Articles | Volume 2, issue 1
Geochronology, 2, 33–61, 2020
https://doi.org/10.5194/gchron-2-33-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: In situ carbonate U–Pb geochronology
Research article 09 Apr 2020
Research article | 09 Apr 2020
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations
Nick M. W. Roberts et al.
Related authors
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020, https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Short summary
We characterise a well-known fractured and faulted exposure of Cretaceous chalk in NE England, combining field observations with novel U–Pb calcite dating. We show that the faulting and associated fluid flow occurred during the interval of ca. 64–56 Ma, predating earlier estimates of Alpine-related tectonic inversion. We demonstrate that the main extensional fault zone acted as a conduit linking voluminous fluid flow and linking deeper sedimentary layers with the shallow subsurface.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
H. Lorenz, J.-E. Rosberg, C. Juhlin, L. Bjelm, B. S. G. Almqvist, T. Berthet, R. Conze, D. G. Gee, I. Klonowska, C. Pascal, K. Pedersen, N. M. W. Roberts, and C.-F. Tsang
Sci. Dril., 19, 1–11, https://doi.org/10.5194/sd-19-1-2015, https://doi.org/10.5194/sd-19-1-2015, 2015
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project successfully drilled a 2.5km fully cored borehole (COSC-1) through allochthonous subduction-related high-grade metamorphic gneisses and into the underlying thrust zone. This paper summarizes the scientific rationale of the project and presents first preliminary results.
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020, https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Short summary
We characterise a well-known fractured and faulted exposure of Cretaceous chalk in NE England, combining field observations with novel U–Pb calcite dating. We show that the faulting and associated fluid flow occurred during the interval of ca. 64–56 Ma, predating earlier estimates of Alpine-related tectonic inversion. We demonstrate that the main extensional fault zone acted as a conduit linking voluminous fluid flow and linking deeper sedimentary layers with the shallow subsurface.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
H. Lorenz, J.-E. Rosberg, C. Juhlin, L. Bjelm, B. S. G. Almqvist, T. Berthet, R. Conze, D. G. Gee, I. Klonowska, C. Pascal, K. Pedersen, N. M. W. Roberts, and C.-F. Tsang
Sci. Dril., 19, 1–11, https://doi.org/10.5194/sd-19-1-2015, https://doi.org/10.5194/sd-19-1-2015, 2015
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project successfully drilled a 2.5km fully cored borehole (COSC-1) through allochthonous subduction-related high-grade metamorphic gneisses and into the underlying thrust zone. This paper summarizes the scientific rationale of the project and presents first preliminary results.
D. J. Condon, P. Boggiani, D. Fike, G. P. Halverson, S. Kasemann, A. H. Knoll, F. A. Macdonald, A. R. Prave, and M. Zhu
Sci. Dril., 19, 17–25, https://doi.org/10.5194/sd-19-17-2015, https://doi.org/10.5194/sd-19-17-2015, 2015
Short summary
Short summary
This workshop report outlines the background, topics discussed and major conclusions/future directions arising form an ICDP- and ECORD-sponsored workshop convened to discuss the utility of scientific drilling for accelerating Neoproterozoic research.
Related subject area
SIMS, LA-ICP-MS
The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U − Pb geochronology of calcite
Expanding the limits of laser-ablation U–Pb calcite geochronology
Resolving multiple geological events using in situ Rb–Sr geochronology: implications for metallogenesis at Tropicana, Western Australia
LA-ICPMS U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona)
Technical note: on LA–ICP-MS U–Pb dating of unetched and etched apatites
A Sample Characterization Toolkit for Carbonate U-Pb Geochronology
Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material
Direct U-Pb dating of carbonates from micron scale fsLA-ICPMS images using robust regression
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Andrew R. C. Kylander-Clark
Geochronology, 2, 343–354, https://doi.org/10.5194/gchron-2-343-2020, https://doi.org/10.5194/gchron-2-343-2020, 2020
Short summary
Short summary
This paper serves as a guide to those interested in dating calcite by laser ablation. Within it are theoretical and practical limits of U and Pb concentrations (and U / Pb ratios), which would allow viable extraction of ages from calcite (and other minerals with moderate U / Pb ratios), and which type of instrumentation would be appropriate for any given sample. The method described uses a new detector array, allowing for lower detection limits and thereby expanding the range of viable samples.
Hugo K. H. Olierook, Kai Rankenburg, Stanislav Ulrich, Christopher L. Kirkland, Noreen J. Evans, Stephen Brown, Brent I. A. McInnes, Alexander Prent, Jack Gillespie, Bradley McDonald, and Miles Darragh
Geochronology, 2, 283–303, https://doi.org/10.5194/gchron-2-283-2020, https://doi.org/10.5194/gchron-2-283-2020, 2020
Short summary
Short summary
Using a relatively new dating technique, in situ Rb–Sr geochronology, we constrain the ages of two generations of mineral assemblages from the Tropicana Zone, Western Australia. The first, dated at ca. 2535 Ma, is associated with exhumation of an Archean craton margin and gold mineralization. The second, dated at ca. 1210 Ma, has not been previously documented in the Tropicana Zone. It is probably associated with Stage II of the Albany–Fraser Orogeny and additional gold mineralization.
