Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-171-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short communication: Driftwood provides reliable chronological markers in Arctic coastal deposits
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, 25992 List/Sylt, Germany
Alexander Kirdyanov
V.N. Sukachev Institute of Forest SB RAS, Federal Research Centre, 660036 Krasnoyarsk, Russia
Institute of Ecology and Geography, Siberian Federal University,
660041 Krasnoyarsk, Russia
Alan Crivellaro
Department of Geography, University of Cambridge, Cambridge CB2 3EN, United Kingdom
Forest Biometrics Laboratory, Faculty of Forestry, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania
Ulf Büntgen
Department of Geography, University of Cambridge, Cambridge CB2 3EN, United Kingdom
Swiss Federal Research Institute WSL, 8903 Birmensdorf,
Switzerland
Global Change Research Institute CAS, 603 00 Brno, Czech Republic
Faculty of Science, Department of Geography, Masaryk University, 611 37 Brno, Czech Republic
Related authors
Martina Schmidt, Ingeborg Bussmann, Sarah Johanna Ernestina Reith, Annika Palzer, Cedric Couret, Frank Keppler, Daniela Polag, Lasse Sander, Moritz Schroll, and Julia B. Wietzel
EGUsphere, https://doi.org/10.5194/egusphere-2025-4850, https://doi.org/10.5194/egusphere-2025-4850, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Methane (CH4) measurements near a sand dredging site off Sylt (North Sea) revealed elevated concentrations in both air and water, particularly during summer. CH4 fluxes were significantly higher at the dredging site compared to surrounding areas. Isotopic signatures suggest a microbial origin. These findings indicate that coastal sand extraction may represent a previously unaccounted source of atmospheric CH4.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025, https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Martina Schmidt, Ingeborg Bussmann, Sarah Johanna Ernestina Reith, Annika Palzer, Cedric Couret, Frank Keppler, Daniela Polag, Lasse Sander, Moritz Schroll, and Julia B. Wietzel
EGUsphere, https://doi.org/10.5194/egusphere-2025-4850, https://doi.org/10.5194/egusphere-2025-4850, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Methane (CH4) measurements near a sand dredging site off Sylt (North Sea) revealed elevated concentrations in both air and water, particularly during summer. CH4 fluxes were significantly higher at the dredging site compared to surrounding areas. Isotopic signatures suggest a microbial origin. These findings indicate that coastal sand extraction may represent a previously unaccounted source of atmospheric CH4.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025, https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Cited articles
Alix, C.: A critical resource: wood use and technology in the North American
Arctic, in: The Oxford handbook of the prehistoric Arctic, edited by: Friesen, T. M. and Mason, O. K., Oxford, Oxford University Press, 109–130, 2016.
Andreev, A. A. and Klimanov, V. A.: Quantitative Holocene climatic
reconstruction from Arctic Russia, J. Paleolimnol., 24, 81–91,
https://doi.org/10.1023/A:1008121917521, 2000.
Andreev, A. A., Schirrmeister, L., Tarasov, P. E., Ganopolski, A., Brovkin,
V., Siegert, C., Wetterich, S., and Hubberten, H.-W.: Vegetation and climate
history in the Laptev Sea region (Arctic Siberia) during
Late Quaternary inferred from pollen records, Quaternary Sci. Rev., 30,
2182–2199, https://doi.org/10.1016/j.quascirev.2010.12.026, 2011.
Ashik, I. M. and Vanda, Y. A.: Catastrophic storm surges in the southern part
of the Laptev Sea, in: Russian-German Cooperation: Laptev Sea System, edited
by: Kassens, H., Piepenburg, D., Tiede, J., Timokhov, L., Hubberten, H.-W.,
and Priamikov, S. M., Rep. Pol. Res., 176, 43–46,
https://doi.org/10.2312/BzP_0176_1995, 1995.
Benkova, V. E. and Schweingruber, F. H.: Anatomy of Russian woods,
Haupt, Bern, 456 pp., 2004.
Bennike, O.: Holocene sea-ice variations in Greenland: onshore evidence, Holocene, 14, 607–613, https://doi.org/10.1191/0959683604hl722rr, 2004.
