Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-353-2022
https://doi.org/10.5194/gchron-4-353-2022
Research article
 | 
08 Jun 2022
Research article |  | 08 Jun 2022

In situ Lu–Hf geochronology of calcite

Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave

Related authors

A comparison between in situ monazite Lu–Hf and U–Pb geochronology
Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-29,https://doi.org/10.5194/gchron-2024-29, 2024
Preprint under review for GChron
Short summary
The quantification of downhole fractionation for laser ablation mass spectrometry
Jarred Cain Lloyd, Carl Spandler, Sarah E. Gilbert, and Derrick Hasterok
EGUsphere, https://doi.org/10.5194/egusphere-2024-2908,https://doi.org/10.5194/egusphere-2024-2908, 2024
Short summary
Insights into the tectonic evolution of the Svecofennian orogeny based on in situ Lu-Hf dating of garnet from Olkiluoto, SW Finland
Jon Engström, Kathryn Cutts, Stijn Glorie, Esa Heilimo, Ester M. Jolis, and Radoslaw M. Michallik
EGUsphere, https://doi.org/10.5194/egusphere-2024-2034,https://doi.org/10.5194/egusphere-2024-2034, 2024
Short summary
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024,https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024,https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary

Related subject area

SIMS, LA-ICP-MS
Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024,https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
On the viability of detrital biotite Rb–Sr geochronology
Kyle P. Larson, Brendan Dyck, Sudip Shrestha, Mark Button, and Yani Najman
Geochronology, 6, 303–312, https://doi.org/10.5194/gchron-6-303-2024,https://doi.org/10.5194/gchron-6-303-2024, 2024
Short summary
Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023,https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023,https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
In situ U–Pb dating of 4 billion-year-old carbonates in the martian meteorite Allan Hills 84001
Romain Tartèse and Ian C. Lyon
Geochronology, 4, 683–690, https://doi.org/10.5194/gchron-4-683-2022,https://doi.org/10.5194/gchron-4-683-2022, 2022
Short summary

Cited articles

Barfod, G. H., Krogstad, E. J., Frei, R., and Albarède, F.: Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite, Geochim. Cosmochim. Ac., 69, 1847–1859, https://doi.org/10.1016/j.gca.2004.09.014, 2005. 
Barker, S. L. L., Bennett, V. C., Cox, S. F., Norman, M. D., and Gagan, M. K.: Sm–Nd, Sr, C and O isotope systematics in hydrothermal calcite–fluorite veins: Implications for fluid–rock reaction and geochronology, Chem. Geol., 268, 58–66, https://doi.org/10.1016/j.chemgeo.2009.07.009, 2009. 
Basson, I., Lourens, P., Paetzold, H.-D., Thomas, S., Brazier, R., and Molabe, P.: Structural analysis and 3D modelling of major mineralizing structures at the Phalaborwa copper deposit, Ore Geol. Rev., 83, 30–42, 2017. 
Brugger, J., Liu, W., Etschmann, B., Mei, Y., Sherman, D. M., and Testemale, D.: A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?, Chem. Geol., 447, 219–253, https://doi.org/10.1016/j.chemgeo.2016.10.021, 2016. 
Cherniak, D. J.: An experimental study of strontium and lead diffusion in calcite, and implications for carbonate diagenesis and metamorphism, Geochim. Cosmochim. Ac., 61, 4173–4179, https://doi.org/10.1016/S0016-7037(97)00236-6, 1997. 
Download
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.