Articles | Volume 5, issue 2
https://doi.org/10.5194/gchron-5-433-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-433-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating
Benedikt Ritter
CORRESPONDING AUTHOR
Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
Richard Albert
CORRESPONDING AUTHOR
Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Germany
Institute of Geosciences, Goethe University Frankfurt, Frankfurt, Germany
Aleksandr Rakipov
Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Germany
Institute of Geosciences, Goethe University Frankfurt, Frankfurt, Germany
Frederik M. Van der Wateren
Philosophical Practice, Cas Oorthuyskade 23, 1087 DP Amsterdam, the Netherlands
Tibor J. Dunai
Institute of Geology & Mineralogy, University of Cologne, Cologne, Germany
Axel Gerdes
Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Germany
Institute of Geosciences, Goethe University Frankfurt, Frankfurt, Germany
Related authors
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Jesse B. Walters, Joshua M. Garber, Aratz Beranoaguirre, Leo J. Millonig, Axel Gerdes, Tobias Grützner, and Horst R. Marschall
Geochronology, 7, 309–333, https://doi.org/10.5194/gchron-7-309-2025, https://doi.org/10.5194/gchron-7-309-2025, 2025
Short summary
Short summary
Garnet U–Pb dating is useful for dating geologic events. However, contamination by U-rich minerals included in garnet is a risk. Inclusions are often spotted by high-U spikes or large errors in the age. We dated garnets in metamorphic rocks and calculated ages 10–15 Myr older than expected, reflecting contamination by the mineral zircon. We provide recommendations for identifying contamination and suggest that the bulk dating of zircon inclusions in garnet may also provide valuable information.
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Cited articles
Allen, J.: Richards K. (ed.) 1987. River Channels, Environment and Process, vi 393 pp. Oxford, New York: Basil Blackwell, Price 39.50 (hard covers), ISBN 0 631 14577 X, Geological Magazine, 126, 313–314, https://doi.org/10.1017/S0016756800022536, 1989.
Alonso-Zarza, A. M.: Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record, Earth-Sci. Rev., 60, 261–298, 2003.
Alonso-Zarza, A. M. and Wright, V.: Calcretes, Developments in Sedimentology, 61, 225–267, 2010.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Bierman, P. R. and Caffee, M.: Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa, Am. J. Sci., 301, 326–358, 2001.
Bonnet, S. and Crave, A.: Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31, 123–126, 2003.
Branca, M., Masi, U., and Voltaggio, M.: An unsuccessful attempt at dating of soil calcretes from the Doukkali area (western Morocco) and environmental implications, Geochemistry, 65, 347–356, 2005.
Butt, C., Horwitz, R., and Mann, A.: Uranium occurences in calcrete and associated sediments in Western Australia, Commonwealth Scientific and Industrial Research Organization, Report Number CSIRO-FP–16, 1977.
Candy, I. and Black, S.: The timing of Quaternary calcrete development in semi-arid southeast Spain: investigating the role of climate on calcrete genesis, Sediment. Geol., 218, 6–15, 2009.
Candy, I., Black, S., and Sellwood, B. W.: Quantifying time scales of pedogenic calcrete formation using U-series disequilibria, Sediment. Geol., 170, 177–187, https://doi.org/10.1016/j.sedgeo.2004.07.003, 2004.
Cooper, F. J., Adams, B., Blundy, J., Farley, K., McKeon, R., and Ruggiero, A.: Aridity-induced Miocene canyon incision in the Central Andes, Geology, 44, 675–678, 2016.
Dupont, L. M.: Late Pliocene vegetation and climate in Namibia (southern Africa) derived from palynology of ODP site 1082, Geochem. Geophys. Geosyst., 7, Q05007, https://doi.org/10.1029/2005GC001208, 2006.
Dupont, L. M., Donner, B., Vidal, L., Pérez, E. M., and Wefer, G.: Linking desert evolution and coastal upwelling: Pliocene climate change in Namibia, Geology, 33, 461–464, 2005.
Dupont, L. M., Rommerskirchen, F., Mollenhauer, G., and Schefuß, E.: Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants, Earth Planet. Sc. Lett., 375, 408–417, 2013.
Etourneau, J., Martinez, P., Blanz, T., and Schneider, R.: Pliocene–Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region, Geology, 37, 871–874, 2009.
Geological Survey of Namibia: Geological map 2314 Kuiseb 1:250 000 ESRI Shapefile, Geological Survey of Namibia, Windhoek, Geological Series, Geological Survey of Namibia, 2016.
Gerdes, A. and Zeh, A.: Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany, Earth Planet. Sc. Lett., 249, 47–61, 2006.
Gerdes, A. and Zeh, A.: Zircon formation versus zircon alteration – new insights from combined U-Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt, Chem. Geol., 261, 230–243, 2009.
