Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-103-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gchron-3-103-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tools for uranium characterization in carbonate samples: case studies of natural U–Pb geochronology reference materials
E. Troy Rasbury
CORRESPONDING AUTHOR
Department of Geosciences, FIRST, Stony Brook University, 100 Nichols
Rd, Stony Brook, NY 11794, USA
Theodore M. Present
Division of Geological and Planetary Sciences, California Institute of
Technology, 307 North Mudd Laboratory, Pasadena, CA 91125, USA
Paul Northrup
Department of Geosciences, FIRST, Stony Brook University, 100 Nichols
Rd, Stony Brook, NY 11794, USA
Ryan V. Tappero
NSLS-II, Brookhaven National Laboratory, Upton NY 11973, USA
Antonio Lanzirotti
Center for Advanced Radiation Sources, Randall, Chicago, IL 60637, USA
Jennifer M. Cole
Department of Science, West Los Angeles College, Culver City, CA
90230, USA
Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W,
Palisades, NY 10964, USA
Kathleen M. Wooton
Department of Geosciences, FIRST, Stony Brook University, 100 Nichols
Rd, Stony Brook, NY 11794, USA
Kevin Hatton
Department of Geosciences, FIRST, Stony Brook University, 100 Nichols
Rd, Stony Brook, NY 11794, USA
Related authors
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Gaëlle Barbotin, Michael Perk, Nicolas E. Beaudoin, Brice Lacroix, and E. Troy Rasbury
Geochronology, 7, 387–407, https://doi.org/10.5194/gchron-7-387-2025, https://doi.org/10.5194/gchron-7-387-2025, 2025
Short summary
Short summary
We present an approach to dating of carbonates using isotopic maps. The maps are divided into squares called virtual spots. For each virtual spot, statistical values (mean, uncertainty) are used to determine the age. The user can modify the size and location of the virtual spots and select those that give the most robust age. This approach, applied to high-spatial-resolution images, makes it possible for the first time to obtain satisfactory ages on maps as small as 100 µm x 100 µm.
Gavin Piccione, Terrence Blackburn, Paul Northrup, Slawek Tulaczyk, and Troy Rasbury
The Cryosphere, 19, 2247–2261, https://doi.org/10.5194/tc-19-2247-2025, https://doi.org/10.5194/tc-19-2247-2025, 2025
Short summary
Short summary
Growth of microorganisms in the Southern Ocean is limited by low iron levels. Iron delivered from beneath the Antarctic Ice Sheet is one agent that fertilizes these ecosystems, but it is unclear how this nutrient source changes through time. Here, we measured the age and chemistry of a rock that records the iron concentration of Antarctic basal water. We show that increased dissolution of iron from rocks below the ice sheet can substantially enhance iron discharge during cold climate periods.
Francis J. Sousa, Stephen E. Cox, E. Troy Rasbury, Sidney R. Hemming, Antonio Lanzirotti, and Matthew Newville
Geochronology, 6, 553–570, https://doi.org/10.5194/gchron-6-553-2024, https://doi.org/10.5194/gchron-6-553-2024, 2024
Short summary
Short summary
We have discovered a new way of measuring the three-dimensional distribution of radioactive elements in individual crystals by shining a very bright light on apatite crystals at the Advanced Photon Source at Argonne National Laboratory. This allows us to learn about the rates and timing of geologic processes and to help resolve problems that previously were unsolvable because we had no way to make this type of measurement.
Xianghui Li, Jingyu Wang, Troy Rasbury, Min Zhou, Zhen Wei, and Chaokai Zhang
Clim. Past, 16, 2055–2074, https://doi.org/10.5194/cp-16-2055-2020, https://doi.org/10.5194/cp-16-2055-2020, 2020
Short summary
Short summary
This work presents the observation of the Early Jurassic terrestrial climate from the Sichuan paleobasin, southeastern China. Results manifest a (semi)arid climate in the study area, where the climate pattern is similar to the Colorado Plateau. The estimated atmospheric carbon dioxide concentration is 980–2610 ppmV with a mean of 1660 ppmV. The change of carbon dioxide concentration is compatible with the excursions of stable isotopes and seawater temperature from the coeval marine sediments.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Gaëlle Barbotin, Michael Perk, Nicolas E. Beaudoin, Brice Lacroix, and E. Troy Rasbury
Geochronology, 7, 387–407, https://doi.org/10.5194/gchron-7-387-2025, https://doi.org/10.5194/gchron-7-387-2025, 2025
Short summary
Short summary
We present an approach to dating of carbonates using isotopic maps. The maps are divided into squares called virtual spots. For each virtual spot, statistical values (mean, uncertainty) are used to determine the age. The user can modify the size and location of the virtual spots and select those that give the most robust age. This approach, applied to high-spatial-resolution images, makes it possible for the first time to obtain satisfactory ages on maps as small as 100 µm x 100 µm.
