Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-123-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-123-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
U − Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation
Veronica Peverelli
CORRESPONDING AUTHOR
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Tanya Ewing
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Daniela Rubatto
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Institute of Earth Sciences, University of Lausanne, Lausanne, 1015, Switzerland
Martin Wille
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Alfons Berger
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Igor Maria Villa
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Dipartimento di Scienze dell'Ambiente e della Terra, University of
Milano-Bicocca, Milan, 20126, Italy
Pierre Lanari
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Thomas Pettke
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Marco Herwegh
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Related authors
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
Solid Earth, 16, 641–662, https://doi.org/10.5194/se-16-641-2025, https://doi.org/10.5194/se-16-641-2025, 2025
Short summary
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
James Gilgannon and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1718, https://doi.org/10.5194/egusphere-2025-1718, 2025
Short summary
Short summary
Carbonate rocks can control how strong the Earth’s crust is in places. They are often described in simple terms as calcite or dolomite, but they are more complicated. At the atomistic level different amounts of elements, like magnesium and calcium, are incorporated at different temperatures and at the microscopic level carbonates can have different internal structures. We review 50 years of experimental data to provide equations that can describe the strength of most kinds of carbonates.
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Markus Ohl, Oliver Plümper, and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3970, https://doi.org/10.5194/egusphere-2024-3970, 2025
Short summary
Short summary
To date, there remains a deficiency in rheological parameters for polymineralic rocks to be used in models for strain localization and seismicity in the Earth's continental middle crust. We calculated grain size and stress sensitivity of experimentally deformed natural, fine-grained, granitoid rocks. Extrapolation of these parameters predicts a switch in the weakest material as a function of grain size and deformation mechanism: from coarse monomineralic quartz to fine polymineralic rocks.
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Weijia Zhan, Markus Ohl, Oliver Plümper, and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3968, https://doi.org/10.5194/egusphere-2024-3968, 2025
Short summary
Short summary
Rheology of polymineralic rocks is crucial to unravel the strain and stress distribution in Earth’s middle crust with implications for e.g. seismicity or geothermal systems. Our experimental study of the viscous rheology of natural, fine-grained, granitoid rocks shows that dissolution-precipitation creep and pinning is active in extremely weak narrow zones. Due to the polymineralic character, strain localizes with and without a precursory fracture in zones weaker than monomineralic quartz.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Kilian Lecacheur, Olivier Fabbri, Francesca Piccoli, Pierre Lanari, Philippe Goncalves, and Henri Leclère
Eur. J. Mineral., 36, 767–795, https://doi.org/10.5194/ejm-36-767-2024, https://doi.org/10.5194/ejm-36-767-2024, 2024
Short summary
Short summary
In this study, we analyze a peculiar eclogite from the Western Alps, which not only recorded a classical subduction-to-exhumation path but revealed evidence of Ca-rich fluid–rock interaction. Chemical composition and modeling show that the rock experienced peak metamorphic conditions followed by Ca-rich pulsed fluid influx occurring consistently under high-pressure conditions. This research enhances our understanding of fluid–rock interactions in subduction settings.
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024, https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Short summary
Predicting the behaviour of magmatic systems is important for understanding Earth's matter and heat transport. Numerical modelling is a technique that can predict complex systems at different scales of space and time by solving equations using various techniques. This study tests four algorithms to find the best way to transport the melt composition. The "weighted essentially non-oscillatory" algorithm emerges as the best choice, minimising errors and preserving system mass well.
Julien Reynes, Jörg Hermann, Pierre Lanari, and Thomas Bovay
Eur. J. Mineral., 35, 679–701, https://doi.org/10.5194/ejm-35-679-2023, https://doi.org/10.5194/ejm-35-679-2023, 2023
Short summary
Short summary
Garnet is a high-pressure mineral that may incorporate very small amounts of water in its structure (tens to hundreds of micrograms per gram H2O). In this study, we show, based on analysis and modelling, that it can transport up to several hundred micrograms per gram of H2O at depths over 80 km in a subduction zone. The analysis of garnet from the various rock types present in a subducted slab allowed us to estimate the contribution of garnet in the deep cycling of water in the earth.