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
Fanis Abdullin, Luigi Solari, Jesús Solé, and Carlos Ortega-Obregón
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-21, https://doi.org/10.5194/gchron-2020-21, 2020
Revised manuscript accepted for GChron
Short summary
Short summary
Unetched and etched apatites of five samples were dated by U–Pb with laser ablation inductively coupled plasma mass spectrometry. Our experiment demonstrates that the etching, needed for the apatite fission track dating, has no important effect on the obtaining of U–Pb ages; and therefore, the laser ablation-based technique can be used for apatite fission track and U–Pb double dating.
E. Troy Rasbury, Theodore M. Present, Paul Northrup, Ryan V. Tappero, Antonio Lanzirotti, Jennifer M. Cole, Kathleen Wooton, and Kevin Hatton
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-20, https://doi.org/10.5194/gchron-2020-20, 2020
Revised manuscript accepted for GChron
Short summary
Short summary
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to demonstrate techniques for characterizing carbonates for U/Pb dating. With the rapidly accelerating application of laser ablation analyses, there is a great need for well-characterized standards. The three samples we describe have good potential as standards. In addition to U/Pb data, we present strontium (Sr) isotope analyses to demonstrate that these could be dual standards for U/Pb and Sr isotopes.
Marcel Guillong, Jörn-Frederik Wotzlaw, Nathan Looser, and Oscar Laurent
Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, https://doi.org/10.5194/gchron-2-155-2020, 2020
Short summary
Short summary
The dating of carbonates by laser ablation inductively coupled plasma mass spectrometry is improved by an additional, newly characterised reference material and adapted data evaluation protocols: the shape (diameter to depth) of the ablation crater has to be as similar as possible in the reference material used and the unknown samples to avoid an offset. Different carbonates have different ablation rates per laser pulse. With robust uncertainty propagation, precision can be as good as 2–3 %.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Christian Paroissin, Pierre-Alexandre Grignard, Geoffrey Motte, Olivier Chailan, and Jean-Pierre Girard
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-10, https://doi.org/10.5194/gchron-2020-10, 2020
Revised manuscript accepted for GChron
Short summary
Short summary
A new methodology for the micron-scale uranium-lead dating of carbonate minerals is proposed. It is based on the extraction of ages directly from the pixels images (< 1 mm2) obtained by laser ablation coupled to a mass spectrometer. The ages are calculated with a robust linear regression through the pixel values, which is an efficient and simple approach to that can be easily applied to mineral dating.
Cited articles
Albut, G., Kamber, B. S., Brüske, A., Beukes, N. J., Smith, A. J., and
Schoenberg, R.: Modern weathering in outcrop samples versus ancient
paleoredox information in drill core samples from a Mesoarchaean marine
oxygen oasis in Pongola Supergroup, South Africa, Geochim. Cosmochim. Ac., 265, 330-353, 2019.
Babinski, M., Van Schmus, W. R., and Chemale Jr., F.: Pb–Pb dating and Pb
isotope geochemistry of Neoproterozoic carbonate rocks from the São
Francisco basin, Brazil: implications for the mobility of Pb isotopes during
tectonism and metamorphism, Chem. Geol., 160, 175–199, 1999.
Babinski, M., Vieira, L. C., and Trindade, R. I.: Direct dating of the Sete
Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the
Neoproterozoic glacial events, Terra Nova, 19, 401–406, 2007.
Baker, A., Smart, P. L., Barnes, W. L., Edwards, R. L., and Farrant, A.: The
Hekla 3 volcanic eruption recorded in a Scottish speleothem, Holocene, 5, 336–342,
1995.
Baker, A., Smith, C. L., Jex, C., Fairchild, I. J., Genty, D., and Fuller, L.:
Annually laminated speleothems: a review, Int. J. Speleol., 37, 193–206, 2008.
Barnaby, R. J. and Rimstidt, J. D.: Redox conditions of calcite cementation
interpreted from Mn and Fe contents of authigenic calcites, GSA Bulletin, 101, 795–804,
1989.
Beaudoin, N., Lacombe, O., Roberts, N. M., and Koehn, D.: U-Pb dating of
calcite veins reveals complex stress evolution and thrust sequence in the
Bighorn Basin, Wyoming, USA, Geology, 46, 1015–1018, 2018.
Bertok, C., Barale, L., d'Atri, A., Martire, L., Piana, F., Rossetti, P., and
Gerdes, A.: Unusual marbles in a non-metamorphic succession of the SW
Alps (Valdieri, Italy) due to early Oligocene hydrothermal
flow, Int. J. Earth Sci., 108, 693–712, 2019.
Bons, P. D., Elburg, M. A., and Gomez-Rivas, E.: A review of the formation of
tectonic veins and their microstructures, J. Struct. Geol., 43, 33–62, 2012.
Brannon, J. C., Cole, S. C., Podosek, F. A., Ragan, V. M., Coveney, R. M.,
Wallace, M. W., and Bradley, A. J.: Th-Pb and U-Pb dating of ore-stage calcite
and Paleozoic fluid flow, Science, 271, 491–493, 1996.