Biskaborn, B. K., Subetto, D., Savelieva, L. A., Vakhrameeva, P. S., Hansche,
A., Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L., Meyer, H.,
Kuhn, G., and Diekmann, B.: Late Quaternary vegetation and lake system
dynamics in north-eastern Siberia: Implications for seasonal climate
variability, Quaternary Sci. Rev., 147, 406–421, https://doi.org/10.1016/j.quascirev.2015.08.014, 2016.
Brehm, N., Bayliss, A., Christl, M., Synal, H.-A., Adolphi, F., Beer, J.,
Kromer, B., Muscheler, R., Solanki, S. K., Usoskin, I., Bleicher, N.,
Bollhalder, S., Tyers, C., and Wacker, L.: Eleven-year solar cycles over the
last millennium revealed by radiocarbon in tree rings, Nat. Geosci.,
14, 10–15, https://doi.org/10.1038/s41561-020-00674-0, 2021.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary
Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon,
51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Büntgen, U., Kirdyanov, A. V., Hellmann, L., Nikolayev, A., and Tegel W.:
Cruising an archive: on the palaeoclimatic value of the Lena Delta,
Holocene, 24, 627–630, https://doi.org/10.1177/0959683614523805, 2014.
Büntgen, U., Wacker, L., Galván, J. D., Arnold, S.,
Arseneault, D., Baillie, D., Beer, J., Bernabei, M., Bleicher, N., Boswijk,
G., Bräuning, A., Career, M., Charpentier Ljungqvist, F., Cherubini, P.,
Christl, M., Christie, D. A., Clark, P. W., Cook, E. R., D'Arrigo, R., Davi,
N., Eggertsson, Ó., Esper, J., Fowler, A. M., Gedalof, Z., Gennaretti,
F., Grießinger, J., Grissino-Mayer, H., Grudd, H., Gunnarson, B.E.,
Hantemirov, R., Herzig, F., Hessl, A., Heussner, K.-U., Jull, A. J. T.,
Kirdyanov, A., Kolář, T., Krusic, P. J., Kyncl, T., Lara, A.,
LeQuesne, C., Linderholm, H. W., Loader, N., Luckman, B., Miyake, F., Myglan,
V., Nicolussi, K., Oppenheimer, C., Palmer, J., Panyushkina, I., Pederson,
N., Rybníček, M., Schweingruber, F. H., Seim, A., Sigl, M.,
Churakova (Sidorova), O., Speer, J. H., Synal, H.-A., Tegel, W., Treydte, K.,
Villalba, R., Wiles, G., Wilson, R., Winship, L. J., Wunder, J., Yang, B.,
and Young, B.: Tree rings reveal globally coherent signature of cosmogenic
radiocarbon events in 774 and 993 CE, Nat. Commun., 9, 3605, https://doi.org/10.1038/s41467-018-06036-0, 2018.
Costard, F., Gautier, E., Fedorov, A., Konstantinov, P., and Dupeyrat, L.:
An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia),
Permafrost Periglac., 25, 162–171, https://doi.org/10.1002/ppp.1812, 2014.
Dumond, D. E. and Griffin, D. G.: Measurements of the Marine Reservoir Effect
on Radiocarbon Ages in the Eastern Bering Sea, Arctic, 55, 77–86, https://doi.org/10.14430/arctic692, 2002.
Dyke, A. S., Morris, T. F., and Green, D. E. C.: Postglacial tectonic and sea
level history of the central Canadian Arctic, Geol. Surv. Can. Bull., 397, 56 pp., https://doi.org/10.4095/132168, 1991.
Dyke, A. S., England, J., Reimnitz, E., and Jetté, H.: Changes in
driftwood delivery to the Canadian Arctic Archipelago: the hypothesis of
postglacial oscillations of the Transpolar Drift, Arctic, 50, 1–16,
https://doi.org/10.14430/arctic1086, 1997.
Eggertsson, Ó.: Mackenzie River driftwood – A dendrochronological study,
Arctic, 47, 128–136, https://doi.org/10.14430/arctic1282, 1994.
