Dendro-provenancing of Arctic driftwood, Quaternary Sci. Rev., 162,
1–11, https://doi.org/10.1016/j.quascirev.2017.02.025, 2017.
Hole, G. M. and Macias-Fauria, M.: Out of the woods: Driftwood insights into
Holocene pan-Arctic sea ice dynamics, J. Geophys. Res.-Oceans, 122,
7612–7629, https://doi.org/10.1002/2017JC013126, 2017.
Irrgang, A. M., Lantuit, H., Gordon, R. R., Piskor, A., and Manson, G. K.:
Impacts of past and future coastal changes on the Yukon coast – Threats for
cultural sites, infrastructure, and travel routes, Arctic Sci., 5,
107–126, https://doi.org/10.1139/as-2017-0041, 2019.
Johansen, S.: The origin and age of driftwood on Jan Mayen, Polar Res.,
17, 125–146, https://doi.org/10.1111/j.1751-8369.1998.tb00267.x, 1998.
Kramer, N., Wohl E., Hess-Homeier, B., and Leisz, S.: The pulse of driftwood
export from a very large forested river basin over multiple time scales,
Slave River, Canada, Water Resour. Res., 53, 1928–1947,
https://doi.org/10.1002/2016WR019260, 2017.
Kramer, N. and Wohl, E.: Rules of the road: A qualitative and quantitative
synthesis of large wood transport through drainage networks, Geomorphology,
279, 74–97, https://doi.org/10.1016/j.geomorph.2016.08.026, 2017.
Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F.,
Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D. L.,
Graves-Gaylord, A., Grigoriev, M., Hubberten, H. W., Jordan, J., Jorgenson,
T., Ødegård, R. S., Ogorodov, S., Pollard, W. H., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., and Vasiliev, A.: The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines, Estuar. Coast., 35, 383–400,
https://doi.org/10.1007/s12237-010-9362-6, 2012.
Levin, I. and Hesshaimer, V.: Radiocarbon – A unique tracer of global
carbon cycle dynamics, Radiocarbon, 42, 69–80, https://doi.org/10.1017/S0033822200053066, 2000.
Lindhorst, S. and Schutter, I.: Polar gravel beach-ridge systems:
Sedimentary architecture, genesis, and implications for climate
reconstructions (South Shetland Islands/Western Antarctic Peninsula),
Geomorphology, 221, 187–203, https://doi.org/10.1016/j.geomorph.2014.06.013, 2014.
Mason, O. K., Jensen, A. M., Rinck, B., Alix, C. M., Bowers, P. M., and
Hoffecker, J. F.: Heightened early medieval storminess across the Chukchi
Sea, AD 400–1100: A proxy of the Late Antique Little Ice Age, Quatern.
Int., 549, 98–117, https://doi.org/10.1016/j.quaint.2019.01.042, 2020.
Nixon, F. C., England, J. H., Lajeunesse, P., and Hanson, M. A.: An 11 000-year record of driftwood delivery to the western Queen Elizabeth Islands, Arctic Canada, Boreas, 45, 494–507, https://doi.org/10.1111/bor.12165, 2016.
Pavlov, V. K., Timonov, L. A., Baskakov, G. A., Kulakov, M. Y., Kurazhov, V. K., Pavlov, P. V., Pivovarov, S. V., and Stanovoy, V. V.: Hydrometeorological
regime of the Kara, Laptev and East-Siberian seas, Technical Memorandum
APL-UW TM 1-96, Applied Physics Laboratory, University of Washington, 179 pp., 1996.
Peterson, B. J., Holmes, R. M., McClelland, J. W., Vörösmarty, C. J.,
Lammers, R. B., Shiklomanov, A. I., Shiklomanov, I. A., and Rahmstorf, S.:
Increasing River Discharge to the Arctic Ocean, Science, 298,
2171–2173, https://doi.org/10.1126/science.1077445, 2002.