Chiara Montemagni, Stefano Zanchetta, Martina Rocca, Igor M. Villa, Corrado Morelli, Volkmar Mair, and Andrea Zanchi
Solid Earth, 14, 551–570, https://doi.org/10.5194/se-14-551-2023, https://doi.org/10.5194/se-14-551-2023, 2023
Short summary
Short summary
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed within the Late Cretaceous thrust stack in the Austroalpine domain of the eastern Alps. 40Ar / 39Ar geochronology constrains the activity of the VSZ between 97 and 80 Ma. The decreasing vorticity towards the core of the shear zone, coupled with the younging of mylonites, points to a shear thinning behavior. The deepest units of the Eo-Alpine orogenic wedge were exhumed along the VSZ.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Felix Hentschel, Emilie Janots, Claudia A. Trepmann, Valerie Magnin, and Pierre Lanari
Eur. J. Mineral., 32, 521–544, https://doi.org/10.5194/ejm-32-521-2020, https://doi.org/10.5194/ejm-32-521-2020, 2020
Short summary
Short summary
We analysed apatite–allanite/epidote coronae around monazite and xenotime in deformed Permian pegmatites from the Austroalpine basement. Microscopy, chemical analysis and EBSD showed that these coronae formed by dissolution–precipitation processes during deformation of the host rocks. Dating of monazite and xenotime confirmed the magmatic origin of the corona cores, while LA-ICP-MS dating of allanite established a date of ~ 60 Ma for corona formation and deformation in the Austroalpine basement.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Cited articles
Barker, S. L. L., Cox, S. F., Eggins, S. M., and Gagan, M. K.: Microchemical
evidence for episodic growth of antitaxial veins during fracture-controlled
fluid flow, Earth Planet. Sci. Lett., 250, 331–344,
https://doi.org/10.1016/j.epsl.2006.07.051, 2006.
Barker, S. L. L., Bennett, V. C., Cox, S. F., Norman, M. D., and Gagan, M.
K.: Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite
veins: Implications for fluid-rock reaction and geochronology, Chem. Geol.,
268, 58–66, https://doi.org/10.1016/j.chemgeo.2009.07.009, 2009.
Barth, S., Oberli, F., and Meier, M.: Th-Pb versus U-Pb isotope systematics
in allanite from co-genetic rhyolite and granodiorite: implications for
geochronology, Earth Planet. Sci. Lett., 124, 149–159,
https://doi.org/10.1016/0012-821X(94)00073-5, 1994.
Berger, A., Mercolli, I., Herwegh, M., and Gnos, E.: Geological Map of the Aar
Massif, Tavetsch and Gotthard Nappes, Geol. spec. Map 1:100000,
explanatory notes 129, Federal Office of Topography swisstopo, Bern, Switzerland, 2017.
Bird, D. K. and Spieler, A. R.: Epidote in Geothermal Systems, Rev. Mineral.
Geochem., 56, 235–300, https://doi.org/10.2138/gsrmg.56.1.235, 2004.
Bons, P. D., Elburg, M. A., and Gomez-Rivas, E.: A review of the formation of
tectonic veins and their microstructures, J. Struct. Geol., 43, 33–62,
https://doi.org/10.1016/j.jsg.2012.07.005, 2012.
Buick, I. S., Frei, R., and Cartwright, I.: The timing of high-temperature
retrogression in the Reynolds Range, central Australia: Constraints from
garnet and epidote Pb-Pb dating, Contrib. Mineral. Petrol., 135,
244–254, https://doi.org/10.1007/s004100050510, 1999.
Burn, M., Lanari, P., Pettke, T., and Engi, M.: Non-matrix-matched
standardisation in LA-ICP-MS analysis: General approach, and application to
allanite Th-U-Pb dating, J. Anal. At. Spectrom., 32, 1359–1377,
https://doi.org/10.1039/c7ja00095b, 2017.