Gavin Piccione, Terrence Blackburn, Paul Northrup, Slawek Tulaczyk, and Troy Rasbury
The Cryosphere, 19, 2247–2261, https://doi.org/10.5194/tc-19-2247-2025, https://doi.org/10.5194/tc-19-2247-2025, 2025
Short summary
Short summary
Growth of microorganisms in the Southern Ocean is limited by low iron levels. Iron delivered from beneath the Antarctic Ice Sheet is one agent that fertilizes these ecosystems, but it is unclear how this nutrient source changes through time. Here, we measured the age and chemistry of a rock that records the iron concentration of Antarctic basal water. We show that increased dissolution of iron from rocks below the ice sheet can substantially enhance iron discharge during cold climate periods.
Francis J. Sousa, Stephen E. Cox, E. Troy Rasbury, Sidney R. Hemming, Antonio Lanzirotti, and Matthew Newville
Geochronology, 6, 553–570, https://doi.org/10.5194/gchron-6-553-2024, https://doi.org/10.5194/gchron-6-553-2024, 2024
Short summary
Short summary
We have discovered a new way of measuring the three-dimensional distribution of radioactive elements in individual crystals by shining a very bright light on apatite crystals at the Advanced Photon Source at Argonne National Laboratory. This allows us to learn about the rates and timing of geologic processes and to help resolve problems that previously were unsolvable because we had no way to make this type of measurement.
Xianghui Li, Jingyu Wang, Troy Rasbury, Min Zhou, Zhen Wei, and Chaokai Zhang
Clim. Past, 16, 2055–2074, https://doi.org/10.5194/cp-16-2055-2020, https://doi.org/10.5194/cp-16-2055-2020, 2020
Short summary
Short summary
This work presents the observation of the Early Jurassic terrestrial climate from the Sichuan paleobasin, southeastern China. Results manifest a (semi)arid climate in the study area, where the climate pattern is similar to the Colorado Plateau. The estimated atmospheric carbon dioxide concentration is 980–2610 ppmV with a mean of 1660 ppmV. The change of carbon dioxide concentration is compatible with the excursions of stable isotopes and seawater temperature from the coeval marine sediments.
Cited articles
Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A., and
Heirwegh, C. M.: Reassessing evidence of life in 3,700-million-year-old
rocks of Greenland, Nature, 563, 241–244,
https://doi.org/10.1038/s41586-018-0610-4, 2018.
Amiel, A. J., Miller, D. S., and Friedman, G. M.: Incorporation of uranium
in modern corals, Sedimentology, 20, 523–528,
https://doi.org/10.1111/j.1365-3091.1973.tb01629.x, 1973.
Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Elevated Concentrations of
Actinides in Mono Lake, Science, 216,
514–516, https://doi.org/10.1126/science.216.4545.514, 1982.
Banner, J. L. and Hanson, G. N.: Calculation of simultaneous isotopic and
trace element variations during water-rock interaction with applications to
carbonate diagenesis, Geochim. Cosmochim. Ac., 54, 3123–3137,
https://doi.org/10.1016/0016-7037(90)90128-8, 1990.
Barnaby, R. and Rimstidt, J.: Redox conditions of calcite cementation
interpreted from Mn-contents and Fe-contents of authigenic calcites,
Geol. Soc. Am. Bull., 101, 795–804,
https://doi.org/10.1130/0016-7606(1989)101<0795:RCOCCI>2.3.CO;2, 1989.
Becker, M., Cole, J., Rasbury, E., Pedone, V., Montanez, I., and Hanson, G.:
Cyclic variations of uranium concentrations and oxygen isotopes in tufa from
the middle Miocene Barstow Formation, Mojave Desert, California, Geology,
29, 139–142, 2001.