Geyh, M. A. and Eitel, B.: Radiometric dating of young and old calcrete, Radiocarbon, 40, 795–802, 1997.
Goudie, A.: Duricrusts in tropical and subtropical landscapes, Duricrusts in Tropical and Subtropical Landscapes, ISBN-10 0198232128, ISBN-13 978-0198232124, 1973.
Goudie, A.: Calcrete, Chemical Sediments and Geomorphology: precipitates and residua in the near-surface environment, 1983.
Goudie, A.: Organic agency in calcrete development, J. Arid Environ., 32, 103–110, 1996.
Goudie, A.: Duricrusts and landforms, in: Geomorphology and soils, Routledge, 37–57, 2020.
Goudie, A. and Viles, H.: Landscapes and landforms of Namibia, Springer, ISBN 109402400311, ISBN 13978-9402400311, 2014.
Goudie, A., Viles, H., Goudie, A., and Viles, H.: Calcretes: The Kamberg Calcrete Formation and the Karpencliff Conglomerate, Landscapes and Landforms of Namibia, 111–114, 2015.
Hansen, J., Sato, M., Russell, G., and Kharecha, P.: Climate sensitivity, sea level and atmospheric carbon dioxide, Philosophical Transactions of the Royal Society A: Mathematical, Phys. Eng. Sci., 371, 20120294, https://doi.org/10.1098/rsta.2012.0294, 2013.
Herman, F. and Champagnac, J. D.: Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change, Terra Nova, 28, 2–10, 2016.
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., and Ehlers, T. A.: Worldwide acceleration of mountain erosion under a cooling climate, Nature, 504, 423–426, 2013.
Hoetzel, S., Dupont, L. M., and Wefer, G.: Miocene–Pliocene vegetation change in south-western Africa (ODP Site 1081, offshore Namibia), Palaeogeography, Palaeoclimatology, Palaeoecology, 423, 102–108, 2015.
Hoetzel, S., Dupont, L. M., Marret, F., Jung, G., and Wefer, G.: Steps in the intensification of Benguela upwelling over the Walvis Ridge during Miocene and Pliocene, Int. J. Earth Sci., 106, 171–183, 2017.
Horstwood, M. S., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., and Vermeesch, P.: Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology–Uncertainty propagation, age interpretation and data reporting, Geostand. Geoanal. Res., 40, 311–332, 2016.
Houben, G. J., Kaufhold, S., Miller, R. M., Lohe, C., Hinderer, M., Noll, M., Hornung, J., Joseph, R., Gerdes, A., and Sitnikova, M.: Stacked megafans of the Kalahari Basin as archives of paleogeography, river capture, and Cenozoic paleoclimate of southwestern Africa, J. Sediment. Res., 90, 980–1010, 2020.
Jacobson, P. J., Jacobson, K. M., and Seely, M. K.: Ephemeral rivers and their catchments: Sustaining people and developement in Namibia, Desert Research Foundation of Namibia, Windhoek, 160 pp., 1995.
Kelly, M., Black, S., and Rowan, J.: A calcrete-based chronology for landform evolution in the Sorbas basin, southeast Spain, Quat. Sci. Rev., 19, 995–1010, 2000.
King, L.: The geomorphology of the Eastern and Southern districs of Southern Rhodesia, S. Afr. J. Geol., 54, 33–64, 1951.
King, L. C.: Pediplanation and isostasy: an example from South Africa, Quart. J. Geol. Soc.,, 111, 353–359, 1955.
Korn, H. and Martin, H.: The Pleistocene in South West Africa, Proceedings of the 3rd Pan-African Congress on Prehistory, 14–22, 1957.
Lancaster, N.: Paleoenvironments in the Tsondab valley, Central Namib desert, in: Palaeoecology of Africa and of the Surrounding Islands and Antarctica, edited by: Coetzee, J. A. and van Zinderen Bakker, E. M., Balkema, Cape Town, 411–419, 1984.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Ludwig, K. R.: User's Manual for Isoplot 3.75, Berkeley GeochronologicalCenter Special Publication No. 5., 2012.
Mack, G. H. and James, W.: Paleoclimate and the global distribution of paleosols, J. Geol., 102, 360–366, 1994.
Maher, K., Wooden, J., Paces, J., and Miller, D.: 230Th-U dating of surficial deposits using the ion microprobe (SHRIMP-RG): A microstratigraphic perspective, Quat. Int., 166, 15–28, 2007.
Mann, A. and Horwitz, R.: Groundwater calcrete deposits in Australia some observations from Western Australia, J. Geol. Soc. Austr., 26, 293–303, 1979.