Catlos, E. J., Sorensen, S. S., and Harrison, T. M.: Th-Pb ion-microprobe
dating of allanite, Am. Mineral., 85, 633–648,
https://doi.org/10.2138/am-2000-5-601, 2000.
Cenki-Tok, B., Darling, J. R., Rolland, Y., Dhuime, B., and Storey, C. D.:
Direct dating of mid-crustal shear zones with synkinematic allanite: New in
situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif,
Terra Nov., 26, 29–37, https://doi.org/10.1111/ter.12066, 2014.
Challandes, N., Marquer, D., and Villa, I. M.: P-T-t modelling, fluid
circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones
(Swiss Alps), Swiss J. Geosci., 101, 269–288,
https://doi.org/10.1007/s00015-008-1260-6, 2008.
Chew, D. M., Petrus, J. A., and Kamber, B. S.: U-Pb LA-ICPMS dating using
accessory mineral standards with variable common Pb, Chem. Geol., 363,
185–199, https://doi.org/10.1016/j.chemgeo.2013.11.006, 2014.
Cumming, G. L. and Richards, J. R.: Ore lead isotope ratios in a continuously
changing Earth, Earth Planet. Sci. Lett., 150, 277–290, 1975.
Dahl, P. S.: A crystal-chemical basis for Pb retention and fission-track
annealing systematics in U-bearing mineral, with implications for
geochronology, Earth Planet. Sci. Lett., 150, 277–290, 1997.
Darling, J. R., Storey, C. D., and Engi, M.: Allanite U-Th-Pb geochronology
by laser ablation ICPMS, Chem. Geol., 292/293, 103–115,
https://doi.org/10.1016/j.chemgeo.2011.11.012, 2012.
Elburg, M. A., Bons, P. D., Foden, J., and Passchier, C. W.: The origin of fibrous
veins: constraints from geochemistry, Geol. Soc. Spec. Publ., 200, 103–118, 2002.
El Korh, A.: Ablation behaviour of allanites during U-Th-Pb dating using a
quadrupole ICP-MS coupled to a 193nm excimer laser, Chem. Geol., 371,
46–59, https://doi.org/10.1016/j.chemgeo.2014.01.021, 2014.
Enami, M., Liou, J. G., and Mattinson, C. G.: Epidote minerals in high P/T
metamorphic terranes: Subduction zone and high- to ultrahigh-pressure
metamorphism, Rev. Mineral. Geochem., 56, 347–398,
https://doi.org/10.2138/gsrmg.56.1.347, 2004.
Epin, M. E., Manatschal, G., and Amann, M.: Defining diagnostic criteria to
describe the role of rift inheritance in collisional orogens: the case of
the Err-Platta nappes (Switzerland), Swiss J. Geosci., 110, 419–438,
https://doi.org/10.1007/s00015-017-0271-6, 2017.
Etheridge, M. A., Wall, V. J., and Vernon, R. H.: The role of the fluid phase
during regional metamorphism and deformation, J. Metamorph. Geol., 1,
205–226, https://doi.org/10.1111/j.1525-1314.1983.tb00272.x, 1983.
Franz, G. and Liebscher, A.: Physical and Chemical Properties of the Epidote
Minerals – An Introduction, Rev. Mineral. Geochem., 56, 1–81,
https://doi.org/10.2138/gsrmg.56.1.1, 2004.
Frei, D., Liebscher, A., Franz, G., and Dulski, P.: Trace element
geochemistry of epidote minerals, Rev. Mineral. Geochem., 56,
553–605, https://doi.org/10.2138/gsrmg.56.1.553, 2004.
Froitzheim, N. and Eberli, G. P.: Extensional detachment faulting in the
evolution of a Tethys passive continental margin, Eastern Alps, Switzerland,
Geol. Soc. Am. Bull., 102, 1297–1308,
https://doi.org/10.1130/0016-7606(1990)102<1297:EDFITE>2.3.CO;2,
1990.
