Articles | Volume 7, issue 2
https://doi.org/10.5194/gchron-7-139-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-139-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
U–Pb dating on calcite paleosol nodules: first absolute age constraints on the Miocene continental succession of the Paris Basin
Geology, School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
Rémi Rateau
Geology, School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
Kerstin Drost
Geology, School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
Cyril Gagnaison
Département Géosciences, Unité Bassins-Réservoirs-Ressources (B2R-U2R 7511), Institut Polytechnique UniLaSalle Beauvais, UniLaSalle-Université de Picardie, Beauvais, 30313, France
Bastien Mennecart
Naturhistorisches Museum Basel, Basel, 4001, Switzerland
Renaud Toullec
Département Géosciences, Unité Bassins-Réservoirs-Ressources (B2R-U2R 7511), Institut Polytechnique UniLaSalle Beauvais, UniLaSalle-Université de Picardie, Beauvais, 30313, France
Koen Torremans
School of Earth Sciences, University College Dublin, Belfield, Dublin 4, Ireland
David Chew
Geology, School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
Related authors
No articles found.
Joaquín Bastías-Silva, David Chew, Fernando Poblete, Paula Castillo, William Guenthner, Anne Grunow, Ian W. D. Dalziel, Airton N. C. Dias, Cristóbal Ramírez de Arellano, and Rodrigo Fernandez
Solid Earth, 15, 555–566, https://doi.org/10.5194/se-15-555-2024, https://doi.org/10.5194/se-15-555-2024, 2024
Short summary
Short summary
The Ellsworth Mountains, situated in a remote area of Antarctica, span 350 km in length and 50 km in width, encompassing Antarctica's tallest peak. Due to their isolated location, understanding their formation has been challenging and remains incomplete. Our analysis of zircon minerals from the Ellsworth Mountains indicates that the mountain chain formed between 180 and 100 million years ago, contributing to our understanding of their formation.
Nick M. W. Roberts, Kerstin Drost, Matthew S. A. Horstwood, Daniel J. Condon, David Chew, Henrik Drake, Antoni E. Milodowski, Noah M. McLean, Andrew J. Smye, Richard J. Walker, Richard Haslam, Keith Hodson, Jonathan Imber, Nicolas Beaudoin, and Jack K. Lee
Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, https://doi.org/10.5194/gchron-2-33-2020, 2020
Short summary
Short summary
Here we review current progress in LA-ICP-MS U–Pb carbonate geochronology and present strategies for acquisition and interpretation of carbonate U–Pb dates. We cover topics from imaging techniques and U and Pb incorporation into calcite to potential limitations of the method – disequilibrium and isotope mobility. We demonstrate the incorporation of imaging and compositional data to help refine and interpret U–Pb dates. We expect this paper to become a
go-toreference paper for years to come.
Koen Torremans, Philippe Muchez, and Manuel Sintubin
Solid Earth, 9, 1011–1033, https://doi.org/10.5194/se-9-1011-2018, https://doi.org/10.5194/se-9-1011-2018, 2018
Short summary
Short summary
A major mountain building event, called the Lufilian orogeny, deformed the rocks that host copper and cobalt ore in the world-class Central African Copperbelt. Key field evidence in this study shows that a single pulse of deformation caused a set of complexly interacting folds and faults. The specific composition and layering in the rock package has a major influence on how the rock sequence was folded.
Related subject area
SIMS, LA-ICP-MS
A comparison between in situ monazite Lu–Hf and U–Pb geochronology
Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
On the viability of detrital biotite Rb–Sr geochronology
Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating
Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS
In situ U–Pb dating of 4 billion-year-old carbonates in the martian meteorite Allan Hills 84001
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
In situ Lu–Hf geochronology of calcite
Calcite U–Pb dating of altered ancient oceanic crust in the North Pamir, Central Asia
Towards in situ U–Pb dating of dolomite
Uranium incorporation in fluorite and exploration of U–Pb dating
U − Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation
Tools for uranium characterization in carbonate samples: case studies of natural U–Pb geochronology reference materials
Direct U–Pb dating of carbonates from micron-scale femtosecond laser ablation inductively coupled plasma mass spectrometry images using robust regression
Technical note: LA–ICP-MS U–Pb dating of unetched and etched apatites
The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U − Pb geochronology of calcite
Expanding the limits of laser-ablation U–Pb calcite geochronology
Resolving multiple geological events using in situ Rb–Sr geochronology: implications for metallogenesis at Tropicana, Western Australia
LA-ICPMS U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona)
Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations
Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-29, https://doi.org/10.5194/gchron-2024-29, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
In this contribution we demonstrate in situ monazite Lu–Hf dating and compare results with U–Th–Pb dating. We present data from monazite reference materials and complex samples to demonstrate the viability of this method. We show that in situ Lu–Hf dating of monazite can resolve multiple age populations and may find use where the U–Th–Pb system is compromised by Pb-loss, non-radiogenic Pb contamination, excess 206 Pb, low U contents, or a combination of these factors.