Buckman, J. O., Corbett, P. W., and Mitchell, L.: Charge contrast imaging
(CCI): revealing enhanced diagenetic features of a coquina
limestone, J. Sediment. Res., 86, 734–748, 2016.
Burisch, M., Gerdes, A., Walter, B. F., Neumann, U., Fettel, M., and Markl,
G.: Methane and the origin of five-element veins: mineralogy, age, fluid
inclusion chemistry and ore forming processes in the Odenwald, SW
Germany, Ore Geol. Rev., 81, 42–61, 2017.
Burisch, M., Walter, B. F., Gerdes, A., Lanz, M., and Markl, G.: Late-stage
anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition
from a deep to a shallow hydrothermal system in the Schwarzwald mining
district, SW Germany, Geochim. Cosmochim. Ac., 223, 259–278, 2018.
Burn, M., Lanari, P., Pettke, T., and Engi, M.: Non-matrix-matched
standardisation in LA-ICP-MS analysis: general approach, and application to
allanite Th–U–Pb dating, J. Anal. Atom. Spectrom., 32, 1359–1377, 2017.
Cherniak, D. J.: An experimental study of strontium and lead diffusion in
calcite, and implications for carbonate diagenesis and
metamorphism, Geochim. Cosmochim. Ac., 61, 4173–4179, 1997.
Cole, J. M., Nienstedt, J., Spataro, G., Rasbury, E. T., Lanzirotti, A.,
Celestian, A. J., Nilsson, M., and Hanson, G. N.: Phosphor imaging as a tool
for in situ mapping of ppm levels of uranium and thorium in rocks and
minerals, Chem. Geol., 193, 127–136, 2003.
Cole, J. M., Rasbury, E. T., Hanson, G. N., Montañez, I. P., and Pedone,
V. A.: Using U-Pb ages of Miocene tufa for correlation in a terrestrial
succession, Barstow Formation, California, Geol. Soc. Am. Bull., 117, 276–287, 2005.
Coogan, L. A., Parrish, R. R., and Roberts, N. M.: Early hydrothermal carbon
uptake by the upper oceanic crust: Insight from in situ U-Pb
dating, Geology, 44, 147–150, 2016.
Cuthbert, S. J. and Buckman, J. O.: Charge contrast imaging of fine-scale
microstructure and compositional variation in garnet using the environmental
scanning electron microscope, Am. Mineral., 90, 701–707, 2005.
De Paola, N., Holdsworth, R. E., McCaffrey, K. J., and Barchi, M. R.:
Partitioned transtension: an alternative to basin inversion models, J. Struct. Geol., 27,
607–625, 2005.
DeWolf, C. P. and Halliday, A. N.: U-Pb dating of a remagnetized Paleozoic
limestone, Geophys. Res. Lett., 18, 1445–1448, 1991.
Drake, H., Tullborg, E. L., Hogmalm, K. J., and Åström, M. E.: Trace
metal distribution and isotope variations in low-temperature calcite and
groundwater in granitoid fractures down to 1 km depth, Geochim. Cosmochim. Ac., 84, 217–238, 2012.
Drake, H., Heim, C., Hogmalm, K. J., and Hansen, B. T.: Fracture zone-scale
variation of trace elements and stable isotopes in calcite in a crystalline
rock setting, Appl. Geochem., 40, 11–24, 2014.
Drake, H., Heim, C., Roberts, N. M. W., Zack, T., Tillberg, M., Broman, C.,
Ivarsson, M., Whitehouse, M. J., and Åström, M. E.: Isotopic evidence
for microbial production and consumption of methane in the upper continental
crust throughout the Phanerozoic eon, Earth Planet. Sc.
Lett., 470, 108–118, 2017.
Drake, H., Mathurin, F. A., Zack, T., Schäfer, T.,
Roberts, N. M. W., Whitehouse, M., Karlsson, A., Broman, C., and
Åström, M. E.: Incorporation of metals into calcite in
a deep anoxic granite aquifer, Environ. Sci. Technol., 52, 493–502, 2018.
Drake, H., Roberts, N. M., and Whitehouse, M. J.: Geochronology and Stable Isotope Analysis of Fracture-fill and Karst Mineralization Reveal Sub-Surface Paleo-Fluid Flow and Microbial Activity of the COSC-1 Borehole, Scandinavian Caledonides, Geosciences, 10, 56, https://doi.org/10.3390/geosciences10020056, 2020.
Drost, K., Chew, D., Petrus, J. A., Scholze, F., Woodhead, J. D., Schneider,
J. W., and Harper, D. A.: An Image Mapping Approach to U-Pb LA-ICP-MS Carbonate
Dating, and Applications to Direct Dating of Carbonate
Sedimentation, Geochem. Geophy. Geosy., 19, 4631–4648,
https://doi.org/10.1029/2018GC007850, 2018.
Eichhubl, P., Davatz, N. C., and Becker, S. P.: Structural and diagenetic
control of fluid migration and cementation along the Moab fault
, Utah, AAPG Bulletin, 93,
653–681, 2009.
Eiler, J. M.: “Clumped-isotope” geochemistry – The study of
naturally-occurring, multiply-substituted isotopologues, Earth Planet. Sc. Lett., 262, 309–327, 2007.