Froitzheim, N. and Manatschal, G.: Kinematics of Jurassic rifting, mantle
exhumation, and passive-margin formation in the Austroalpine and Penninic
nappes (eastern Switzerland), Bull. Geol. Soc. Am., 108, 1120–1133,
https://doi.org/10.1130/0016-7606(1996)108<1120:KOJRME>2.3.CO;2,
1996.
Froitzheim, N., Schmid, S. M., and Conti, P.: Repeated change from crustal
shortening to orogen-parallel extension in the Austroalpine units of
Graubünden, Eclogae Geol. Helv., 87, 559–612, 1994.
Gieré, R. and Sorensen, S. S.: Allanite and other: REE-rich
epidote-group minerals, Rev. Mineral. Geochem., 56,
431–493, https://doi.org/10.2138/gsrmg.56.1.431, 2004.
Goncalves, P., Oliot, E., Marquer, D., and Connolly, J. A. D.: Role of
chemical processes on shear zone formation: An example from the Grimsel
metagranodiorite (Aar massif, Central Alps), J. Metamorph. Geol., 30,
703–722, https://doi.org/10.1111/j.1525-1314.2012.00991.x, 2012.
Grapes, R. H. and Hoskin, P. W. O.: Epidote group minerals in low-medium
pressure metamorphic terranes, Rev. Mineral. Geochem., 56,
301–345, https://doi.org/10.2138/gsrmg.56.1.301, 2004.
Gregory, C. J., Rubatto, D., Allen, C. M., Williams, I. S., Hermann, J., and
Ireland, T.: Allanite micro-geochronology: A LA-ICP-MS and SHRIMP U-Th-Pb
study, Chem. Geol., 245, 162–182, https://doi.org/10.1016/j.chemgeo.2007.07.029,
2007.
Gregory, C. J., Rubatto, D., Hermann, J., Berger, A., and Engi, M.: Allanite
behaviour during incipient melting in the southern Central Alps, Geochim.
Cosmochim. Ac., 84, 433–458, https://doi.org/10.1016/j.gca.2012.01.020, 2012.
Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., and Yardley, B. W.
D.: SILLS: A Matlab-Based Program for the Reduction of Laser Ablation
ICP-MS Data of Homogeneous Materials and Inclusions, Mineral. Assoc. Canada
Short Course, 40, 328–333, 2008.
Guo, S., Ye, K., Yang, Y., Chen, Y., Zhang, L., Liu, J., Mao, Q., and Ma, Y.:
In situ Sr isotopic analyses of epidote: Tracing the sources of multi-stage
fluids in ultrahigh-pressure eclogite (Ganghe, Dabie terrane), Contrib.
Mineral. Petrol., 167, 1–23, https://doi.org/10.1007/s00410-014-0975-9, 2014.
Halter, W. E., Pettke, T., Heinrich, C. A., and Rothen-Rutishauser, B.: Major
to trace element analysis of melt inclusions by laser-ablation ICP-MS:
Methods of quantification, Chem. Geol., 183, 63–86,
https://doi.org/10.1016/S0009-2541(01)00372-2, 2002.
Handy, M. R., Herwegh, M., Kamber, B. S., Tietz, R., and Villa, I. M.:
Geochronologic, petrologic and kinematic constraints on the evolution of the
Err-Platta boundary, part of a fossil continent-ocean suture in the Alps
(eastern Switzerland), Schweizerische Mineral. und Petrogr. Mitteilungen,
76, 453–474, 1996.
Herwegh, M., Berger, A., Baumberger, R., Wehrens, P., and Kissling, E.:
Large-Scale Crustal-Block-Extrusion During Late Alpine Collision, Sci. Rep.,
7, 1–10, https://doi.org/10.1038/s41598-017-00440-0, 2017.