Becker, M., Rasbury, E., Meyers, W., and Hanson, G.: U–Pb calcite age of
the Late Permian Castile Formation, Delaware Basin: a constraint on the age
of the Permian–Triassic boundary?, Earth Planet. Sc. Lett.,
203, 681–689, https://doi.org/10.1016/S0012821X(02)00877-4,
2002.
Bishop, J. W., Osleger, D. A., Montañez, I. P., and Sumner, D. Y.:
Meteoric diagenesis and fluid-rock interaction in the Middle Permian Capitan
backreef: Yates Formation, Slaughter Canyon, New Mexico, AAPG Bull., 98,
1495–1519, https://doi.org/10.1306/05201311158, 2014.
Brannon, J. C., Cole, S. C., Podosek, F. A., Ragan, V. M., Coveney, R. M.,
Wallace, M. W., and Bradley, A. J.: Th-Pb and U–Pb Dating of OreStage
Calcite and Paleozoic Fluid Flow, Science, 271, 491–493,
https://doi.org/10.1126/science.271.5248.491, 1996.
Budd, D. A., Frost, E. L., Huntington, K. W., and Allwardt, P. F.:
Syndepositional Deformation Features In High-Relief Carbonate Platforms:
Long-Lived Conduits for Diagenetic Fluids, J. Sediment. Res.,
83, 12–36, https://doi.org/10.2110/jsr.2013.3, 2013.
Chafetz, H. S., Wu, Z., Lapen, T. J., and Milliken, K. L.: Geochemistry of
Preserved Permian Aragonitic Cements in the Tepees of the Guadalupe
Mountains, West Texas and New Mexico, U.S.A., J. Sediment. Res., 78, 187–198, https://doi.org/10.2110/jsr.2008.025, 2008.
Chung, G. and Swart, P.: The concentration of uranium in fresh-water vadose
and phreatic cements in a Holocene ooid cay- A method of identifying ancient
water tables, J. Sediment. Petrol., 60, 735–746, 1990.
Cole, J. M., Nienstedt, J., Spataro, G., Rasbury, E., Lanzirotti, A.,
Celestian, A. J., Nilsson, M., and Hanson, G. N.: Phosphor imaging as a tool
for in situ mapping of ppm levels of uranium and thorium in rocks and
minerals, Chem. Geol., 193, 127–136,
https://doi.org/10.1016/S0009-2541(02)00223-1, 2003.
Cole, J. M., Rasbury, E. T., Montañez, I. P., Pedone, V. A., Lanzirotti,
A., and Hanson, G. N.: Petrographic and trace element analysis of
uranium-rich tufa calcite, middle Miocene Barstow Formation, California,
USA: Uranium-rich tufa deposits, California, Sedimentology, 51, 433–453,
https://doi.org/10.1111/j.1365-3091.2004.00631.x, 2004.
Cole, J. M., Rasbury, E. T., Hanson, G. N., Montañez, I. P., and Pedone,
V. A.: Using U–Pb ages of Miocene tufa for correlation in a terrestrial
succession, Barstow Formation, California, Geol. Soc. Am. Bull., 117, 276, https://doi.org/10.1130/B25553.1, 2005.
de Winter, N. J. and Claeys, P.: Micro X-ray fluorescence (XRF) line
scanning on Cretaceous rudist bivalves: A new method for reproducible trace
element profiles in bivalve calcite, Sedimentology, 64, 231–251,
https://doi.org/10.1111/sed.12299, 2017.
de Winter, N. J., Sinnesael, M., Makarona, C., Vansteenberge, S., and
Claeys, P.: Trace element analyses of carbonates using portable and
micro-X-ray fluorescence: performance and optimization of measurement
parameters and strategies, J. Anal. Atom. Spectrom., 32,
1211–1223, https://doi.org/10.1039/C6JA00361C, 2017.
Dickson, J. A. D. and Kenter, J. A. M.: Diagenetic Evolution of Selected
Parasequences Across A Carbonate Platform: Late Paleozoic, Tengiz Reservoir,
Kazakhstan, J. Sediment. Res., 84, 664–693,
https://doi.org/10.2110/jsr.2014.54, 2014.
Drake, H., Mathurin, F. A., Zack, T., Schaefer, T., Roberts, N. M. W.,
Whitehouse, M., Karlsson, A., Broman, C., and Astrom, M. E.: Incorporation
of Metals into Calcite in a Deep Anoxic Granite Aquifer, Environ. Sci. Technol., 52, 493–502,
https://doi.org/10.1021/acs.est.7b05258, 2018.