Engi, M., Lanari, P., and Kohn, M. J.: Significant ages – An introduction to
petrochronology, Rev. Mineral. Geochem., 83, 1–12, 2017.
Fairey, B., Tsikos, H., Corfu, F., and Polteau, S.: U–Pb systematics in
carbonates of the Postmasburg Group, Transvaal Supergroup, South Africa:
primary versus metasomatic controls, Precambrian Res., 231, 194–205, 2013.
Field, L. P., Milodowski, A. E., Evans, D., Palumbo-Roe, B., Hall, M. R.,
Marriott, A. L., Barlow, T., and Devez, A.: Determining constraints imposed by
salt fabrics on the morphology of solution-mined energy storage cavities,
through dissolution experiments using brine and seawater in
halite, Q. J. Eng. Geol. Hydroge., 52, 240–254, 2019.
Flude, S., Lee, M. R., Sherlock, S. C., and Kelley, S. P.: Cryptic microtextures
and geological histories of K-rich alkali feldspars revealed by charge
contrast imaging, Contrib. Mineral. Petr., 163, 983–994, 2012.
Foxford, K. A., Garden, I. R., Guscott, S. C., Burley, S. D., Lewis, J. J. M.,
Walsh, J. J., and Watterson, J.: The field geology of the Moab fault, in:
Geology and Resources of the Paradox Basin, Utah Geological Association, 25,
265–283, 1996.
Godeau, N., Deschamps, P., Guihou, A., Leonide, P., Tendil, A., Gerdes, A.,
Hamelin, B., and Girard, J. P.: U-Pb dating of calcite cement and diagenetic
history in microporous carbonate reservoirs: Case of the Urgonian Limestone,
France, Geology, 46, 247–250, 2018.
Goodfellow, B. W., Viola, G., Bingen, B., Nuriel, P., and Kylander-Clark,
A. R.: Palaeocene faulting in SE Sweden from U–Pb dating of slickenfibre
calcite, Terra Nova, 29, 321–328, 2017.
Grandia, F., Asmerom, Y., Getty, S., Cardellach, E., and Canals, A.: U–Pb
dating of MVT ore-stage calcite: implications for fluid flow in a Mesozoic
extensional basin from Iberian Peninsula, J. Geochem. Explor., 69, 377–380, 2000.
Gutiérrez, F.: Origin of the salt valleys in the Canyonlands section of the Colorado Plateau: Evaporite-dissolution collapse versus tectonic subsidence, Geomorphology, 57, 423–435, 2004.
Hansman, R. J., Albert, R., Gerdes, A., and Ring, U.: Absolute ages of
multiple generations of brittle structures by U-Pb dating of
calcite, Geology, 46, 207–210, 2018.
Hareyama, M., Tsuchiya, N., Takebe, M. and Chida, T.: Two dimensional
measurement of natural radioactivity of granitic rocks by photostimulated
luminescence technique, Geochem. J., 34, 1–9, 2000.
Hellwig, A., Voigt, S., Mulch, A., Frisch, K., Bartenstein, A., Pross, J.,
Gerdes, A., and Voigt, T.: Late Oligocene to early Miocene humidity change
recorded in terrestrial sequences in the Ili Basin (south-eastern
Kazakhstan, Central Asia), Sedimentology, 65, 517–539, 2018.
Hodson, K. R., Crider, J. G., and Huntington, K. W.: Temperature and composition
of carbonate cements record early structural control on cementation in a
nascent deformation band fault zone: Moab Fault, Utah,
USA, Tectonophysics, 690, 240–252, 2016.
Holdsworth, R. E., McCaffrey, K. J. W., Dempsey, E., Roberts, N. M. W., Hardman,
K., Morton, A., Feely, M., Hunt, J., Conway, A., and Robertson, A.: Natural
fracture propping and earthquake-induced oil migration in fractured basement
reservoirs, Geology, 47, 700–704, https://doi.org/10.1130/G46280.1, 2019.
Holdsworth, R. E., Trice, R., Hardman, K., McCaffrey, K. J. W., Morton, A., Frei, D., Dempsey, E., Bird, A., and Rogers, S.: The nature and age of basement host rocks and fissure fills in the Lancaster field fractured reservoir, West of Shetland, J. Geol. Soc., https://doi.org/10.1144/jgs2019-142, in press, 2020.
Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M.,
Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., and
Bowring, J. F.: Community-derived standards for LA-ICP-MS U-(Th-) Pb
geochronology–Uncertainty propagation, age interpretation and data
reporting, Geostand. Geoanal. Res., 40, 311–332, 2016.
Incerpi, N., Martire, L., Manatschal, G., Bernasconi, S. M., Gerdes, A.,
Czuppon, G., Palcsu, L., Karner, G. D., Johnson, C. A., and Figueredo, P. H.:
Hydrothermal fluid flow associated to the extensional evolution of the
Adriatic rifted margin: Insights from the pre-to post-rift sedimentary
sequence (SE Switzerland, N Italy), Basin Res., 32, 91–115, 2020.
Jahn, B. M.: Pb–Pb dating of young marbles from Taiwan, Nature, 332, p. 429, 1988.