Herwegh, M., Berger, A., Glotzbach, C., Wangenheim, C., Mock, S., Wehrens,
P., Baumberger, R., Egli, D., and Kissling, E.: Late stages of
continent-continent collision: Timing, kinematic evolution, and exhumation
of the Northern rim (Aar Massif) of the Alps, Earth-Sci. Rev.,
200, 102959, https://doi.org/10.1016/j.earscirev.2019.102959, 2020.
Hofmann, B. A., Helfer, M., Diamond, L. W., Villa, I. M., Frei, R., and
Eikenberg, J.: Topography-driven hydrothermal breccia mineralization of
Pliocene age at Grimsel Pass, Aar massif, Central Swiss Alps, Schweizerische
Mineral. und Petrogr. Mitteilungen, 84, 271–302, 2004.
Horn, I., Rudnick, R. L., and McDonough, W. F.: Precise elemental and isotope
ratio determination by simultaneous solution nebulization and laser
ablation-ICP-MS: Application to U-Pb geochronology, Chem. Geol., 164,
281–301, https://doi.org/10.1016/S0009-2541(99)00168-0, 2000.
Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N.
M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P.,
Bowring, J. F., Condon, D. J., and Schoene, B.: Community-Derived Standards
for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age
Interpretation and Data Reporting, Geostand. Geoanalytic. Res., 40,
311–332, https://doi.org/10.1111/j.1751-908X.2016.00379.x, 2016.
Horwitz, E. P., Dietz, M. L., and Chiarizia, R.: The application of novel
extraction chromatographic materials to the characterization of radioactive
waste solutions, J. Radioanal. Nucl. Ch., 161,
575–583, 1992.
Incerpi, N., Martire, L., Manatschal, G., and Bernasconi, S. M.: Evidence of
hydrothermal fluid flow in a hyperextended rifted margin: the case study of
the Err nappe (SE Switzerland), Swiss J. Geosci., 110, 439–456,
https://doi.org/10.1007/s00015-016-0235-2, 2017.
Johannes, W.: Beginning of melting in the granite system Qz-Or-Ab-An-H2O,
Contrib. Mineral. Petrol., 86, 264–273, https://doi.org/10.1007/BF00373672, 1984.
Košler, J.: Laser ablation ICP-MS – A new dating tool in Earth science,
Proc. Geol. Assoc., 118, 19–24, https://doi.org/10.1016/S0016-7878(07)80043-5, 2007.
Li, X. H., Li, Z. X., Li, W. X., Liu, Y., Yuan, C., Wei, G., and Qi, C.: U-Pb
zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of
Jurassic I- and A-type granites from central Guangdong, SE China: A major
igneous event in response to foundering of a subducted flat-slab?, Lithos,
96, 186–204, https://doi.org/10.1016/j.lithos.2006.09.018, 2007.
Liao, X., Li, Q. L., Whitehouse, M. J., Yang, Y. H., and Liu, Y.: Allanite U-Th-Pb geochronology by ion microprobe, J. Anal. At. Spectrom. 35, 489–497, https://doi.org/10.1039/c9ja00426b, 2020.
Ludwig, K. R.: On the treatment of concordant uranium-lead ages, Geochim.
Cosmochim. Ac., 62, 665–676, https://doi.org/10.1016/S0016-7037(98)00059-3, 1998.
Ludwig, K. R.: User's Manual for A Geochronological Toolkit for Microsoft
Excel, Berkeley Geochronology Center, Berkeley, CA, USA, 75 pp., 2012.
Malaspina, N., Scambelluri, M., Pennacchioni, G., and Spagnolo, C.:
Fluid-induced plastic deformation in the crustal Austroalpine system
(Western Italian Alps): A petrologic and fluid inclusion analysis, Ital. J.
Geosci., 130, 61–74, https://doi.org/10.3301/IJG.2010.24, 2011.
Manatschal, G. and Nievergelt, P.: A continent-ocean transition recorded in
the Err and Platta nappes (Eastern Switzerland), Eclogae Geol. Helv., 90,
3–27, 1997.