Marlow, J. R., Lange, C. B., Wefer, G., and Rosell-Melé, A.: Upwelling intensification as part of the Pliocene-Pleistocene climate transition, Science, 290, 2288–2291, 2000.
McBride, E. F.: Quartz cement in sandstones: a review, Earth-Sci. Rev., 26, 69–112, 1989.
Miller, R.: The Geology of Namibia, Ministry of Mines and Energy – Geological Survey Namibia, 3, 25–21, 2008.
Miller, R. M., Pickford, M., and Senut, B.: The geology, palaeontology and evolution of the Etosha Pan, Namibia: Implications for terminal Kalahari deposition, S. Afr. J. Geol., 113, 307–334, 2010.
Miller, R. M., Krapf, C., Hoey, T., Fitchett, J., Nguno, A.-K., Muyambas, R., Ndeutepo, A., Medialdea, A., Whitehead, A., and Stengel, I.: A sedimentological record of fluvial-aeolian interactions and climate variability in the hyperarid northern Namib Desert, Namibia, S. Afr. J. Geol., 124, 575–610, 2021.
Milnes, A. and Thiry, M.: Silcretes, in: Developments in earth surface processes, Elsevier, 349–377, 1992.
Milnes, A., Wright, M., and Thiry, M.: Silica accumulations in saprolites and soils in South Australia, Occurrence, characteristics, and genesis of carbonate, gypsum, and silica accumulations in soils, Soil Sci. Soc. Am., 26, 121–149, 1991.
Molnar, P.: Climate change, flooding in arid environments, and erosion rates, Geology, 29, 1071–1074, 2001.
Nash, D. J. and Shaw, P. A.: Silica and carbonate relationships in silcrete-calcrete intergrade duricrusts from the Kalahari of Botswana and Namibia, J. Afr. Earth Sci., 27, 11–25, 1998.
Nash, D. J. and Smith, R. F.: Multiple calcrete profiles in the Tabernas Basin, southeast Spain: their origins and geomorphic implications, Earth Surf. Proc. Land., 23, 1009–1029, 1998.
Netterberg, F.: The interpretation of some basic calcrete types, S. Afr. Archaeol. Bull., 24, 117–122, 1969.
Neymark, L.: Potential effects of alpha-recoil on uranium-series dating of calcrete, Chem. Geol., 282, 98–112, 2011.
Neymark, L.: Uranium–Lead Dating, Opal, edited by: Rink, W., Thompson, J., Encyclopedia of Scientific Dating Methods, Springer, Dordrecht, https://doi.org/10.1007/978-94-007-6326-5_263-1, 2014.
Ollier, C.: Outline geological and geomorphic history of the central Namib Desert, Madoqua, 1977, 207–212, 1977.
Oster, J. L., Kitajima, K., Valley, J. W., Rogers, B., and Maher, K.: An evaluation of paired δ18O and (234U 238U) in opal as a tool for paleoclimate reconstruction in semi-arid environments, Chem. Geol., 449, 236–252, 2017.
Partridge, T. and Maud, R.: Geomorphic evolution of southern Africa since the Mesozoic, S. Afr. J. Geol., 90, 179–208, 1987.
Pickford, M. and Senut, B.: Geology and Palaeobiology of the Central and Southern Namib Desert, Southwestern Africa: Geology and History of Study, Geological Survey, 1–155, 2000.
Pickford, M., Senut, B., and Dauphin, Y.: Biostratigraphyof the Tsondab sandstone (Namibia) based on gigantic avian eggshells, Geobios, 28, 85–98, 1995.
Pickford, M., Senut, B., Gommery, D., Andrews, P., and Banham, P.: Sexual dimorphism in Morotopithecus bishopi, an early Middle Miocene hominoid from Uganda, Late Cenozoic environments and hominid evolution: a tribute to Bill Bishop, 27–38, 1999.
Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U-Pb dating of carbonates, Rev. Geophys., 47, RG3001, https://doi.org/10.1029/2007RG000246, 2009.
Repka, J. L., Anderson, R. S., and Finkel, R. C.: Cosmogenic dating of fluvial terraces, Fremont River, Utah, Earth Planet. Sc. Lett., 152, 59–73, https://doi.org/10.1016/S0012-821X(97)00149-0, 1997.
Retallack, G. J.: The environmental factor approach to the interpretation of paleosols, Factors of soil formation: A fiftieth anniversary retrospective, Soil Science Society of America Special Publications, 33, 31–64, 1994.
Ritter, B., Vogt, A., and Dunai, T. J.: Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis, Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, 2021.
Rosell-Melé, A., Martínez-Garcia, A., and McClymont, E. L.: Persistent warmth across the Benguela upwelling system during the Pliocene epoch, Earth Planet. Sc. Lett., 386, 10–20, 2014.