Jahn, B. M. and Cuvellier, H.: Pb-Pb and U-Pb geochronology of carbonate
rocks: an assessment, Chem. Geol., 115, 125–151, 1994.
Johansson, Å. and Rickard, D.: Isotopic composition of Phanerozoic
ore leads from the Swedish segment of the Fennoscandian Shield, Miner. Deposita, 19,
249–255, 1984.
Jones, C. E., Halliday, A. N., and Lohmann, K. C.: The impact of diagenesis on
high-precision U-Pb dating of ancient carbonates: An example from the Late
Permian of New Mexico, Earth Planet. Sc. Lett., 134, 409–423, 1995.
Kelly, S. D., Newville, M. G., Cheng, L., Kemner, K. M., Sutton, S. R., Fenter,
P., Sturchio, N. C., and Spötl, C.: Uranyl incorporation in natural
calcite, Environ. Sci. Technol., 37, 1284–1287, 2003.
Kronfeld, J., Vogel, J. C., and Talma, A. S.: A new explanation for extreme
234U∕238U disequilibria in a dolomitic aquifer, Earth Planet. Sc. Lett., 123, 81–93, 1994.
Kylander-Clark, A. R., Hacker, B. R., and Cottle, J. M.: Laser-ablation
split-stream ICP petrochronology, Chem. Geol., 345, 99–112, 2013.
Langmuir, D.: Uranium solution-mineral equilibria at low temperatures with
applications to sedimentary ore deposits, Geochim. Cosmochim. Ac., 42, 547–569, 1978.
Lawson, M., Shenton, B. ., Stolper, D. A., Eiler, J. M., Rasbury, E. T.,
Becker, T. P., Phillips-Lander, C. M., Buono, A. S., Becker, S. P., Pottorf, R.,
and Gray, G. G.: Deciphering the diagenetic history of the El Abra Formation
of eastern Mexico using reordered clumped isotope temperatures and U-Pb
dating, GSA Bulletin, 130, 617–629, 2018.
Lee, M. R., Hodson, M. E., and Langworthy, G.: Earthworms produce granules of
intricately zoned calcite, Geology, 36, 943–946, 2008.
Li, Q., Parrish, R. R., Horstwood, M. S. A., and McArthur, J. M.: U–Pb dating of
cements in Mesozoic ammonites, Chem. Geol., 376, 76–83, 2014.
Liivamägi, S., Šrodon, J., Bojanowski, M., Gerdes, A., Stanek, J. J., Williams,
L., and Szczerba, M.: Paleosols on the Ediacaran basalts of the East European
Craton: a unique record of paleoweathering with minimum diagenetic
overprint, Precambrian Res., 316, 66–82, 2018.
MacDonald, J. M., Faithfull, J. W., Roberts, N. M. W., Davies, A. J., Holdsworth,
C. M., Newton, M., Williamson, S., Boyce, A., and John, C. M.: Clumped-isotope
palaeothermometry and LA-ICP-MS U–Pb dating of lava-pile hydrothermal
calcite veins, Contrib. Mineral. Petr., 174, 63, https://doi.org/10.1007/s00410-019-1599-x, 2019.
Machel, H. G.: Cathodoluminescence in calcite and dolomite and its chemical
interpretation, Geosci. Can., 12, 139–147, 1985.
Machel, H. G.: Application of cathodoluminescence to carbonate diagenesis,
in: Cathodoluminescence in geosciences, edited by: Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D., Springer,
Berlin, Heidelberg, Germany, 271–301, 2000.
Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., and Rouchon, V.: An
emerging thermochronometer for carbonate-bearing rocks: Δ47/(U-Pb), Geology, 46, 1067–1070, 2018.
Maskenskaya, O. M., Drake, H., Broman, C., Hogmalm, J. K., Czuppon, G., and
Åström, M. E.: Source and character of syntaxial hydrothermal calcite
veins in Paleoproterozoic crystalline rocks revealed by fine-scale
investigations, Geofluids, 14, 495–511, 2014.
Mazurek, M., Davis, D. W., Madritsch, H., Rufer, D., Villa, I. M., Sutcliffe,
C. N., De Haller, A., and Traber, D.: Veins in clay-rich aquitards as records
of deformation and fluid-flow events in northern Switzerland, Appl.
Geochem., 95, 57–70, 2018.
Methner, K., Mulch, A., Fiebig, J., Wacker, U., Gerdes, A., Graham, S. A., and
Chamberlain, C. P.: Rapid middle Eocene temperature change in western North
America, Earth Planet. Sc. Lett., 450, 132–139, 2016.
Milodowski, A. E., Bath, A., and Norris, S.: Palaeohydrogeology using
geochemical, isotopic and mineralogical analyses: Salinity and redox
evolution in a deep groundwater system through Quaternary glacial
cycles, Appl. Geochem., 97, 40–60, 2018.
Milton, G. M. and Brown, R. M.: Adsorption of uranium from groundwater by
common fracture secondary minerals, Can. J. Earth Sci., 24, 1321–1328, 1987.
Moorbath, S., Taylor, P. N., Orpen, J. L., Treloar, P., and Wilson, J. F.: First
direct radiometric dating of Archaean stromatolitic
limestone, Nature, 326, 865–867, 1987.