Manatschal, G., Marquer, D., and Früh-Green, G. L.: Channelized fluid
flow and mass transfer along a rift-related detachment fault (Eastern Alps,
Southeast Switzerland), Bull. Geol. Soc. Am., 112, 21–33,
https://doi.org/10.1130/0016-7606(2000)112<21:CFFAMT>2.0.CO;2,
2000.
Mcfarlane, C. R. M.: Allanite U−Pb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calibration, Chem. Geol., 438, 91–102,
https://doi.org/10.1016/j.chemgeo.2016.05.026, 2016.
Mohn, G., Manatschal, G., Masini, E., and Müntener, O.: Rift-related
inheritance in orogens: A case study from the Austroalpine nappes in Central
Alps (SE-Switzerland and N-Italy), Int. J. Earth Sci., 100, 937–961,
https://doi.org/10.1007/s00531-010-0630-2, 2011.
Nägler, T. F. and Kamber, B. S.: A new silicate dissolution procedure
for isotope studies on garnet and other rock forming minerals,
Schweizerische Mineral. und Petrogr. Mitteilungen, 76, 75–80,
https://doi.org/10.5169/seals-57688, 1996.
Oberli, F., Meier, M., Berger, A., Rosenberg, C. L., and Gieré, R.:
U-Th-Pb and 230Th/238U disequilibrium isotope systematics: Precise accessory
mineral chronology and melt evolution tracing in the Alpine Bergell
intrusion, Geochim. Cosmochim. Ac., 68, 2543–2560,
https://doi.org/10.1016/j.gca.2003.10.017, 2004.
Odlum, M. L. and Stockli, D. F.: Thermotectonic Evolution of the North
Pyrenean Agly Massif During Early Cretaceous Hyperextension Using
Multi-mineral U-Pb Thermochronometry, Tectonics, 38, 1509–1531,
https://doi.org/10.1029/2018TC005298, 2019.
Odlum, M. L. and Stockli, D. F.: Geochronologic constraints on deformation
and metasomatism along an exhumed mylonitic shear zone using apatite U-Pb,
geochemistry, and microtextural analysis, Earth Planet. Sci. Lett., 538,
116177, https://doi.org/10.1016/j.epsl.2020.116177, 2020.
Parrish, R. R., Parrish, C. M., and Lasalle, S.: Vein calcite dating reveals
Pyrenean orogen as cause of Paleogene deformation in southern England, J.
Geol. Soc. London, 175, 425–442, https://doi.org/10.1144/jgs2017-107, 2018.
Pennacchioni, G. and Cesare, B.: Ductile-brittle transition in pre-Alpine
amphibolite facies mylonites during evolution from water-present to
water-deficient conditions (Mont Mary nappe, Italian Western Alps), J.
Metamorph. Geol., 15, 777–791, https://doi.org/10.1111/j.1525-1314.1997.00055.x,
1997.
Pettke, T., Diamond, L. W., and Kramers, J. D.: Mesothermal gold lodes in the
north-western Alps: A review of genetic constraints from radiogenic
isotopes, Eur. J. Mineral., 12, 213–230, https://doi.org/10.1127/ejm/12/1/0213,
2000.
Pettke, T., Oberli, F., Audétat, A., Guillong, M., Simon, A. C., Hanley,
J. J., and Klemm, L. M.: Recent developments in element concentration and
isotope ratio analysis of individual fluid inclusions by laser ablation
single and multiple collector ICP-MS, Ore Geol. Rev., 44, 10–38,
https://doi.org/10.1016/j.oregeorev.2011.11.001, 2012.
Picazo, S. M., Ewing, T. A., and Müntener, O.: Paleocene metamorphism
along the Pennine-Austroalpine suture constrained by U−Pb dating of
titanite and rutile (Malenco, Alps), Swiss J. Geosci., 112, 517–542,
https://doi.org/10.1007/s00015-019-00346-1, 2019.