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.
Kyle P. Larson, Brendan Dyck, Sudip Shrestha, Mark Button, and Yani Najman
Geochronology, 6, 303–312, https://doi.org/10.5194/gchron-6-303-2024, https://doi.org/10.5194/gchron-6-303-2024, 2024
Short summary
Short summary
This study demonstrates the utility of laser-ablation-based detrital biotite Rb–Sr geochronology to investigate the rates of exhumation and burial in active mountain-building systems. It is further demonstrated that additional chemical data collected during spot analyses can be used to determine temperatures recorded in biotite. The method used has advantages over traditional methods in speed, ease of acquisition, and the ability to collect additional chemical information.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.
Romain Tartèse and Ian C. Lyon
Geochronology, 4, 683–690, https://doi.org/10.5194/gchron-4-683-2022, https://doi.org/10.5194/gchron-4-683-2022, 2022
Short summary
Short summary
Absolute chronological constraints are crucial in Earth and planetary sciences. In recent years, U–Pb dating of carbonates has provided information on the timing of, for example, diagenesis, faulting, or hydrothermalism. These studies have targeted relatively young terrestrial carbonates up to 300 million years old. By dating 3.9 billion-year-old martian carbonates in situ using the U–Pb chronometer, we show that this system is robust in ancient samples that have had a relatively simple history.
Darwinaji Subarkah, Angus L. Nixon, Monica Jimenez, Alan S. Collins, Morgan L. Blades, Juraj Farkaš, Sarah E. Gilbert, Simon Holford, and Amber Jarrett
Geochronology, 4, 577–600, https://doi.org/10.5194/gchron-4-577-2022, https://doi.org/10.5194/gchron-4-577-2022, 2022
Short summary
Short summary
Advancements in technology have introduced new techniques to more quickly and cheaply date rocks with little sample preparation. A unique use of this method is to date shales and constrain when these rocks were first deposited. This approach can also time when such sequences were subsequently affected by heat or fluids after they were deposited. This is useful, as the formation of precious-metal-bearing systems or petroleum source rocks is commonly associated with such processes.
Daniil V. Popov
Geochronology, 4, 399–407, https://doi.org/10.5194/gchron-4-399-2022, https://doi.org/10.5194/gchron-4-399-2022, 2022
Short summary
Short summary
This work provides equations allowing the use of minerals with variable concentrations of parent and daughter isotopes as primary standards to correct for elemental fractionation during the analysis by laser ablation inductively coupled plasma mass spectrometry.
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
Bar Elisha, Perach Nuriel, Andrew Kylander-Clark, and Ram Weinberger
Geochronology, 3, 337–349, https://doi.org/10.5194/gchron-3-337-2021, https://doi.org/10.5194/gchron-3-337-2021, 2021
Short summary
Short summary
Distinguishing between different dolomitization processes is challenging yet critical for resolving some of the issues and ambiguities related to the formation of dolomitic rocks. Accurate U–Pb absolute dating of dolomite by LA-ICP-MS could contribute to a better understanding of the dolomitization process by placing syngenetic, early diagenetic, and/or epigenetic events in the proper geological context.
Louise Lenoir, Thomas Blaise, Andréa Somogyi, Benjamin Brigaud, Jocelyn Barbarand, Claire Boukari, Julius Nouet, Aurore Brézard-Oudot, and Maurice Pagel
Geochronology, 3, 199–227, https://doi.org/10.5194/gchron-3-199-2021, https://doi.org/10.5194/gchron-3-199-2021, 2021
Short summary
Short summary
To explore the U–Pb geochronometer in fluorite, the spatial distribution of uranium and other substituted elements in natural crystals is investigated using induced fission-track and synchrotron radiation X-ray fluorescence mapping. LA-ICP-MS U–Pb dating on four crystals, which preserve micrometer-scale variations in U concentrations, yields identical ages within analytical uncertainty. Our results show that fluorite U–Pb geochronology has potential for dating distinct crystal growth stages.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
E. Troy Rasbury, Theodore M. Present, Paul Northrup, Ryan V. Tappero, Antonio Lanzirotti, Jennifer M. Cole, Kathleen M. Wooton, and Kevin Hatton
Geochronology, 3, 103–122, https://doi.org/10.5194/gchron-3-103-2021, https://doi.org/10.5194/gchron-3-103-2021, 2021
Short summary
Short summary
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to demonstrate techniques improving the understanding of U incorporation in carbonates for U/Pb dating. With the rapidly accelerating application of laser ablation analyses, there is a great need for well-characterized reference materials that can serve multiple functions. Strontium (Sr) isotope analyses and U XANES demonstrate that these samples could be used as reference materials.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Christian Paroissin, Pierre-Alexandre Grignard, Geoffrey Motte, Olivier Chailan, and Jean-Pierre Girard
Geochronology, 3, 67–87, https://doi.org/10.5194/gchron-3-67-2021, https://doi.org/10.5194/gchron-3-67-2021, 2021
Short summary
Short summary
A new methodology for the micron-scale uranium–lead dating of carbonate minerals is proposed. It is based on the extraction of ages directly from pixel images (< 1 mm2) obtained by laser ablation coupled to a mass spectrometer. The ages are calculated with a robust linear regression through the pixel values. This methodology is compared to existing approaches.