Neymark, L. A., Holm-Denoma, C. S., and Moscati, R. J.: In situ LA-ICPMS U–Pb
dating of cassiterite without a known-age matrix-matched reference material:
Examples from worldwide tin deposits spanning the Proterozoic to the
Tertiary, Chem. Geol., 483, 410–425, 2018.
Nicholson, S. L., Pike, A. W., Hosfield, R., Roberts, N. M. W., Sahy, D.,
Woodhead, J., Cheng, H., Edwards, R. L., Affolter, S., Leuenberger, M., and
Burns, S. J.: Pluvial periods in Southern Arabia over the last 1.1
million-years, Quaternary Sci. Rev., 229, 106112, https://doi.org/10.1016/j.quascirev.2019.106112, 2020.
Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., Hacker, B. R., and
Craddock, J. P.: The onset of the Dead Sea transform based on calcite
age-strain analyses, Geology, 45, 587–590, 2017.
Nuriel, P., Craddock, J., Kylander-Clark, A. R., Uysal, T., Karabacak, V.,
Dirik, R. K., Hacker, B. R., and Weinberger, R.: Reactivation history of the
North Anatolian fault zone based on calcite age-strain analyses, Geology,
47, 465–469, 2019.
Osmond, J. K. and Cowart, J. B.: The theory and uses of natural uranium
isotopic variations in hydrology, Atom. Energy Rev., 14, 621–679, 1976.
Osmond, J. K. and Cowart, J. B.: Ground water, in: Uranium-series
Disequilibrium: Applications to Earth, Marine, and Environmental Sciences,
Second Edition, edited by: Ivanovich, M. and Harmon, R. S., Clarendon Press,
Oxford, UK, 290–330, 1992.
Osmond, J. K. and Cowart, J. B.: U-series nuclides as tracers in groundwater
hydrology, in: Environmental tracers in subsurface hydrology, edited by: Cook, P. G. and Herczeg, A. L., Springer, Boston, MA, USA,
145–173, 2000.
Osmond, J. K., Rydell, H. S., and Kaufman, M. I.: Uranium disequilibrium in
groundwater: an isotope dilution approach in hydrologic
investigations, Science, 162, 997–999, 1968.
Palin, R. M., Searle, M. P., Waters, D. J., Parrish, R. R., Roberts, N. M. W.,
Horstwood, M. S. A., Yeh, M. W., Chung, S. L., and Anh, T. T.: A geochronological
and petrological study of anatectic paragneiss and associated granite dykes
from the Day Nui C on Voi metamorphic core complex, North Vietnam:
constraints on the timing of metamorphism within the Red River shear
zone, J. Metamorph. Geol., 31, 359–387, 2013.
Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B.,
Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P., Sutcliffe, C., and
Davis, D.: Improving paleohydrological and diagenetic reconstructions in
calcite veins and breccia of a sedimentary basin by combining Δ47
temperature, δ18Owater and U-Pb age, Chem.
Geol., 481, 1–17, 2018.
Paquette, J. and Reeder, R. J.: Relationship between surface structure,
growth mechanism, and trace element incorporation in calcite, Geochim. Cosmochim. Ac., 59, 735–749,
1995.
Parrish, R. R., Parrish, C. M., and Lasalle, S.: Vein calcite dating reveals
Pyrenean orogen as cause of Paleogene deformation in southern
England, J. Geol. Soc., 175, 425–442, 2018.
Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., and Maas,
R.: Improved laser ablation U-Pb zircon geochronology through robust
downhole fractionation correction, Geochem. Geophy. Geosy., 11, Q0AA06, https://doi.org/10.1029/2009GC002618,
2010.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite:
Freeware for the visualisation and processing of mass spectrometric
data, J. Anal. Atom. Spectrom., 26, 2508–2518, 2011.
Petrus, J. A., Chew, D. M., Leybourne, M. I., and Kamber, B. S.: A new approach
to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS)
using the flexible map interrogation tool “Monocle”, Chem. Geol., 463, 76–93, 2017.
Pevear, D. R., Vrolijk, P. J., Longstaffe, F. J., Hendry, J., Carey, P.,
Parnell, J., Ruffell, A., and Worden, R.: Timing of Moab fault displacement
and fluid movement integrated with burial history using radiogenic and
stable isotopes, Geofluids II, 97, 42–45, 1997.
Porcelli, D. and Swarzenski, P. W.: The behavior of U-and Th-series nuclides
in groundwater, Rev. Mineral. Geochem., 52, 317–361, 2003.
Quade, J., Rasbury, E. T., Huntington, K. W., Hudson, A. M., Vonhof, H.,
Anchukaitis, K., Betancourt, J., Latorre, C., and Pepper, M.: Isotopic
characterization of late Neogene travertine deposits at Barrancas Blancas in
the eastern Atacama Desert, Chile, Chem. Geol., 466, 41–56, 2017.
Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U-Pb dating
of carbonates, Rev. Geophys., 47, RG3001, https://doi.org/10.1029/2007RG000246, 2009.
Rasbury, E. T., Hanson, G. N., Meyers, W. J., and Saller, A. H.: Dating of the
time of sedimentation using U-Pb ages for paleosol calcite, Geochim. Cosmochim. Ac., 61, 1525–1529,
1997.