Drost, K., Chew, D., Petrus, J. A., Scholze, F., Woodhead, J. D., Schneider,
J. W., and Harper, D. A. T.: An Image Mapping Approach to U–Pb LA-ICP-MS
Carbonate Dating and Applications to Direct Dating of Carbonate
Sedimentation, Geochem. Geophy. Geosy., 19, 4631–4648,
https://doi.org/10.1029/2018GC007850, 2018.
Drysdale, R. N., Zanchetta, G., Baneschi, I., Guidi, M., Isola, I.,
Couchoud, I., Piccini, L., Greig, A., Wong, H., Woodhead, J. D., Regattieri,
E., Corrick, E., Paul, B., Spötl, C., Denson, E., Gordon, J., Jaillet,
S., Dux, F., and Hellstrom, J. C.: Partitioning of Mg, Sr, Ba and U into a
subaqueous calcite speleothem, Geochim. Cosmochim. Ac., 264, 67–91,
https://doi.org/10.1016/j.gca.2019.08.001, 2019.
Frisia, S., Borsato, A., and Susini, J.: Synchrotron radiation applications
to past volcanism archived in speleothems: An overview, J. Volcanol. Geoth. Res., 177, 96–100,
https://doi.org/10.1016/j.jvolgeores.2007.11.010, 2008.
Frost, E. L., Budd, D. A., and Kerans, C.: Syndepositional Deformation In A
High-Relief Carbonate Platform and Its Effect On Early Fluid Flow As
Revealed By Dolomite Patterns, J. Sediment. Res., 82,
913–932, https://doi.org/10.2110/jsr.2012.74, 2013.
Godeau, N., Deschamps, P., Guihou, A., Leonide, P., Tendil, A., Gerdes, A.,
Hamelin, B., and Girard, J.-P.: U–Pb dating of calcite cement and diagenetic
history in microporous carbonate reservoirs: Case of the Urgonian Limestone,
France, Geology, 46, 247–250, https://doi.org/10.1130/G39905.1, 2018.
Grotzinger, J. P., and Knoll, A. H.: Anomalous Carbonate Precipitates: Is the
Precambrian the Key to the Permian?, Palaios, 10, 578,
https://doi.org/10.2307/3515096, 1995.
Gvirtzman, G., Friedman, G., and Miller, D.: Conntrol and distribution of
uranium in coral reefs during diagenesis, J. Sediment. Petrol.,
43, 985–997, 1973.
Haglund, D., Friedman, G., and Miller, D.: Effect of fresh water
redistribution of uranium in carbonate sediments, J. Sediment. Petrol., 39, 1283–1296, 1969.
Hardie, L.: Secular variation in seawater chemistry: An explanation for the
coupled secular variation in the mineralogies of marine limestones and
potash evaporites over the past 600 my, Geology, 24, 279–283, 1996.
Haschke, M.: Applications, in: Laboratory Micro-X-Ray Fluorescence
Spectroscopy: Instrumentation and Applications, Springer Series in Surface
Sciences, Cham: Springer International Publishing Cham:
Springer International Publishing, https://doi.org/10.1007/978-3-319-04864-2_7, 229–341, 2014.
Hoff, J., Jameson, J., and Hanson, G.: Application of Pb isotopes to the
absolute timing of regional exposure events in carbonate rocks – an example
from U-rich dolostones from the Wahoo Formation (Pennsylvanian), Prudhoe
Bay, Alaska A, J. Sediment. Res. A, 65, 225–233, 1995.
Horita, J., Zimmermann, H., and Holland, H. D.: Chemical evolution of
seawater during the Phanerozoic, Geochim. Cosmochim. Ac., 66,
3733–3756, https://doi.org/10.1016/S0016-7037(01)00884-5, 2002.
Hunt, D. W., Fitchen, W. M., and Kosa, E.: Syndepositional deformation of
the Permian Capitan reef carbonate platform, Guadalupe Mountains, New
Mexico, USA, Sediment. Geol., 154, 89–126,
https://doi.org/10.1016/S0037-0738(02)00104-5, 2003.
Jones, C., Halliday, A., and Lohmann, K.: The impact of diagenesis on
high-precision UPb dating of ancient carbonates: An example from the Late
Permian of New Mexico, Earth Planet. Sc. Lett., 134, 409–423,
https://doi.org/10.1016/0012-821X(95)00128-Y, 1995.