Forman, S. L., Lubinski, D., Miller, G. H., Matishov, G. G., Korsun, S.,
Snyder, J., Herlihy, F., Weihe, R., and Myslivets, V.: Postglacial emergence
of western Franz Josef Land, Russia, and retreat of the Barents Sea Ice
sheet, Quaternary Sci. Rev., 15, 77–90, https://doi.org/10.1016/0277-3791(95)00090-9,
1996.
Forman, S. L., Weihe, R., Lubinski, D., Tarasov, G., Korsun, S., and
Matishov, G.: Holocene relative sea-level history of Franz Josef Land,
Russia, Geol. Soc. Am. Bull., 109, 1116–1133, https://doi.org/10.1130/0016-7606(1997)109< 1116:HRSLHO>2.3.CO;2, 2007.
Forman, S. L. and Polyak, L.: Radiocarbon content of pre-bomb marine mollusks
and variations in the reservoir age for coastal areas of the Barents and
Kara Seas, Russia, Geophys. Res. Lett., 24, 885–888,
https://doi.org/10.1029/97GL00761, 1997.
Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjær, K. H., Korsgaard,
N. J., Larsen, N. K., Linderson, H., Lyså, A., Möller, P., Olsen, J., and Willerslev, E.: A 10,000-year record of Arctic Ocean sea-ice
variability – A view from the beach, Science, 333, 747–750,
https://doi.org/10.1126/science.1202760, 2011.
Günther, F., Overduin, P. P., and Sandakov A.: Topographical surveys for
coastal dynamics studies, in: Russian-German Cooperation: System Laptev Sea,
The expedition Eastern Laptev Sea-Buor Khaya Peninsula 2010, edited by:
Wetterich, S., Overduin, P. P., and Grigoriev, M., Rep. Pol. Mar. Res., 629,
94 pp., https://doi.org/10.2312/BzPM_0629_2011, 2011.
Grigoriev, M. N., Rachold, V., Schirrmeister, L., and Hubberten, H. W.:
Organic carbon input to the Arctic Seas through coastal erosion, in: The
organic carbon cycle in the Arctic Ocean, edited by: Stein, R. and Macdonald,
R. W., Berlin, Springer, 41–45, 2004.
Gurnell, A. M., Piégay, H., Swanson, F. J., and Gregory, S. V.: Large wood and fluvial processes, Freshwater Biol., 47, 601–619, https://doi.org/10.1046/j.1365-2427.2002.00916.x, 2002.
Häggblom, A.: Driftwood in Svalbard as an indicator of sea ice
conditions: a preliminary report, Geogr. Ann. A., 64, 81–94,
https://doi.org/10.1080/04353676.1982.11880057, 1982.
Harper, J. R., Henry, R. F., and Stewart, G. G.: Maximum storm surge elevations in the Tuktoyaktuk region of the Canadian Beaufort Sea, Arctic, 41, 48–52, https://doi.org/10.14430/arctic1691, 1988.
Hellmann, L., Tegel, W., Eggertsson, Ó., Schweingruber, F. H.,
Blanchette, R., Kirdyanov, A., Gärtner, H., and Büntgen, U.: Tracing
the origin of Arctic driftwood, J. Geophys. Res.-Biogeo., 118, 68–76,
https://doi.org/10.1002/jgrg.20022, 2013.
Hellmann, L., Kirdyanov, A., and Büntgen, U.: Effects of
boreal timber rafting on the composition
of arctic driftwood, Forests, 7, 257, https://doi.org/10.3390/f7110257, 2016a.
Hellmann, L., Agafonov, L., Churakova (Sidorova), O., Düthorn, E.,
Eggertsson, Ó., Esper, J., Kirdyanov, A. V., Knorre, A. A., Moiseev, P.,
Myglan, V. S., Nikolaev, A. N., Reinig, F., Schweingruber, F., Solomina, O.,
Tegel, W., and Büntgen, U.: Regional coherency of boreal forest growth
defines Arctic driftwood provenancing, Dendrochronologia, 39, 3–9, https://doi.org/10.1016/j.dendro.2015.12.010, 2016b.