Ray, J. S., Veizer, J., and Davis, W. J.: C, O, Sr and Pb isotope systematics
of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis,
correlations and implications for global events, Precambrian Res., 121, 103–140, 2003.
Reeder, R. J.: Interaction of divalent cobalt, zinc, cadmium, and barium with
the calcite surface during layer growth, Geochim. Cosmochim. Ac., 60, 1543–1552, 1996.
Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D., and Morris, D. E.: Uranyl
incorporation into calcite and aragonite: XAFS and luminescence
studies, Environ. Sci. Technol., 34, 638–644, 2000.
Reeder, R. J., Nugent, M., Tait, C. D., Morris, D. E., Heald, S. M., Beck, K. M.,
Hess, W. P., and Lanzirotti, A.: Coprecipitation of uranium (VI) with calcite:
XAFS, micro-XAS, and luminescence characterization, Geochim. Cosmochim. Ac., 65, 3491–3503, 2001.
Regis, D., Warren, C. J., Mottram, C. M., and Roberts, N. M. W.: Using monazite
and zircon petrochronology to constrain the P–T–t evolution of the middle
crust in the Bhutan Himalaya, J. Metamorph. Geol., 34, 617–639, 2016.
Richter, D. K., Götte, T., Götze, J., and Neuser, R. D.: Progress in
application of cathodoluminescence (CL) in sedimentary
petrology, Mineral. Petrol., 79, 127–166, 2003.
Ring, U. and Gerdes, A.: Kinematics of the Alpenrhein-Bodensee graben system
in the Central Alps: Oligocene/Miocene transtension due to formation of the
Western Alps arc, Tectonics, 35, 1367–1391, 2016.
Roberts, N. M. W. and Walker, R. J.: U-Pb geochronology of calcite-mineralized
faults: Absolute timing of rift-related fault events on the northeast
Atlantic margin, Geology, 44, 531–534, 2016.
Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood,
M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U-Pb
geochronology. Geochem. Geophy., Geosy., 18, 2807–2814, 2017.
Robertson, K., Gauvin, R., and Finch, J.: Application of charge contrast
imaging in mineral characterization, Miner. Eng., 18, 343–352, 2005.
Romer, R. L. and Wright, J. E.: Lead mobilization during tectonic
reactivation of the western Baltic Shield, Geochim. Cosmochim. Ac., 57, 2555–2570, 1993.
Russell, J., Chadwick, B., Rao, B. K., and Vasudev, V. N.: Whole-rock PbPb
isotopic ages of Late Archaean limestones, Karnataka, India, Precambrian Res., 78, 261–272,
1996.
Sarangi, S., Gopalan, K., and Kumar, S.: Pb–Pb age of earliest megascopic,
eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India:
implications for Precambrian atmospheric oxygen evolution, Precambrian Res., 132, 107–121,
2004.
Savard, M. M., Veizer, J., and Hinton, R.: Cathodoluminescene at low Fe and Mn
concentrations; a SIMS study of zones in natural calcites, J. Sediment. Res., 65, 208–213,
1995.
Scardia, G., Parenti, F., Miggins, D. P., Gerdes, A., Araujo, A. G., and Neves,
W. A.: Chronologic constraints on hominin dispersal outside Africa since 2.48
Ma from the Zarqa Valley, Jordan, Quaternary Sci. Rev., 219, 1–19, 2019.
Shopov, Y. Y., Ford, D. C., and Schwarcz, H. P.: Luminescent microbanding in
speleothems: high-resolution chronology and paleoclimate, Geology, 22, 407–410, 1994.
Smeraglia, L., Aldega, L., Billi, A., Carminati, E., Di Fiore, F., Gerdes,
A., Albert, R., Rossetti, F., and Vignaroli, G.: Development of an
intra-wedge tectonic mélange by out-of-sequence thrusting, buttressing,
and intraformational rheological contrast, Mt. Massico ridge, Apennines,
Italy, Tectonics, 38, 1223–1249, 2019.
Smith, P. E. and Farquhar, R. M.: Direct dating of Phanerozoic sediments by
the 238U–206Pb method, Nature, 341, p. 518, 1989.
Smith, P. E., Farquhar, R. M., and Hancock, R. G.: Direct radiometric age
determination of carbonate diagenesis using U-Pb in secondary
calcite, Earth Planet. Sc. Lett., 105, 474–491, 1991.
Solum, J. G., van der Pluijm, B. A., and Peacor, D. R.: Neocrystallization,
fabrics and age of clay minerals from an exposure of the Moab Fault,
Utah, J. Struct. Geol., 27, 1563–1576, 2005.
Stacey, J. T. and Kramers, J.: Approximation of terrestrial lead isotope
evolution by a two-stage model, Earth Planet. Sc. Lett., 26, 207–221, 1975.
Stübner, K., Grujic, D., Parrish, R. R., Roberts, N. M., Kronz, A.,
Wooden, J., and Ahmad, T.: Monazite geochronology unravels the timing of
crustal thickening in NW Himalaya, Lithos, 210, 111–128, 2014.