Polyak, L., Alley, R. B., Andrews, J. T., Brigham-Grette, J., Cronin, T. M.,
Darby, D. A., Dyke, A. S., Fitzpatrick, J. J., Funder, S., Holland, M.,
Jennings, A. E., Miller, G. H., O'Regan, M., Savelle, J., Serreze, M., St.
John, K, White, J. W. C., and Wolff, E.: History of sea ice in the Arctic,
Quaternary Sci. Rev., 29, 1757–1778, https://doi.org/10.1016/j.quascirev.2010.02.010, 2010.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I.,
Hattz, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reimnitz, E. and Maurer, D. K.: Effects of Storm Surges on the Beaufort Sea
Coast, Northern Alaska, Arctic, 32, 329–344, https://doi.org/10.14430/arctic2631,
1979.
Richter, H. G., Grosser, D., Heinz, I., and Gasson, P. E.: IAWA list of
microscopic features for softwood identification, Iawa J., 25, 1–70,
2004.
Ruffinatto, F. and Crivellaro, A.: Atlas of Macroscopic Wood
Identification: With a Special Focus on Timbers Used in Europe and
CITES-listed Species, Springer Nature, Cham, Switzerland, 439 pp., 2019.
Sander, L., Michaelis, R., Papenmeier, S., Pravkin, S., Mollenhauer, G.,
Grotheer, H., Gentz, T., and Wiltshire, K. H.: Indication of Holocene
sea-level stability in the southern Laptev Sea recorded by beach ridges in
north-east Siberia, Russia, Polar Res., 38, 3379, https://doi.org/10.33265/polar.v38.3379, 2019.
Schenk, E. R., Moulin, B., Hupp, C. R., and Richter, J. M.: Large wood budget
and transport dynamics on a large river using radio telemetry, Earth Surf.
Proc. Land., 39, 487–498, https://doi.org/10.1002/esp.3463, 2014.
Steelandt, S., Marguerie, D., Bhiry, N., and Delwaide, A.: A study of the
composition, characteristics, and origin of modern driftwood on the western
coast of Nunavik (Quebec, Canada), J. Geophys. Res.-Biogeo., 120,
480–501, https://doi.org/10.1002/2014JG002731, 2015.
Swanson, F. J. and Lienkaemper, G. W.: Physical Consequences of Large Organic
Debris in Pacific-Northwest Streams, Gen. Tech. Rep. PNW-69, USDA Forest
Service, Portland, Oregon, 12 pp., 1978.
Tamura, T.: Beach ridges and prograded beach deposits as palaeoenvironment
records, Earth Sci. Rev., 114, 279–297,
https://doi.org/10.1016/j.earscirev.2012.06.004, 2012.
Tremblay, L. B., Mysak, L. A., and Dyke, A. S.: Evidence from driftwood records for century-to-millennial scale variations of the high latitude atmospheric circulation during the Holocene, Geophys. Res. Lett., 24, 2027–2030, https://doi.org/10.1029/97GL02028, 1997.
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Němec,
M., Ruff, M., Suter, M., Synal, H.-A., and Vockenhuber, C.: MICADAS: routine
and high-precision radiocarbon dating, Radiocarbon, 52, 252–262, https://doi.org/10.1017/S0033822200045288, 2010.
Wheeler, E. A., Baas, P., and Gasson, P. E.: IAWA list of microscopic
features for hardwood identification, IAWA Bull., 10, 219–332, 1989.
Woo, M.-K. and Thorne, R.: Streamflow in the Mackenzie Basin, Canada, Arctic,
56, 328–340, https://doi.org/10.14430/arctic630, 2003.
Yang, D., Kane, D. L., Hinzman, L. D., Zhang, X., Zhang, T., and Ye, H.:
Siberian Lena River hydrologic regime and recent change, J. Geophys. Res., 107, 4694, https://doi.org/10.1029/2002JD002542, 2002.
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of...