Katsuta, N., Takano, M., Sano, N., Tani, Y., Ochiai, S., Naito, S.,
Murakami, T., Niwa, M., and Kawakami, S.: Quantitative micro-X-ray
fluorescence scanning spectroscopy of wet sediment based on the X-ray
absorption and emission theories: Its application to freshwater lake
sedimentary sequences, Sedimentology, 66, 2490–2510,
https://doi.org/10.1111/sed.12603, 2019.
Kelly, S. D., Newville, M. G., Cheng, L., Kemner, K. M., Sutton, S. R.,
Fenter, P., Sturchio, N. C., and Spötl, C.: Uranyl Incorporation in
Natural Calcite, Environ. Sci. Technol., 37, 1284–1287,
https://doi.org/10.1021/es025962f, 2003.
Kelly, S. D., Rasbury, E. T., Chattopadhyay, S., Kropf, A. J., and Kemner,
K. M.: Evidence of a Stable Uranyl Site in Ancient OrganicRich Calcite,
Environ. Sci. Technol., 40, 2262–2268,
https://doi.org/10.1021/es051970v, 2006.
Knopf, A.: Strontianite deposits near Barstow California. Contributions to Economic Geology, 1917 part 1, 257–270, 2017.
Langmuir, D.: Uranium solution-mineral equilibria at low-temperatures with
applications to sedimentary ore-deposits U, Geochim. Cosmochim. Ac.,
42, 547–569, https://doi.org/10.1016/0016-7037(78)90001-7, 1978.
Lawson, M., Shenton, B. J., Stolper, D. A., Eiler, J. M., Rasbury, E. T.,
Becker, T. P., Phillips-Lander, C. M., Buono, A. S., Becker, S. P., Pottorf,
R., Gray, G. G., Yurewicz, D., and Gournay, J.: Deciphering the diagenetic
history of the El Abra Formation of eastern Mexico using reordered clumped
isotope temperatures and U–Pb dating, Geol. Soc. Am. Bull., 130, 617–629, https://doi.org/10.1130/B31656.1, 2018.
Lowenstein, T. K.: Oscillations in Phanerozoic Seawater Chemistry: Evidence
from Fluid Inclusions, Science, 294, 1086–1088,
https://doi.org/10.1126/science.1064280, 2001.
Loyd, S., Dickson, J., Scholle, P., and Tripati, A.: Extensive,
uplift-related and non-fault-controlled spar precipitation in the Permian
Capitan Formation, Sediment. Geol., 298, 17–27,
https://doi.org/10.1016/j.sedgeo.2013.10.001, 2013.
Luczaj, J. A. and Goldstein, R. H.: Diagenesis of the Lower Permian Krider
Member, Southwest Kansas, U.S.A.: Fluid-Inclusion, U–Pb, and Fission-Track
Evidence for Reflux Dolomitization During Latest Permian Time, J. Sediment. Res., 70, 762–773,
https://doi.org/10.1306/2DC40936-0E47-11D7-8643000102C1865D, 2000.
Ludwig, K.: Uranium-daughter migration and U–Pb isotope apparent ages of
uranium ores, Shirley Basin, Wyoming, Econ. Geol., 73, 29–49,
https://doi.org/10.2113/gsecongeo.73.1.29, 1978.
Ludwig, K. R.: ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel
Volume: 4, 74 pp., 2003.
Mazzullo, S. J.: Calcite Pseudospar Replacive of Marine Acicular Aragonite,
and Implications for Aragonite Cement Diagenesis, SEPM J. Sediment. Res., 50,
https://doi.org/10.1306/212F7A18-2B24-11D7-8648000102C1865D,
1980.
Meyers, W.: Carbonate cement stratigraphy of the Lake Valley Formation
(Mississippian) Sacramento Mountains, New Mexico, J. Sediment. Petrol., 44, 837–861, 1974.
Meyers, W.: Calcite cement stratigraphy- An overview, in: Luminescence
microscopy and spectroscopy: Qualitative and quantitative applications,
edited by: Barker, C. E. and Kopp, O. C., SEPM Short coure notes, Soc. Sediment. Geol., 25, 133–148, 1991.
Migdisov, A., Guo, X., Williams-Jones, A., Sun, C., Vasyukova, O., Sugiyama,
I., Fuchs, S., Pearce, K., and Roback, R.: Hydrocarbons as ore fluids,
Geochem. Perspec. Lett., 47–52,
https://doi.org/10.7185/geochemlet.1745, 2017.