Fanis Abdullin, Luigi A. Solari, Jesús Solé, and Carlos Ortega-Obregón
Geochronology, 3, 59–65, https://doi.org/10.5194/gchron-3-59-2021, https://doi.org/10.5194/gchron-3-59-2021, 2021
Short summary
Short summary
Unetched and etched apatite grains from five samples were dated by U–Pb method using laser ablation inductively coupled plasma mass spectrometry. Our experiment indicates that etching needed for apatite fission track dating has insignificant effects on obtaining accurate U–Pb ages; thus, the laser ablation-based technique may be used for apatite fission track and U–Pb double dating.
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Andrew R. C. Kylander-Clark
Geochronology, 2, 343–354, https://doi.org/10.5194/gchron-2-343-2020, https://doi.org/10.5194/gchron-2-343-2020, 2020
Short summary
Short summary
This paper serves as a guide to those interested in dating calcite by laser ablation. Within it are theoretical and practical limits of U and Pb concentrations (and U / Pb ratios), which would allow viable extraction of ages from calcite (and other minerals with moderate U / Pb ratios), and which type of instrumentation would be appropriate for any given sample. The method described uses a new detector array, allowing for lower detection limits and thereby expanding the range of viable samples.
Hugo K. H. Olierook, Kai Rankenburg, Stanislav Ulrich, Christopher L. Kirkland, Noreen J. Evans, Stephen Brown, Brent I. A. McInnes, Alexander Prent, Jack Gillespie, Bradley McDonald, and Miles Darragh
Geochronology, 2, 283–303, https://doi.org/10.5194/gchron-2-283-2020, https://doi.org/10.5194/gchron-2-283-2020, 2020
Short summary
Short summary
Using a relatively new dating technique, in situ Rb–Sr geochronology, we constrain the ages of two generations of mineral assemblages from the Tropicana Zone, Western Australia. The first, dated at ca. 2535 Ma, is associated with exhumation of an Archean craton margin and gold mineralization. The second, dated at ca. 1210 Ma, has not been previously documented in the Tropicana Zone. It is probably associated with Stage II of the Albany–Fraser Orogeny and additional gold mineralization.
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
Marcel Guillong, Jörn-Frederik Wotzlaw, Nathan Looser, and Oscar Laurent
Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, https://doi.org/10.5194/gchron-2-155-2020, 2020
Short summary
Short summary
The dating of carbonates by laser ablation inductively coupled plasma mass spectrometry is improved by an additional, newly characterised reference material and adapted data evaluation protocols: the shape (diameter to depth) of the ablation crater has to be as similar as possible in the reference material used and the unknown samples to avoid an offset. Different carbonates have different ablation rates per laser pulse. With robust uncertainty propagation, precision can be as good as 2–3 %.
Nick M. W. Roberts, Kerstin Drost, Matthew S. A. Horstwood, Daniel J. Condon, David Chew, Henrik Drake, Antoni E. Milodowski, Noah M. McLean, Andrew J. Smye, Richard J. Walker, Richard Haslam, Keith Hodson, Jonathan Imber, Nicolas Beaudoin, and Jack K. Lee
Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, https://doi.org/10.5194/gchron-2-33-2020, 2020
Short summary
Short summary
Here we review current progress in LA-ICP-MS U–Pb carbonate geochronology and present strategies for acquisition and interpretation of carbonate U–Pb dates. We cover topics from imaging techniques and U and Pb incorporation into calcite to potential limitations of the method – disequilibrium and isotope mobility. We demonstrate the incorporation of imaging and compositional data to help refine and interpret U–Pb dates. We expect this paper to become a
go-toreference paper for years to come.
Cited articles
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 47, 131–181, https://doi.org/10.1127/0078-0421/2014/0042, 2014.