Quistini, S., Oddone, M., and Villa, I. M.: Sustainability of aquifers in
Mali: Sr and Pb isotopic signatures and tritium ages, SGI
Congress, Pisa, Italy, p. 420,
2017.
Rehkämper, M. and Mezger, K.: Investigation of matrix effects for Pb
isotope ratio measurements by multiple collector ICP-MS: Verification and
application of optimized analytical protocols, J. Anal. At. Spectrom.,
15, 1451–1460, https://doi.org/10.1039/b005262k, 2000.
Ricchi, E., Bergemann, C. A., Gnos, E., Berger, A., Rubatto, D., and
Whitehouse, M. J.: Constraining deformation phases in the Aar Massif and the
Gotthard Nappe (Switzerland) using Th-Pb crystallization ages of fissure
monazite-(Ce), Lithos, 342/343, 223–238, https://doi.org/10.1016/j.lithos.2019.04.014,
2019.
Ricchi, E., Bergemann, C. A., Gnos, E., Berger, A., Rubatto, D., Whitehouse, M. J., and Walter, F.: Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite, Solid Earth, 11, 437–467, https://doi.org/10.5194/se-11-437-2020, 2020.
Rolland, Y., Cox, S. F., and Corsini, M.: Constraining deformation stages in
brittle-ductile shear zones from combined field mapping and 40Ar/39Ar
dating: The structural evolution of the Grimsel Pass area (Aar Massif, Swiss
Alps), J. Struct. Geol., 31, 1377–1394, https://doi.org/10.1016/j.jsg.2009.08.003,
2009.
Romer, R. L.: Lead incorporation during crystal growth and the
misinterpretation of geochronological data from low-238U/204Pb metamorphic
minerals, Terra Nov., 13, 258–263, https://doi.org/10.1046/j.1365-3121.2001.00348.x,
2001.
Romer, R. L. and Siegesmund, S.: Why allanite may swindle about its true
age, Contrib. Mineral. Petrol., 146, 297–307,
https://doi.org/10.1007/s00410-003-0494-6, 2003.
Romer, R. L. and Xiao, Y.: Initial Pb-Sr(-Nd) isotopic heterogeneity in a
single allanite-epidote crystal: Implications of reaction history for the
dating of minerals with low parent-to-daughter ratios, Contrib. Mineral.
Petrol., 148, 662–674, https://doi.org/10.1007/s00410-004-0630-y, 2005.
Savastano, V. L. M., Schmitt, R., Araújo, M. N. C., and
Inocêncio, L. C.: Rift brittle deformation of SE-Brazilian continental
margin: Kinematic analysis of onshore structures relative to the transfer
and accommodation zones of southern Campos Basin, J. Struct. Geol., 94,
136–153, https://doi.org/10.1016/j.jsg.2016.11.012, 2017.
Schaltegger, U. and Corfu, F.: The age and source of late Hercynian
magmatism in the central Alps: evidence from precise U-Pb ages and initial
Hf isotopes, Contrib. Mineral. Petrol., 111, 329–344,
https://doi.org/10.1007/BF00311195, 1992.
Schmidt, M. W. and Poli, S.: Magmatic epidote, Rev. Mineral. Geochem.,
56, 399–430, https://doi.org/10.2138/gsrmg.56.1.399, 2004.
Schneeberger, R., Kober, F., Lanyon, G. W., Mäder, U. K., Spillmann, T.,
and Blechschmidt, I.: Grimsel Test Site: Revisiting the site-specific
geoscientific knowledge, available at: https://www.nagra.ch/en (last access: 12 October 2020), 2019.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A.,
Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg,
N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J.:
Plešovice zircon – A new natural reference material for U-Pb and Hf
isotopic microanalysis, Chem. Geol., 249, 1–35,
https://doi.org/10.1016/j.chemgeo.2007.11.005, 2008.