Sturchio, N. C., Antonio, M. R., Soderholm, L., Sutton, S. R., and Brannon,
J. C.: Tetravalent uranium in calcite, Science, 281, 971–973, 1998.
Suksi, J., Rasilainen, K., and Pitkänen, P.: Variations in 234U∕238U
activity ratios in groundwater – A key to flow system
characterisation, Phys. Chem. Earth, Pt. A/B/C, 31, 556–571, 2006.
Sumner, D. Y. and Bowring, S. A.: U-Pb geochronologic constraints on
deposition of the Campbellrand Subgroup, Transvaal Supergroup, South
Africa, Precambrian Res., 79, 25–35, 1996.
Taylor, P. N. and Kalsbeek, F.: Dating the metamorphism of Precambrian
marbles: Examples from Proterozoic mobile belts in Greenland, Chem. Geol., 86, 21–28,
1990.
Tullborg, E. L., Drake, H., and Sandström, B.: Palaeohydrogeology: a
methodology based on fracture mineral studies, Appl. Geochem., 23, 1881–1897, 2008.
Ukar, E. and Laubach, S. E.: Syn-and postkinematic cement textures in
fractured carbonate rocks: Insights from advanced cathodoluminescence
imaging, Tectonophysics, 690, 190–205, 2016.
Uysal, I. T., Feng, Y. X., Zhao, J. X., Bolhar, R., Işik, V., Baublys,
K. A., Yago, A., and Golding, S. D.: Seismic cycles recorded in late Quaternary
calcite veins: geochronological, geochemical and microstructural
evidence, Earth Planet. Sc. Lett., 303, 84–96, 2011.
Walter, B. F., Gerdes, A., Kleinhanns, I. C., Dunkl, I., von Eynatten, H.,
Kreissl, S., and Markl, G.: The connection between hydrothermal fluids,
mineralization, tectonics and magmatism in a continental rift setting:
Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the
Rhinegraben in SW Germany, Geochim. Cosmochim. Ac., 240, 11–42,
2018.
Warren, C. J., Singh, A. K., Roberts, N. M. W., Regis, D., Halton, A. M., and
Singh, R. B.: Timing and conditions of peak metamorphism and cooling across
the Zimithang Thrust, Arunachal Pradesh, India, Lithos, 200, 94–110, 2014.
Watt, G. R., Griffin, B. J., and Kinny, P. D.: Charge contrast imaging of
geological materials in the environmental scanning electron
microscope, Am. Mineral., 85, 1784–1794, 2000.
Wendt, I. and Carl, C.: The statistical distribution of the mean squared
weighted deviation, Chem. Geol., 86, 275–285, 1991.
Weremeichik, J. M., Gabitov, R. I., Thien, B. M., and Sadekov, A.: The effect of
growth rate on uranium partitioning between individual calcite crystals and
fluid, Chem. Geol., 450, 145–153, 2017.
Whitehouse, M. J. and Russell, J.: Isotope systematics of Precambrian marbles
from the Lewisian complex of northwest Scotland: implications for Pb Pb
dating of metamorphosed carbonates, Chem. Geol., 136, 295–307, 1997.
Williams, R. T., Goodwin, L. B., Sharp, W. D., and Mozley, P. S.: Reading a
400,000-year record of earthquake frequency for an intraplate
fault, P. Natl. Acad. Sci. USA, 114, 4893–4898, 2017.
Woodhead, J. and Petrus, J.: Exploring the advantages and limitations of in situ U–Pb carbonate geochronology using speleothems, Geochronology, 1, 69–84, https://doi.org/10.5194/gchron-1-69-2019, 2019.
Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine,
P., and Taylor, E.: U–Pb geochronology of speleothems by
MC-ICPMS, Quatern. Geochronol., 1, 208–221, 2006.
Woodhead, J., Hellstrom, J., Pickering, R., Drysdale, R., Paul, B., and Bajo,
P.: U and Pb variability in older speleothems and strategies for their
chronology, Quatern. Geochronol., 14, 105–113, 2012.
Woodhead, J. D., Sniderman, J. K., Hellstrom, J., Drysdale, R. N., Maas, R.,
White, N., White, S., and Devine, P.: The antiquity of Nullarbor speleothems
and implications for karst palaeoclimate archives, Sci. Rep., 9, 603, https://doi.org/10.1038/s41598-018-37097-2, 2019.
Yokoyama, T., Kimura, J. I., Mitsuguchi, T., Danhara, T., Hirata, T., Sakata,
S., Iwano, H., Maruyama, S., Chang, Q., Miyazaki, T., and Murakami, H.: U-Pb
dating of calcite using LA-ICP-MS: Instrumental setup for non-matrix-matched
age dating and determination of analytical areas using elemental
imaging, Geochem. J., 52, 531–540, 2018.
Special issue
Short summary
Here we review current progress in LA-ICP-MS U–Pb carbonate geochronology and present strategies for acquisition and interpretation of carbonate U–Pb dates. We cover topics from imaging techniques and U and Pb incorporation into calcite to potential limitations of the method – disequilibrium and isotope mobility. We demonstrate the incorporation of imaging and compositional data to help refine and interpret U–Pb dates. We expect this paper to become a
go-toreference paper for years to come.
Here we review current progress in LA-ICP-MS U–Pb carbonate geochronology and present strategies...