Aguilar, J. P., Antoine, P. O., Crochet, J. Y., López Martínez, N., Métais, G., Michaux, J., and Welcomme, J. L.: Les mammifères du Miocène inférieur de Beaulieu (Bouchesdu-Rhône, France), comparaison avec Wintershof-West et le problème de la limite MN3/MN4, Coloquios de paleontología, Vol. E (1), 1–24, ISSN 1132-1660, https://hdl.handle.net/20.500.14352/50445 (last access 12 July 24), 2003.
Aguirre Palafox, L. E., Möller, A., McLean, N. M., Ludvigson, G. A., Colombi, C. E., and Montañez, I. P.: U–Pb Geochronology of Paleosol Carbonate Cements by LA-ICP-MS: A Proof of Concept and Strategy for Dating the Terrestrial Record, Geochem. Geophy. Geosy., 25, e2024GC011488, https://doi.org/10.1029/2024GC011488, 2024.
Agustí, J., Cabrera, L., Garcés, M., Krijgsman, W., Oms, O., and Parés. J. M.: A Calibrated Mammal Scale for the Neogene of Western Europe, State of the Art, Earth-Sci. Rev., 52, 247–60, https://doi.org/10.1016/S0012-8252(00)00025-8, 2001.
Alçiçek, H.: Stratigraphic Correlation of the Neogene Basins in Southwestern Anatolia: Regional Palaeogeographical, Palaeoclimatic and Tectonic Implications, Palaeogeogr. Palaeocl., 291, 297–318, https://doi.org/10.1016/j.palaeo.2010.03.002, 2010.
Alonso-Zarza, A. M.: Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record, Earth-Sci. Rev., 60, 261-298, https://doi.org/10.1016/S0012-8252(02)00106-X, 2003.
Bain, R. J. and Foos, A. M.: Carbonate microfabrics related to subaerial exposure and paleosol formation, in: Carbonate Microfabrics: Frontiers in Sedimentology, edited by: Rezak, R. and Lavoie, D. L., Springer-Verlag, 17–27, https://doi.org/10.1007/978-1-4684-9421-1_2, 1993.
Barnaby, R. J. and Rimstidt, J. D.: Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites, GSA Bulletin, 101, 795–804, 1989.
Becker, M. L., Rasbury, E. T., Hanson, G. N., and Meyers, W. J.: Refinement in the age of the Carboniferous-Permian boundary based on U–Pb dating of biostratigraphically constrained syn-sedimentary carbonates in the Appalachian region of North America, Newsletter on Carboniferous Stratigraphy, 19, 18–20, 2001.
Boggs, S. and Krinsley, D.: Application of cathodoluminescence imaging to the study of sedimentary rocks, Cambridge University Press, ISBN 9781139460330, 2006.
Chew, D., Drost, K., Marsh, J. H., and Petrus, J. A.: LA-ICP-MS imaging in the geosciences and its applications to geochronology, Chem. Geol., 559, 119917, https://doi.org/10.1016/j.chemgeo.2020.119917, 2021.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.: The ICS International Chronostratigraphic Chart, Episodes 36, 199–204, 2013.
Daxner-Höck, G., Badamgarav, D., Barsbold, R., Bayarmaa, B., Erbajeva, M., Göhlich, U. B., Harzhauser, M., Höck, E., Höck, V., Ichinnorov, N., Khand, Y., López-Guerrero, P., Maridet, O., Neubauer, T., Oliver, A., Piller, W., Tsogtbaatar, K. and Ziegler, R.: Oligocene stratigraphy across the Eocene and Miocene boundaries in the Valley of Lakes (Mongolia), Palaeobio. Palaeoenv., 97, 111–218, 2017.
Drake, H., Mathurin, F. A., Zack, T., Schäfer, T., Roberts, N. M. W., Whitehouse, M., Karlsson, A., Broman, C., and Åström, M. E.: Incorporation of Metals into Calcite in a Deep Anoxic Granite Aquifer, Environ. Sci. Technol., 52, 493–502, https://doi.org/10.1021/acs.est.7b05258, 2018.
Drost, K., Chew, D., Petrus, J. A., Scholze, F., Woodhead, J. D., Schneider, J. W., and Harper, D. A. T.: An image mapping approach to U–Pb LA-ICP-MS carbonate dating and applications to direct dating of carbonate sedimentation, Geochem. Geophy. Geosy., 19, 4631–4648, https://doi.org/10.1029/2018gc007850, 2018.
Engesser, B. and Mödden, C.: A new version of the biozonation of the Lower Freshwater Molasse (Oligocene and Agenian) of Switzerland and Savoy on the basis of fossil mammals, in: BiochroM'97 Montpellier, Ecole pratique des hautes études, edited by: Aguilar, J.-P., Legendre, S., and Michaux, J., Institut de Montpellier, Montpellier, France, 475–499, ISSN: 0335-8178, 1997.