Hellmann, L., Tegel, W., Geyer, J., Kirdyanov, A. V., Nikolaev, A. N.,
Eggertsson, Ó, Altman, J., Reinig, F., Morganti, S., and Büntgen,
U.: Dendro-provenancing of Arctic driftwood, Quaternary Sci. Rev., 162,
1–11, https://doi.org/10.1016/j.quascirev.2017.02.025, 2017.
Hole, G. M. and Macias-Fauria, M.: Out of the woods: Driftwood insights into
Holocene pan-Arctic sea ice dynamics, J. Geophys. Res.-Oceans, 122,
7612–7629, https://doi.org/10.1002/2017JC013126, 2017.
Irrgang, A. M., Lantuit, H., Gordon, R. R., Piskor, A., and Manson, G. K.:
Impacts of past and future coastal changes on the Yukon coast – Threats for
cultural sites, infrastructure, and travel routes, Arctic Sci., 5,
107–126, https://doi.org/10.1139/as-2017-0041, 2019.
Johansen, S.: The origin and age of driftwood on Jan Mayen, Polar Res.,
17, 125–146, https://doi.org/10.1111/j.1751-8369.1998.tb00267.x, 1998.
Kramer, N., Wohl E., Hess-Homeier, B., and Leisz, S.: The pulse of driftwood
export from a very large forested river basin over multiple time scales,
Slave River, Canada, Water Resour. Res., 53, 1928–1947,
https://doi.org/10.1002/2016WR019260, 2017.
Kramer, N. and Wohl, E.: Rules of the road: A qualitative and quantitative
synthesis of large wood transport through drainage networks, Geomorphology,
279, 74–97, https://doi.org/10.1016/j.geomorph.2016.08.026, 2017.
Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F.,
Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D. L.,
Graves-Gaylord, A., Grigoriev, M., Hubberten, H. W., Jordan, J., Jorgenson,
T., Ødegård, R. S., Ogorodov, S., Pollard, W. H., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., and Vasiliev, A.: The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines, Estuar. Coast., 35, 383–400,
https://doi.org/10.1007/s12237-010-9362-6, 2012.
Levin, I. and Hesshaimer, V.: Radiocarbon – A unique tracer of global
carbon cycle dynamics, Radiocarbon, 42, 69–80, https://doi.org/10.1017/S0033822200053066, 2000.
Lindhorst, S. and Schutter, I.: Polar gravel beach-ridge systems:
Sedimentary architecture, genesis, and implications for climate
reconstructions (South Shetland Islands/Western Antarctic Peninsula),
Geomorphology, 221, 187–203, https://doi.org/10.1016/j.geomorph.2014.06.013, 2014.
Mason, O. K., Jensen, A. M., Rinck, B., Alix, C. M., Bowers, P. M., and
Hoffecker, J. F.: Heightened early medieval storminess across the Chukchi
Sea, AD 400–1100: A proxy of the Late Antique Little Ice Age, Quatern.
Int., 549, 98–117, https://doi.org/10.1016/j.quaint.2019.01.042, 2020.
Nixon, F. C., England, J. H., Lajeunesse, P., and Hanson, M. A.: An 11 000-year record of driftwood delivery to the western Queen Elizabeth Islands, Arctic Canada, Boreas, 45, 494–507, https://doi.org/10.1111/bor.12165, 2016.
Pavlov, V. K., Timonov, L. A., Baskakov, G. A., Kulakov, M. Y., Kurazhov, V. K., Pavlov, P. V., Pivovarov, S. V., and Stanovoy, V. V.: Hydrometeorological
regime of the Kara, Laptev and East-Siberian seas, Technical Memorandum
APL-UW TM 1-96, Applied Physics Laboratory, University of Washington, 179 pp., 1996.
Peterson, B. J., Holmes, R. M., McClelland, J. W., Vörösmarty, C. J.,
Lammers, R. B., Shiklomanov, A. I., Shiklomanov, I. A., and Rahmstorf, S.:
Increasing River Discharge to the Arctic Ocean, Science, 298,
2171–2173, https://doi.org/10.1126/science.1077445, 2002.
