Articles | Volume 3, issue 1
Research article
16 Feb 2021
Research article |  | 16 Feb 2021

Tools for uranium characterization in carbonate samples: case studies of natural U–Pb geochronology reference materials

E. Troy Rasbury, Theodore M. Present, Paul Northrup, Ryan V. Tappero, Antonio Lanzirotti, Jennifer M. Cole, Kathleen M. Wooton, and Kevin Hatton

Related authors

Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China
Xianghui Li, Jingyu Wang, Troy Rasbury, Min Zhou, Zhen Wei, and Chaokai Zhang
Clim. Past, 16, 2055–2074,,, 2020
Short summary

Related subject area

Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19,,, 2023
Short summary
In situ U–Pb dating of 4 billion-year-old carbonates in the martian meteorite Allan Hills 84001
Romain Tartèse and Ian C. Lyon
Geochronology, 4, 683–690,,, 2022
Short summary
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Darwinaji Subarkah, Angus L. Nixon, Monica Jimenez, Alan S. Collins, Morgan L. Blades, Juraj Farkaš, Sarah E. Gilbert, Simon Holford, and Amber Jarrett
Geochronology, 4, 577–600,,, 2022
Short summary
Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
Daniil V. Popov
Geochronology, 4, 399–407,,, 2022
Short summary
In situ Lu–Hf geochronology of calcite
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372,,, 2022
Short summary

Cited articles

Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A., and Heirwegh, C. M.: Reassessing evidence of life in 3,700-million-year-old rocks of Greenland, Nature, 563, 241–244,, 2018. 
Amiel, A. J., Miller, D. S., and Friedman, G. M.: Incorporation of uranium in modern corals, Sedimentology, 20, 523–528,, 1973. 
Anderson, R. F., Bacon, M. P., and Brewer, P. G.: Elevated Concentrations of Actinides in Mono Lake, Science, 216, 514–516,, 1982. 
Banner, J. L. and Hanson, G. N.: Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Ac., 54, 3123–3137,, 1990. 
Barnaby, R. and Rimstidt, J.: Redox conditions of calcite cementation interpreted from Mn-contents and Fe-contents of authigenic calcites, Geol. Soc. Am. Bull., 101, 795–804,<0795:RCOCCI>2.3.CO;2, 1989. 
Short summary
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to demonstrate techniques improving the understanding of U incorporation in carbonates for U/Pb dating. With the rapidly accelerating application of laser ablation analyses, there is a great need for well-characterized reference materials that can serve multiple functions. Strontium (Sr) isotope analyses and U XANES demonstrate that these samples could be used as reference materials.