Musgrove, M. and Banner, J. L.: Regional Ground-Water Mixing and the Origin
of Saline Fluids: Midcontinent, United States, Science, 259, 1877–1882,
https://doi.org/10.1126/science.259.5103.1877,
1993.
Northrup, P.: The TES beamline (8-BM) at NSLS-II: tender-energy spatially
resolved X-ray absorption spectroscopy and X-ray fluorescence imaging, J. Synchrotron Radiat., 26, 2064–2074,
https://doi.org/10.1107/S1600577519012761, 2019.
Ortega, R., Devès, G., and Maire, R.: Nuclear microprobe analysis of
uranium-rich speleothems: Methodological aspects, Nuclear Instrum. Methods, 210, 455–458, https://doi.org/10.1016/S0168-583X(03)01075-9, 2003.
Ortega, R., Maire, R., Devès, G., and Quinif, Y.: High-resolution
mapping of uranium and other trace elements in recrystallized
aragonite–calcite speleothems from caves in the Pyrenees (France):
Implication for U-series dating, Earth Planet. Sc. Lett., 237,
911–923, https://doi.org/10.1016/j.epsl.2005.06.045,
2005.
Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B.,
Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P., Sutcliffe, C., Davis,
D., and Chaduteau, C.: Improving paleohydrological and diagenetic
reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature,
18O water and U–Pb age, Chem. Geol., 481, 1–17,
https://doi.org/10.1016/j.chemgeo.2017.12.026,
2018.
Parrish, J. T., Rasbury, E. T., Chan, M. A., and Hasiotis, S. T.: Earliest
Jurassic U–Pb ages from carbonate deposits in the Navajo Sandstone,
southeastern Utah, USA, Geology, 47, 1015–1019,
https://doi.org/10.1130/G46338.1,
2019.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite:
Freeware for the visualisation and processing of mass spectrometric data,
J. Anal. Atom. Spectrom., 26, 2508,
https://doi.org/10.1039/c1ja10172b,
2011.
Petrus, J. A., Chew, D. M., Leybourne, M. I., and Kamber, B. S.: A new
approach to laser-ablation inductively-coupled-plasma mass spectrometry
(LA-ICP-MS) using the flexible map interrogation tool “Monocle”, Chem. Geol., 463, 76–93, https://doi.org/10.1016/j.chemgeo.2017.04.027, 2017.
Piccione, G., Rasbury, E. T., Elliott, B. A., Kyle, J. R., Jaret, S. J.,
Acerbo, A. S., Lanzirotti, A., Northrup, P., Wooton, K., and Parrish, R. R.:
Vein fluorite U–Pb dating demonstrates post–6.2 Ma rare-earth element
mobilization associated with Rio Grande rifting, Geosphere, 15, 1958–1972,
https://doi.org/10.1130/GES02139.1,
2019.
Pickering, R., Kramers, J. D., Hancox, P. J., de Ruiter, D. J., and
Woodhead, J. D.: Contemporary flowstone development links early hominin
bearing cave deposits in South Africa, Earth Planet. Sc. Lett.,
306, 23–32, https://doi.org/10.1016/j.epsl.2011.03.019, 2011.
Pisapia, C., Deschamps, P., Battani, A., Buschaert, S., Guihou, A., Hamelin,
B., and Brulhet, J.: dating of geodic calcite: new insights on Western
Europe major tectonic events and associated diagenetic fluids, J. Geol. Soc., 175, 60–70, https://doi.org/10.1144/jgs2017-067, 2018.
Polyak, V., Hill, C., and Asmerom, Y.: Age and Evolution of the Grand Canyon
Revealed by U–Pb Dating of Water Table-Type Speleothems, Science, 319,
1377–1380, https://doi.org/10.1126/science.1151248,
2008.
Polyak, V., DuChene, H., Davis, D., Palmer, A., Palmer, M., and Asmerom, Y.:
Incision history of Glenwood Canyon, Colorado, USA, from the uranium-series
analyses of water-table speleothems, Int. J. Speleol.,
42, 193–202, https://doi.org/10.5038/1827806X.42.3.3,
2013.