Polyak, L., Alley, R. B., Andrews, J. T., Brigham-Grette, J., Cronin, T. M.,
Darby, D. A., Dyke, A. S., Fitzpatrick, J. J., Funder, S., Holland, M.,
Jennings, A. E., Miller, G. H., O'Regan, M., Savelle, J., Serreze, M., St.
John, K, White, J. W. C., and Wolff, E.: History of sea ice in the Arctic,
Quaternary Sci. Rev., 29, 1757–1778, https://doi.org/10.1016/j.quascirev.2010.02.010, 2010.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I.,
Hattz, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reimnitz, E. and Maurer, D. K.: Effects of Storm Surges on the Beaufort Sea
Coast, Northern Alaska, Arctic, 32, 329–344, https://doi.org/10.14430/arctic2631,
1979.
Richter, H. G., Grosser, D., Heinz, I., and Gasson, P. E.: IAWA list of
microscopic features for softwood identification, Iawa J., 25, 1–70,
2004.
Ruffinatto, F. and Crivellaro, A.: Atlas of Macroscopic Wood
Identification: With a Special Focus on Timbers Used in Europe and
CITES-listed Species, Springer Nature, Cham, Switzerland, 439 pp., 2019.
Sander, L., Michaelis, R., Papenmeier, S., Pravkin, S., Mollenhauer, G.,
Grotheer, H., Gentz, T., and Wiltshire, K. H.: Indication of Holocene
sea-level stability in the southern Laptev Sea recorded by beach ridges in
north-east Siberia, Russia, Polar Res., 38, 3379, https://doi.org/10.33265/polar.v38.3379, 2019.
Schenk, E. R., Moulin, B., Hupp, C. R., and Richter, J. M.: Large wood budget
and transport dynamics on a large river using radio telemetry, Earth Surf.
Proc. Land., 39, 487–498, https://doi.org/10.1002/esp.3463, 2014.
Steelandt, S., Marguerie, D., Bhiry, N., and Delwaide, A.: A study of the
composition, characteristics, and origin of modern driftwood on the western
coast of Nunavik (Quebec, Canada), J. Geophys. Res.-Biogeo., 120,
480–501, https://doi.org/10.1002/2014JG002731, 2015.
Swanson, F. J. and Lienkaemper, G. W.: Physical Consequences of Large Organic
Debris in Pacific-Northwest Streams, Gen. Tech. Rep. PNW-69, USDA Forest
Service, Portland, Oregon, 12 pp., 1978.
Tamura, T.: Beach ridges and prograded beach deposits as palaeoenvironment
records, Earth Sci. Rev., 114, 279–297,
https://doi.org/10.1016/j.earscirev.2012.06.004, 2012.
Tremblay, L. B., Mysak, L. A., and Dyke, A. S.: Evidence from driftwood records for century-to-millennial scale variations of the high latitude atmospheric circulation during the Holocene, Geophys. Res. Lett., 24, 2027–2030, https://doi.org/10.1029/97GL02028, 1997.
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Němec,
M., Ruff, M., Suter, M., Synal, H.-A., and Vockenhuber, C.: MICADAS: routine
and high-precision radiocarbon dating, Radiocarbon, 52, 252–262, https://doi.org/10.1017/S0033822200045288, 2010.
Wheeler, E. A., Baas, P., and Gasson, P. E.: IAWA list of microscopic
features for hardwood identification, IAWA Bull., 10, 219–332, 1989.
Woo, M.-K. and Thorne, R.: Streamflow in the Mackenzie Basin, Canada, Arctic,
56, 328–340, https://doi.org/10.14430/arctic630, 2003.
Yang, D., Kane, D. L., Hinzman, L. D., Zhang, X., Zhang, T., and Ye, H.:
Siberian Lena River hydrologic regime and recent change, J. Geophys. Res., 107, 4694, https://doi.org/10.1029/2002JD002542, 2002.
Short summary
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of past landscape evolution. In this study, we show that consistent ages for Holocene beach shorelines can be obtained by dating driftwood deposits. This finding is surprising, as the wood travels long distances through river systems before reaching the Arctic Ocean. The possibility to establish precise age control is a prerequisite to further investigate the regional drivers of long-term coastal change.
Coastal deposits can help us reconstruct the timing of climate-induced changes in the rates of...