Esteban, M. and Klappa, C. F.: Subaerial exposure environment: Chapter 1: Part 2, in: Carbonate Depositional Environments, edited by: Scholle, P. A., Bebout, D. G., and Moore C. H., 23–54, https://doi.org/10.1306/M33429C1, 1983.
Ezquerro, L., Luzón, A., Simón, J. L., and Liesa, C. L.: A review of the European Neogene Mammal zones from integration of litho-, bio- and magnetostratigraphy in the Teruel Basin, Earth-Sci. Rev., 234, 104223, https://doi.org/10.1016/j.earscirev.2022.104223, 2022.
Fortelius, M., Eronen, J. T., Kaya, F., Tang, H., Raia, P., and Puolamäki, K.: Evolution of Neogene Mammals in Eurasia: Environmental forcing and biotic interactions, Annu. Rev. Earth Pl. Sc., 42, 579–604, https://doi.org/10.1146/annurev-earth-050212-124030, 2014.
Fournier, F., Montaggioni, L., and Borgomano, J.: Paleoenvironments and high-frequency cyclicity from Cenozoic South-East Asian shallow-water carbonates: a case study from the Oligo-Miocene buildups of Malampaya (Offshore Palawan, Philippines), Mar. Petrol. Geol., 21, 1–21, https://doi.org/10.1016/j.marpetgeo.2003.11.012, 2004.
Gagnaison, C.: Le Miocène du Nord-Ouest de la France (vallée de la Loire, Bretagne et Normandie) : Révision du contexte taphonomique des fossiles de vertébrés, proposition d'un découpage stratigraphique et clarification des variations paléoenvironnementales, Fossiles, 41, 3–30, 2020.
Gagnaison, C., Cabidoche, M., Riera, R., Dechamps, M., and Gagnaison, J. C.: The geological context of the Lower Orleanian continental sands from the Savigné-sur-Lathan/Noyant-sous-le-Lude basin (Anjou-Touraine, France), Bulletin d'Information des Géologue du Bassin de Paris, 57, 3–15, 2020.
Gagnaison, C., Mennecart, B., Bailleul, J., Barrier, P., Chenot, E., Toullec, R., Potel, S., Martin, H., Millet, A., and Memeteau, D. : Nouvelles données géologiques et biostratigraphiques du gisement paléontologique à vertébrés de Mauvières, à Marcilly-sur-Maulne (Miocène inférieur et moyen ; Indre-et-Loire, France), Geodiversitas, 45, 449–478, https://doi.org/10.5252/geodiversitas2023v45a16, 2023.
Galbraith, R. F., Roberts, R.G., Laslett, R. G., Yoshida, H., and Olley, J. M.: Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part 1, experimental design and statistical models, Archaeometry, 41, 339–364, https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Gates-Rector, S. and Blanton, T.: The Powder Diffraction File: A quality materials characterization database, Powder Diffr., 34, 352–360, https://doi.org/10.1017/S0885715619000812, 2019.
Getty, S. R., Asmerom, Y., Quinn, T. M., and Budd, A. F.: Accelerated Pleistocene coral extinctions in the Caribbean Basin shown by uranium-lead (U–Pb) dating, Geology, 29, 639–642, https://doi.org/10.1130/0091-7613(2001)029<0639:APCEIT>2.0.CO;2, 2001.
Ginsburg, L.: Les faunes de mammifères terrestres du Miocène moyen des Faluns du bassin de Savigné-sur-Lathan (France), Geodiversitas, 23, 381–394, 2001.
Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friedenberg, R., Garcia, J.-P., Gaulier, J.-M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O., and Grandjean, G.: Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints, Geodin. Acta, 13, 189–246, https://doi.org/10.1016/S0985-3111(00)00118-2, 2000.
Guillong, M., Wotzlaw, J.-F., Looser, N., and Laurent, O.: Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material, Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, 2020.
Guillong, M., Samankassou, E., Müller, I. A., Szymanowski, D., Looser, N., Tavazzani, L., Merino-Tomé, Ó., Bahamonde, J. R., Buret, Y., and Ovtcharova, M.: Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material, Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, 2024.
Haq, B. U., Hardenbol, J., and Vail, P. R.: Chronology of Fluctuating Sea Levels Since the Triassic, Science, 235, 1156–1167, https://doi.org/10.1126/science.235.4793.1156, 1987.
Hill, C. A., Polyak, V. J., Asmerom, Y., and P. Provencio, P.: Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U–Pb dating of lacustrine limestone, Tectonics, 35, 896–906, https://doi.org/10.1002/2016tc004166, 2016.