Quade, J., Rasbury, E., Huntington, K., Hudson, A., Vonhof, H., Anchukaitis,
K., Betancourt, J., Latorre, C., and Pepper, M.: Isotopic characterization
of late Neogene travertine deposits at Barrancas Blancas in the eastern
Atacama Desert, Chile, Chem. Geology, 466, 41–56,
https://doi.org/10.1016/j.chemgeo.2017.05.004,
2017.
Rasbury, E., Hanson, G., Meyers, W., and Saller, A.: Dating of the time of
sedimentation using UPb ages for paleosol calcite, Geochim. Cosmochim. Ac., 61, 1525–1529,
https://doi.org/10.1016/S0016-7037(97)00043-4,
1997.
Rasbury, E., Ward, W., Hemming, N., Li, H., Dickson, J., Hanson, G., and
Major, R.: Concurrent U–Pb age and seawater value of a marine
cement, Earth Planet. Sc. Lett., 221, 355–371,
https://doi.org/10.1016/S0012-821X(04)00105-0, 2004.
Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U–Pb dating
of carbonates, Rev. Geophys., 47, RG3001,
https://doi.org/10.1029/2007RG000246, 2009.
Rasbury, E. T., Meyers, W. J., Hanson, G. N., Goldstein, R. H., and Saller,
A. H.: Relationship of Uranium to Petrography of Caliche Paleosols with
Application to Precisely Dating the Time of Sedimentation, J. Sediment. Res., 70, 604–618,
https://doi.org/10.1306/2DC4092B-0E47-11D7-8643000102C1865D, 2000.
Rasbury, E. T., Present, T. M., Northrup, P., Tappero, R. V., Lanzirotti, A., Cole, J. M., Wooton, K. M., and Hatton, K.:
available at: https://doi.org/10.6084/m9.figshare.13604306, last access: 18 January 2021.
Reeder, R. J., Nugent, M., Tait, C., Morris, D. E., Heald, S. M., Beck, K.
M., Hess, W. P., and Lanzirotti, A.: Coprecipitation of Uranium(VI) with
Calcite: XAFS, micro-XAS, and luminescence characterization, Geochim. Cosmochim. Ac., 65, 3491–3503,
https://doi.org/10.1016/S0016-7037(01)00647-0, 2001.
Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood,
M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U–Pb
geochronology: Calcite RM for LA-ICP-MS U–Pb dating, Geochem. Geophy. Geosy., 18, 2807–2814,
https://doi.org/10.1002/2016GC006784, 2017.
Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D.,
Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J.,
Haslam, R., Hodson, K., Imber, J., Beaudoin, N., and Lee, J. K.: Laser
ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb
carbonate geochronology: strategies, progress, and limitations,
Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020,
2020.
Runnells, D.: Diagenesis, chemical sediments, and mixing of natural waters,
J. Sediment. Petrol., 39, 1188–1201, 1969.
Scholle, P. A., Ulmer, D. S., and Melim, L. A.: Late-stage calcites in the
Permian Capitan Formation and its equivalents, Delaware Basin margin, west
Texas and New Mexico: evidence for replacement of precursor evaporites,
Sedimentology, 39, 207–234,
https://doi.org/10.1111/j.1365-3091.1992.tb01035.x,
1992.
Shen, G. T. and Boyle, E. A.: Determination of lead, cadmium and other trace
metals in annually-banded corals, Chem. Geol., 67, 47–62,
https://doi.org/10.1016/0009-2541(88)90005-8,
1988.
Simpson, H. J., Trier, R. M., Toggweiler, J. R., Mathieu, G., Deck, B. L.,
Olsen, C. R., Hammond, D. E., Fuller, C., and Ku, T. L.: Radionuclides in
Mono Lake, California, Science, 216, 512–514,
https://doi.org/10.1126/science.216.4545.512, 1982.
Sturchio, N. C.: Tetravalent Uranium in Calcite, Science, 281, 971–973,
https://doi.org/10.1126/science.281.5379.971, 1998.
Sutton, S. R., Bertsch, P. M., Newville, M., Rivers, M., Lanzirotti, A., and
Eng, P.: Microfluorescence and Microtomography Analyses of Heterogeneous
Earth and Environmental Materials, Rev. Mineral. Geochem.,
49, 429–483, https://doi.org/10.2138/rmg.2002.49.8,
2002.
Suzuki, Y., Mukai, H., Ishimura, T., Yokoyama, T. D., Sakata, S., Hirata,
T., Iwatsuki, T., and Mizuno, T.: Formation and Geological Sequestration of
Uranium Nanoparticles in Deep Granitic Aquifer, Sci. Rep., 6,
https://doi.org/10.1038/srep22701, 2016.
Timofeev, A., Migdisov, A. A., Williams-Jones, A. E., Roback, R., Nelson, A.
T., and Xu, H.: Uranium transport in acidic brines under reducing
conditions, Nat. Commun., 9, 1469,
https://doi.org/10.1038/s41467-018-03564-7, 2018.
Tullborg, E.-L., Suksi, J., Geipel, G., Krall, L., Auqué, L., Gimeno,
M., and Puigdomenech, I.: The Occurrences of Ca2UO2(CO3)3 Complex in Fe(II) Containing Deep Groundwater at Forsmark, Eastern Sweden,
Proced. Earth Planet. Sci., 17, 440–443,
https://doi.org/10.1016/j.proeps.2016.12.111,2017.
Vanghi, V., Borsato, A., Frisia, S., Howard, D. L., Gloy, G., Hellstrom, J.,
and Bajo, P.: High-resolution synchrotron X-ray fluorescence investigation
of calcite coralloid speleothems: Elemental incorporation and their
potential as environmental archives, Sedimentology, 66, 2661–2685,
https://doi.org/10.1111/sed.12607,
2019.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology,
Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Wang, Z., Rasbury, E., Hanson, G., and Meyers, W.: Using the U–Pb system of
calcretes to date the time of sedimentation of clastic sedimentary rocks,
Geochim. Cosmochim. Ac., 62, 2823–2835,
https://doi.org/10.1016/S0016-7037(98)00201-4, 1998.
Weremeichik, J. M., Gabitov, R. I., Thien, B. M., and Sadekov, A.: The
effect of growth rate on uranium partitioning between individual calcite
crystals and fluid, Chem. Geol., 450, 145–153,
https://doi.org/10.1016/j.chemgeo.2016.12.026, 2017.
Wigley, T. and Plummer, L.: Mixing of carbonate waters, Geochim. Cosmochim. Ac., 40, 989–995, 1976.
Williford, K. H., Farley, K. A., Stack, K. M., Allwood, A. C., Beaty, D.,
Beegle, L. W., Bhartia, R., Brown, A. J., de la Torre Juarez, M., Hamran,
S.-E., Hecht, M. H., Hurowitz, J. A., Rodriguez-Manfredi, J. A., Maurice,
S., Milkovich, S., and Wiens, R. C.: The NASA Mars 2020 Rover Mission and
the Search for Extraterrestrial Life, in: From Habitability to Life on Mars,
Elsevier, 275–308, https://doi.org/10.1016/B978-0-12-809935-3.00010-4,
2018.
Winter, B. L. and Johnson, C. M.: UPb dating of a carbonate subaerial
exposure event, Earth Planet. Sc. Lett., 131, 177–187,
https://doi.org/10.1016/0012-821X(95)00026-9,
1995.
Woodhead, J., Reisz, R., Fox, D., Drysdale, R., Hellstrom, J., Maas, R.,
Cheng, H., and Edwards, R. L.: Speleothem climate records from deep time?
Exploring the potential with an example from the Permian, Geology, 38,
455–458, https://doi.org/10.1130/G30354.1,
2010.
Woodhead, J. D., Hellstrom, J., Hergt, J. M., Greig, A., and Maas, R.:
Isotopic and elemental imaging of geological materials by laser ablation
inductively coupled plasma-mass spectrometry, Geostand. Geoanal. Res., 31, 331–343, 2007.
Wu, Q., Ramezani, J., Zhang, H., Yuan, D.-x., Erwin, D. H., Henderson, C.
M., Lambert, L. L., Zhang, Y.-C., and Shen, S.-z.: High-precision U–Pb
zircon age constraints on the Guadalupian in West Texas, USA,
Palaeogeogr. Palaeocl., 548, 109668,
https://doi.org/10.1016/j.palaeo.2020.109668, 2020.
Short summary
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to demonstrate techniques improving the understanding of U incorporation in carbonates for U/Pb dating. With the rapidly accelerating application of laser ablation analyses, there is a great need for well-characterized reference materials that can serve multiple functions. Strontium (Sr) isotope analyses and U XANES demonstrate that these samples could be used as reference materials.
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to...
Special issue