Smye, A. J., Roberts, N. M. W., Condon, D. J., Horstwood, M. S. A., and
Parrish, R. R.: Characterising the U-Th-Pb systematics of allanite by ID and
LA-ICPMS: Implications for geochronology, Geochim. Cosmochim. Ac., 135,
1–28, https://doi.org/10.1016/j.gca.2014.03.021, 2014.
Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope
evolution by a two-stage model, Earth Planet. Sci. Lett., 26, 207–221,
https://doi.org/10.1016/0012-821X(75)90088-6, 1975.
Storey, C. D., Jeffries, T. E., and Smith, M.: Common lead-corrected laser
ablation ICP-MS U-Pb systematics and geochronology of titanite, Chem. Geol., 227, 37–52, 2006.
Sylvester, P.: Matrix effects in laser ablation-ICP-MS, Mineralogic Association of Canada Short Course, Vancouver, BC, 67–78, 2008.
Sylvester, P. J.: Laser Ablation ICP-MS Developments and Trends for 2003,
Geostand. Geoanalytic. Res., 29, 41–52,
https://doi.org/10.1111/j.1751-908x.2005.tb00654.x, 2005.
Tannock, L., Herwegh, M., Berger, A., Liu, J., Lanari, P., and
Regenauer-Lieb, K.: Microstructural analyses of a giant quartz reef in south
China reveal episodic brittle-ductile fluid transfer, J. Struct. Geol.,
130, 103911, https://doi.org/10.1016/j.jsg.2019.103911, 2020a.
Tannock, L., Herwegh, M., Berger, A., Liu, J., and Regenauer-Lieb, K.: The
Effects of a Tectonic Stress Regime Change on Crustal-Scale Fluid Flow at
the Heyuan Geothermal Fault, South China, Tectonophys., 781,
228399, https://doi.org/10.1016/j.tecto.2020.228399, 2020b.
Tera, F. and Wasserburg, G. J.: U-Th-Pb systematics in three Apollo 14
basalts and the problem of initial Pb in lunar rocks, Earth Planet. Sci.
Lett., 14, 281–304, https://doi.org/10.1016/0012-821X(72)90128-8,
1972.
Villa, I. M.: Lead isotopic measurements in archeological objects, Archaeol.
Anthropol. Sci., 1, 149–153, https://doi.org/10.1007/s12520-009-0012-5, 2009.
Wehrens, P., Berger, A., Peters, M., Spillmann, T., and Herwegh, M.:
Deformation at the frictional-viscous transition: Evidence for cycles of
fluid-assisted embrittlement and ductile deformation in the granitoid crust,
Tectonophysics, 693, 66–84, https://doi.org/10.1016/j.tecto.2016.10.022, 2016.
Wehrens, P., Baumberger, R., Berger, A., and Herwegh, M.: How is strain
localized in a meta-granitoid, mid-crustal basement section? Spatial
distribution of deformation in the central Aar massif (Switzerland), J.
Struct. Geol., 94, 47–67, https://doi.org/10.1016/j.jsg.2016.11.004, 2017.
Weis, D., Kieffer, B., Maerschalk, C., Barling, J., De Jong, J., Williams,
G. A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J. S., Goolaerts,
A., Friedman, R. M., and Mahoney, J. B.: High-precision isotopic
characterization of USGS reference materials by TIMS and MC-ICP-MS,
Geochem. Geophys. Geosy., 7, Q08006, https://doi.org/10.1029/2006GC001283, 2006.
Williams, I. S.: U-Th-Pb geochronology by ion microprobe, Rev. Econ.
Geol., 7, 1–35, 1998.
Wyllie, P. J.: Crustal anatexis: An experimental review, Tectonophysics,
43, 41–71, https://doi.org/10.1016/0040-1951(77)90005-1, 1977.
Zanoni, D., Rebay, G., and Spalla, M. I.: Ocean floor and subduction record
in the Zermatt-Saas rodingites, Valtournanche, Western Alps, J. Metamorph.
Geol., 34, 941–961, https://doi.org/10.1111/jmg.12215, 2016.
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges...