Articles | Volume 5, issue 2
https://doi.org/10.5194/gchron-5-323-2023
https://doi.org/10.5194/gchron-5-323-2023
Short communication/technical note
 | 
19 Jul 2023
Short communication/technical note |  | 19 Jul 2023

Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis

Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret

Related authors

(anchored) isochrons in IsoplotR
Pieter Vermeesch
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-5,https://doi.org/10.5194/gchron-2024-5, 2024
Revised manuscript under review for GChron
Short summary
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
Origin of Great Unconformity Obscured by Thermochronometric Uncertainty
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23,https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022,https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary
Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers
Yang Li and Pieter Vermeesch
Geochronology, 3, 415–420, https://doi.org/10.5194/gchron-3-415-2021,https://doi.org/10.5194/gchron-3-415-2021, 2021
Short summary

Related subject area

Helium diffusion systems
The Geometric Correction Method for zircon (U-Th)/He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations
Spencer D. Zeigler, Morgan Baker, James R. Metcalf, and Rebecca M. Flowers
EGUsphere, https://doi.org/10.5194/egusphere-2023-3046,https://doi.org/10.5194/egusphere-2023-3046, 2024
Short summary
A practical method for assigning uncertainty and improving the accuracy of alpha-ejection corrections and eU concentrations in apatite (U–Th) ∕ He chronology
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023,https://doi.org/10.5194/gchron-5-197-2023, 2023
Short summary
Cosmogenic 3He paleothermometry on post-LGM glacial bedrock within the central European Alps
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022,https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
A revised alpha-ejection correction calculation for (U–Th) ∕ He thermochronology dates of broken apatite crystals
John J. Y. He and Peter W. Reiners
Geochronology, 4, 629–640, https://doi.org/10.5194/gchron-4-629-2022,https://doi.org/10.5194/gchron-4-629-2022, 2022
Short summary
Short communication: Mechanism and prevention of irreversible trapping of atmospheric He during mineral crushing
Stephen E. Cox, Hayden B. D. Miller, Florian Hofmann, and Kenneth A. Farley
Geochronology, 4, 551–560, https://doi.org/10.5194/gchron-4-551-2022,https://doi.org/10.5194/gchron-4-551-2022, 2022
Short summary

Cited articles

Boyce, J. W., Hodges, K. V., Olszewski, W. J., Jercinovic, M. J., Carpenter, B. D., and Reiners, P. W.: Laser microprobe (U-Th)/He geochronology, Geochim. Cosmochim. Ac., 70, 3031–3039, https://doi.org/10.1016/j.gca.2006.03.019, 2006. a, b
Boyce, J. W., Hodges, K. V., King, D., Crowley, J. L., Jercinovic, M., Chatterjee, N., Bowring, S. A., and Searle, M.: Improved confidence in (U-Th) / He thermochronology using the laser microprobe: An example from a Pleistocene leucogranite, Nanga Parbat, Pakistan, Geochem. Geophy. Geosy., 10, Q0AA01, https://doi.org/10.1029/2009GC002497, 2009. a
Brennan, C. J., Stockli, D. F., and Patterson, D. B.: Zircon 4He/3He fractional loss step-heating and characterization of parent nuclide distribution, Chem. Geol., 549, 119692, https://doi.org/10.106/j.chemgeo.2020.119692, 2020. a
Colleps, C., van der Beek, P., Denker, A., Amalberti, J., Dittwald, A., Bundesmann, J., and Bernard, M.: Improving the Efficiency of Proton Irradiations for 4He /3He Thermochronology, AGU Fall Meeting 12–16 December 2022, Chicago, IL, USA, 2022AGUFMEP22E1381C, EP22E–1381, 2022. a
Danišík, M., McInnes, B. I., Kirkland, C. L., McDonald, B. J., Evans, N. J., and Becker, T.: Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals, Sci. Adv., 3, e1601121, https://doi.org/10.1126/sciadv.1601121, 2017. a
Download
Short summary
The U–Th–He method is a technique to determine the cooling history of minerals. Traditional approaches to U–Th–He dating are time-consuming and require handling strong acids and radioactive solutions. This paper presents an alternative approach in which samples are irradiated with protons and subsequently analysed by laser ablation mass spectrometry. Unlike previous in situ U–Th–He dating attempts, the new method does not require any absolute concentration measurements of U, Th, or He.