Ruggieri, E., Herbert, T., Lawrence, K. T., and Lawrence, C. E.: Change point method for detecting regime shifts in paleoclimatic time series: application to δ18O time series of the Plio-Pleistocene, Paleoceanography, 24, 2009.
Rutter, E.: Pressure solution in nature, theory and experiment, J. Geol. Soc., 140, 725–740, 1983.
Scardia, G., Parenti, F., Miggins, D. P., Gerdes, A., Araujo, A. G., and Neves, W. A.: Chronologic constraints on hominin dispersal outside Africa since 2.48 Ma from the Zarqa Valley, Jordan, Quat. Sci. Rev., 219, 1–19, 2019.
Senut, B.: Fossil ratite eggshells: a useful tool for Cainozoic biostratigraphy in Namibia, Communications of the geological Survey of Namibia, 12, 367–373, 2000.
Sorby, H. C.: The Bakerian Lecture: On the Direct Correlation of Mechanical and Chemical Forces, P. R. Soc. London, 12, 538–550, 1863.
Stacey, J. T. and Kramers, J.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sc. Lett., 26, 207–221, 1975.
Stokes, M., Nash, D. J., and Harvey, A. M.: Calcrete “fossilisation” of alluvial fans in SE Spain: The roles of groundwater, pedogenic processes and fan dynamics in calcrete development, Geomorphology, 85, 63–84, 2007.
Stollhofen, H., Stanistreet, I. G., von Hagke, C., and Nguno, A.: Pliocene–Pleistocene climate change, sea level and uplift history recorded by the Horingbaai fan-delta, NW Namibia, Sediment. Geol., 309, 15–32, 2014.
Stone, A.: Age and dynamics of the Namib Sand Sea: A review of chronological evidence and possible landscape development models, J. Afr. Earth Sci., 82, 70–87, 2013.
Summerfield, M.: Silcrete as a palaeoclimatic indicator: evidence from southern Africa, Palaeogeogr. Palaeocl., 41, 65–79, 1983a.
Summerfield, M. A.: Petrography and diagenesis of silcrete from the Kalahari Basin and Cape coastal zone, Southern Africa, J. Sediment. Res., 53, 895–909, 1983b.
Taylor, G. and Eggleton, R.: Silcrete: an Australian perspective, Australian Journal of Earth Sciences, 64, 987–1016, 2017.
Tera, F. and Wasserburg, G.: U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions, Earth Planet. Sc. Lett., 17, 36–51, 1972.
Van der Wateren, F. M. and Dunai, T. J.: Late Neogene passive margin denudation history – cosmogenic isotope measurements from the central Namib desert, Global Planet. Change, 30, 271–307, https://doi.org/10.1016/s0921-8181(01)00104-7, 2001.
Vermeesch, P., Fenton, C., Kober, F., Wiggs, G., Bristow, C. S., and Xu, S.: Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides, Nat. Geosci., 3, 862–865, 2010.
Vermeesch, P., Balco, G., Blard, P. H., Dunai, T. J., Kober, F., Niedermann, S., Shuster, D. L., Strasky, S., Stuart, F. M., Wieler, R., and Zimmermann, L.: Interlaboratory comparison of cosmogenic 21Ne in quartz, Quat. Geochronol., 26, 20–28, https://doi.org/10.1016/j.quageo.2012.11.009, 2015.
Ward, J. and Corbett, I.: Towards an age for the Namib, Namib Ecol., 25, 17–26, 1990.
Ward, J. D.: The Cenozoic succession in the Kuiseb valley, central Namib desert, Geological Survey of Namibia Memoir, Windhoek, 124 p., 1987.
Ward, J. D., Seely, M. K., and Lancaster, N.: On the antiquity of the Namib, S. Afr. J. Sci., 79, 175–183, 1983.
Weissel, J. K. and Seidl, M. A.: Inland propagation of erosional escarpments and river profile evolution across the southeast Australian passive continental margin, Geophysical Monograph-American Geophysical Union, 107, 189–206, 1998.
Wendt, I. and Carl, C.: U Pb dating of discordant 0.1 Ma old secondary U minerals, Earth Planet. Sc. Lett., 73, 278–284, 1985.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., and Florindo, F.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, 2020.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104, 17661–17674, 1999.
Wilson, M. J.: Dissolution and formation of quartz in soil environments: A review, Soil Sci. Annu., 71, 3–14, 2020.
Yaalon, D. H. and Ward, J. D.: Observations on calcrete and recent calcic horizons in relation to landforms, central Namib desert, in: Palaeoecology of Africa and of the Surrounding Islands and Antarctica, edited by: Coetzee, J. A. and van Zinderen Bakker, E. M., Balkema, Cape Town, 183–186, 1982.
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of...