Hilgen, F. J., Lourens, L. J., Van Dam, J. A., Beu, A. G., Boyes, A. F., Cooper, R. A., Krijgsman, W., Ogg, J. G., Piller, W. E., and Wilson, D. S.: Chapter 29 – The Neogene Period, in: The Geologic Time Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Boston, https://doi.org/10.1016/b978-0-444-59425-9.00029-9, 2012.
Hoff, J. A., Jameson, J., and Hanson, G. N.: Application of Pb isotopes to the absolute timing of regional exposure events in carbonate rocks; an example from U-rich dolostones from the Wahoo Formation (Pennsylvanian), Prudhoe Bay, Alaska, J. Sediment. Res., 65, 225–233, https://doi.org/10.1306/D426807C-2B26-11D7-8648000102C1865D, 1995.
Kerr, R. A.: Huge impact tied to mass extinction, Science, 257, 878–880, 1992.
Kälin, D. and Kempf, O.: High-resolution stratigraphy from the continental record of the Middle Miocene Northern Alpine Foreland Basin of Switzerland, Neues Jahrb. Geol. P.-A., 254, 177–235, https://doi.org/10.1127/0077-7749/2009/0010, 2009.
Koufos, G. D., Kostopoulos, D. S., and Vlachou, T. D.: Neogene/Quaternary mammalian migrations in eastern Mediterranean, Belg. J. Zool., 135, 181–190, https://doc.rero.ch/record/13544/files/PAL_E383.pdf (last access: 1 July 2024), 2005.
Li, Q., Parrish, R. R., Horstwood, M. S. A., and McArthur, J. M.: U–Pb dating of cements in Mesozoic ammonites, Chem. Geol., 376, 76–83, https://doi.org/10.1016/j.chemgeo.2014.03.020, 2014.
Liivamägi, S., Środoń, J., Bojanowski, M. J., Stanek, J. J., and Roberts, N. M. W.: Precambrian paleosols on the Great Unconformity of the East European Craton: An 800 million year record of Baltica's climatic conditions, Precambrian Res., 363, 106327, https://doi.org/10.1016/j.precamres.2021.106327, 2021.
Luczaj, J. A. and Goldstein, R. H.: Diagenesis of the Lower Permian Krider Member, Southwest Kansas, U.S.A.: Fluid-Inclusion, U–Pb, and Fission-Track Evidence for Reflux Dolomitization During Latest Permian Time, J. Sediment. Res., 70, 762–773, https://doi.org/10.1306/2DC40936-0E47-11D7-8643000102C1865D, 2000.
Machel, H. G. and Burton, E. A.: Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis, in: Luminescence Microscopy and Spectroscopy – Qualitative and quantitative applications, edited by: Barker, C. E. and Kopp, O. C., Society for Sedimentary Geology, 37–57, https://doi.org/10.2110/scn.91.25.0037, 1991.
Mason, R. A.: Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K, Chem. Geol., 64, 209–224, https://doi.org/10.1016/0009-2541(87)90003-9, 1987.
Mein, P.: Report on activity RCMNS-Working groups (1971–1975), Bratislava, 78–81, 1975.
Mein, P.: European Miocene Mammal Biochronology, in: The Miocene Land Mammals of Europe, edited by: Rössner, G. E. and Heissig, K., Verlag Dr. Friedrich Pfeil, München, 25–38, ISBN 9783931516505, 1999.
Methner, K., Mulch, A., Fiebig, J., Wacker, U., Gerdes, A., Graham, S. A., and Chamberlain, C. P.: Rapid Middle Eocene temperature change in western North America, Earth Planet. Sc. Lett., 450, 132–139, https://doi.org/10.1016/j.epsl.2016.05.053, 2016.
Monchal, V., Drost, K., and Chew, D.: Precise U–Pb dating of incremental calcite slickenfiber growth: Evidence for far-field Eocene fold reactivation in Ireland, Geology, 51, 611–615, https://doi.org/10.1130/G50906.1, 2023.
Monchal, V., Rateau, R., Drost, K., Gagnaison, C., Mennecart, B., Toullec, R., Torremans, K., and Chew, D.: Supplementary Tables : U–Pb direct dating on calcite paleosol nodules: first absolute age constraints on the Miocene continental succession of the Paris Basin, Zenodo [code and data set], https://doi.org/10.5281/zenodo.14500416, 2024–2025.
Montano, D., Gasparrini, M., Gerdes, A., Della Porta, G., and Albert, R.: In-situ U–Pb dating of Ries Crater lacustrine carbonates (Miocene, South-West Germany): Implications for continental carbonate chronostratigraphy, Earth Planet. Sc. Lett., 568, 117011, https://doi.org/10.1016/j.epsl.2021.117011, 2021.
Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., Hacker, B. R., and Craddock, J. P.: The onset of the Dead Sea transform based on calcite age-strain analyses, Geology, 45, 587–590, https://doi.org/10.1130/G38903.1, 2017.
Nuriel, P., Wotzlaw, J.-F., Ovtcharova, M., Vaks, A., Stremtan, C., Šala, M., Roberts, N. M. W., and Kylander-Clark, A. R. C.: The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U − Pb geochronology of calcite, Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, 2021.
Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D.: Cathodoluminescence in Geosciences: An Introduction, in: Cathodoluminescence in Geosciences, edited by: Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D., Springer Berlin Heidelberg, Berlin, Heidelberg, 1–21, https://doi.org/10.1007/978-3-662-04086-7_1, 2000.
Parrish, R. R., Parrish, C. M., and Lasalle, S.: Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England, Journal of the Geological Society, 175, 425–442, https://doi.org/10.1144/jgs2017-107, 2018.
Perry, C. T. and Taylor, K. G.: Inhibition of dissolution within shallow water carbonate sediments: impacts of terrigenous sediment input on syn-depositional carbonate diagenesis, Sedimentology, 53, 495–513, https://doi.org/10.1111/j.1365-3091.2006.00777.x, 2006.
Poujol, M., Mercuzot, M., Lopez, M., Bourquin, S., Bruguier, O., Hallot, E., and Beccaletto, L.: Insights on the Permian tuff beds from the Saint-Affrique Basin (Massif Central, France): an integrated geochemical and geochronological study, C. R. Géosci., 355, 137–161, 2023.
Prajapati, N., Selzer, M., Nestler, B., Busch, B., and Hilgers, C.: Modeling fracture cementation processes in calcite limestone: a phase-field study, Geothermal Energy, 6, 7, https://doi.org/10.1186/s40517-018-0093-4, 2018.
Prieur, M., Whittaker, A. C., Nuriel, P., Jaimes-Gutierrez, R., Garzanti, E., Roigé, M., Sømme, T. O., Schlunegger, F., and Castelltort, S.: Fingerprinting enhanced floodplain reworking during the Paleocene–Eocene Thermal Maximum in the Southern Pyrenees (Spain): Implications for channel dynamics and carbon burial, Geology, 52, 651–655, https://doi.org/10.1130/g52180.1, 2024.
Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., Krijgsman, W., Moore, T., Raine, I., Sardella, R., and Vernyhorova, Y. V.: Chapter 29 – The Neogene Period, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, https://doi.org/10.1016/B978-0-12-824360-2.00029-2, 2020.
Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U–Pb dating of carbonates, Rev. Geophys., 47, RG3001, https://doi.org/10.1029/2007RG000246, 2009.
Rasbury, E. T., Hanson, G. N., Meyers, W. J., and Saller, A. H.: Dating of the time of sedimentation using U–Pb ages for paleosol calcite, Geochim. Cosmochim. Ac., 61, 1525–1529, https://doi.org/10.1016/S0016-7037(97)00043-4, 1997.
Rasbury, E. T., Hanson, G. N., Meyers, W. J., Holt, W. E., Goldstein, R. H., and Saller, A. H.: U–Pb dates of paleosols: Constraints on late Paleozoic cycle durations and boundary ages, Geology, 26, 403–406, https://doi.org/10.1130/0091-7613(1998)026<0403:UPDOPC>2.3.CO;2, 1998.
Rasbury, E. T., Meyers, W. J., Hanson, G. N., Goldstein, R. H., and Saller, A. H: Relationship of Uranium to Petrography of Caliche Paleosols with Application to Precisely Dating the Time of Sedimentation, J. Sediment. Res., 70, 604–618, https://doi.org/10.1306/2DC4092B-0E47-11D7-8643000102C1865D, 2000.
Rasbury, E. T., Piccione, G., Holt, W., and Ward, W. B.: Potential for constraining sequence stratigraphy and cycle stratigraphy with U–Pb dating of carbonates, Earth-Sci. Rev., 243, 104495, https://doi.org/10.1016/j.earscirev.2023.104495, 2023.
Richter, D. K., Götte, T., Götze, J., and Neuser, R. D.: Progress in application of cathodoluminescence (CL) in sedimentary petrology, Miner. Petrol., 79, 127–166, https://doi.org/10.1007/s00710-003-0237-4, 2003.
Roberts, N. M. W. and Holdsworth, R. E.: Timescales of faulting through calcite geochronology: A review, J. Struct. Geol., 158, 104578, https://doi.org/10.1016/j.jsg.2022.104578, 2022.
Roberts, N. M. W. and Walker, R. J.: U–Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin, Geology, 44, 531–534, https://doi.org/10.1130/G37868.1, 2016.
Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood, M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U-Pb geochronology, Geochem., Geophy. Geosy., 18, 2807–2814, https://doi.org/10.1002/2016gc006784, 2017.
Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., and Lee, J. K.: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations, Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, 2020.
Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A., and de Klerk, W. J.: High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa, Geology, 41, 363–366, https://doi.org/10.1130/G33622.1, 2013.
Smith, J. J., Ludvigson, G. A., Layzell, A., Möller, A., Harlow, R. H., Turner, E., Platt, B., and Petronis, M.: Discovery of Paleogene deposits of the central High Plains aquifer in the western Great Plains, USA, J. Sediment. Res., 87, 880–896, 2017.
Smith, P. E. and Farquhar, R. M.: Direct dating of Phanerozoic sediments by the 238U–206Pb method, Nature, 341, 518–521, https://doi.org/10.1038/341518a0, 1989.
Steininger, F. F.: Chronostratigraphy, geochronology and biochronology of the Miocene “European Land Mammal Mega-Zones” (ELMMZ) and the Miocene “Mammal-Zones (MN-Zones)”, in: The Miocene: Land Mammals of Europe, edited by: Rössner, G. E. and Heissig, K., Friedrich Pfeil, 9–24, ISBN 3-931516-50-4, 1999.
Subarkah, D., Nixon, A. L., Gilbert, S. E., Collins, A. S., Blades, M. L., Simpson, A., Lloyd, J. C., Virgo, G. M., and Farkaš, J.: Double dating sedimentary sequences using new applications of in-situ laser ablation analysis, Lithos, 480–481, 107649, https://doi.org/10.1016/j.lithos.2024.107649, 2024.
Van Dam, J. A., Alcalá, L., Zarza, A. A., Calvo, J. P., Garcés, M., and Krijgsman, W.: The Upper Miocene Mammal Record from the Teruel-Alfambra Region (Spain). The MN System and Continental Stage/Age Concepts Discussed, J. Vertebr. Paleontol., 21, 367–385, http://www.jstor.org/stable/20061959 (last access: 1 July 2024), 2001.
Van der Meulen, A. J., García-Paredes, I., Álvarez-Sierra, M. A., Van den Hoek Ostende, L. W., Hordijk, K., Oliver, A., and Peláez-Campomanes, P.: Updated Aragonian biostratigraphy: Small Mammal distribution and its implications for the Miocene European Chronology, Geol. Acta, 10, 159–179, https://doi.org/10.1344/105.000001710, 2012.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Wang, X., Flynn, L. J., and Fortelius, M.: Fossil mammals of Asia: Neogene biostratigraphy and chronology, Columbia University Press, https://doi.org/10.7312/wang15012-033, 2013.
Wang, Z. S., Rasbury, E. T., Hanson, G. N., and Meyers, W. J.: Using the U–Pb system of calcretes to date the time of sedimentation of clastic sedimentary rocks, Geochim. Cosmochim. Ac., 62, 2823–2835, https://doi.org/10.1016/S0016-7037(98)00201-4, 1998.
Wendler, F., Okamoto, A., and Blum, P.: Phase-field modeling of epitaxial growth of polycrystalline quartz veins in hydrothermal experiments, Geofluids, 16, 211–230, https://doi.org/10.1111/gfl.12144, 2016.
Winter, B. L. and Johnson, C. M.: U–Pb dating of a carbonate subaerial exposure event, Earth Planet. Sc. Lett., 131, 177–187, https://doi.org/10.1016/0012-821X(95)00026-9, 1995.
Wright, V. P.: Paleosols. Their Recognition and Interpretation, Princeton University Press, Blackwell Scientific, Oxford, ISBN 9780691084053, 1987.
Wright, V. P.: A micromorphological classification of fossil and recent calcic and petrocalcic microstructures, in: Soil Micromorphology, in: Proceedings of 8th meeting of Soil Micromorphology, San Antonio, 1988, edited by: Douglas, L. A., Developments in Soil Science, 19, Elsevier, Amsterdam, 401–407, https://doi.org/10.1016/S0166-2481(08)70354-4, 1990.
Zamanian, K., Pustovoytov, K., and Kuzyakov, Y.: Pedogenic carbonates: Forms and formation processes, Earth-Sci. Rev., 157, 1–17, https://doi.org/10.1016/j.earscirev.2016.03.003, 2016.
Short summary
Sedimentary rocks are typically dated indirectly, by comparing the fossil content of basins with the geological timescale. In this study, we employed an absolute dating approach to date 19\,Myr old sediments in the Paris Basin, using uranium–lead dating of calcite nodules associated with soil formation. The precision of our new ages enable more accurate comparisons (independent of their fossil contents) between the Paris Basin and other basins of similar age.
Sedimentary rocks are typically dated indirectly, by comparing the fossil content of basins with...