Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uranium incorporation in fluorite and exploration of U–Pb dating
Louise Lenoir
CORRESPONDING AUTHOR
CNRS, GEOPS, Université Paris-Saclay, Orsay, 91405, France
Thomas Blaise
CNRS, GEOPS, Université Paris-Saclay, Orsay, 91405, France
Andréa Somogyi
Synchrotron SOLEIL, Université Paris-Saclay, Saint-Aubin, 91190, France
Benjamin Brigaud
CNRS, GEOPS, Université Paris-Saclay, Orsay, 91405, France
Jocelyn Barbarand
CNRS, GEOPS, Université Paris-Saclay, Orsay, 91405, France
Claire Boukari
CNRS, GEOPS, Université Paris-Saclay, Orsay, 91405, France
Julius Nouet
CNRS, GEOPS, Université Paris-Saclay, Orsay, 91405, France
Aurore Brézard-Oudot
CNRS, CentraleSupélec, Group of Electrical Engineering Paris (GeePs), Université Paris-Saclay, Gif-sur-Yvette, 91192, France
Maurice Pagel
CNRS, GEOPS, Université Paris-Saclay, Orsay, 91405, France
Related authors
No articles found.
Loïc Martin, Julius Nouet, Arnaud Dapoigny, Gaëlle Barbotin, Fanny Claverie, Edwige Pons-Branchu, Jocelyn Barbarand, Christophe Pécheyran, Norbert Mercier, Fanny Derym, Bernard Gély, and Hélène Valladas
Geochronology, 6, 247–263, https://doi.org/10.5194/gchron-6-247-2024, https://doi.org/10.5194/gchron-6-247-2024, 2024
Short summary
Short summary
Carbonate wall deposits of Trou du Renard cave (France) were dated using a multimethod approach: U–Th dating by bulk dissolution of samples and inductively coupled plasma mass spectrometry (ICP-MS), U–Th dating by laser ablation ICP-MS imaging, and radiocarbon dating. The samples were studied to ensure that they give reliable ages. Ages ranging from 187.9 ± 5.3 ka and 1.4 ± 0.1 ka were found. This approach should make it possible to establish more robust chronologies of archaeological caves.
Thibault Duteil, Raphaël Bourillot, Olivier Braissant, Adrien Henry, Michel Franceschi, Marie-Joelle Olivier, Nathalie Le Roy, Benjamin Brigaud, Eric Portier, and Pieter T. Visscher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-62, https://doi.org/10.5194/bg-2023-62, 2023
Revised manuscript not accepted
Short summary
Short summary
Water chemistry was measured in an estuarine sediment core at a depth of 6 m. These measurements indirectly identify microbial metabolisms that disrupt water chemistry. In addition, microbial activity in sediments was measured for direct evidence of the presence of microorganisms. Impacts of these disturbances, studied by modelling show that new mineral phases can precipitate in depth.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Related subject area
SIMS, LA-ICP-MS
Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
On the viability of detrital biotite Rb–Sr geochronology
Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating
Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS
In situ U–Pb dating of 4 billion-year-old carbonates in the martian meteorite Allan Hills 84001
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
In situ Lu–Hf geochronology of calcite
Calcite U–Pb dating of altered ancient oceanic crust in the North Pamir, Central Asia
Towards in situ U–Pb dating of dolomite
U − Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation
Tools for uranium characterization in carbonate samples: case studies of natural U–Pb geochronology reference materials
Direct U–Pb dating of carbonates from micron-scale femtosecond laser ablation inductively coupled plasma mass spectrometry images using robust regression
Technical note: LA–ICP-MS U–Pb dating of unetched and etched apatites
The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U − Pb geochronology of calcite
Expanding the limits of laser-ablation U–Pb calcite geochronology
Resolving multiple geological events using in situ Rb–Sr geochronology: implications for metallogenesis at Tropicana, Western Australia
LA-ICPMS U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona)
Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.
Kyle P. Larson, Brendan Dyck, Sudip Shrestha, Mark Button, and Yani Najman
Geochronology, 6, 303–312, https://doi.org/10.5194/gchron-6-303-2024, https://doi.org/10.5194/gchron-6-303-2024, 2024
Short summary
Short summary
This study demonstrates the utility of laser-ablation-based detrital biotite Rb–Sr geochronology to investigate the rates of exhumation and burial in active mountain-building systems. It is further demonstrated that additional chemical data collected during spot analyses can be used to determine temperatures recorded in biotite. The method used has advantages over traditional methods in speed, ease of acquisition, and the ability to collect additional chemical information.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.
Romain Tartèse and Ian C. Lyon
Geochronology, 4, 683–690, https://doi.org/10.5194/gchron-4-683-2022, https://doi.org/10.5194/gchron-4-683-2022, 2022
Short summary
Short summary
Absolute chronological constraints are crucial in Earth and planetary sciences. In recent years, U–Pb dating of carbonates has provided information on the timing of, for example, diagenesis, faulting, or hydrothermalism. These studies have targeted relatively young terrestrial carbonates up to 300 million years old. By dating 3.9 billion-year-old martian carbonates in situ using the U–Pb chronometer, we show that this system is robust in ancient samples that have had a relatively simple history.
Darwinaji Subarkah, Angus L. Nixon, Monica Jimenez, Alan S. Collins, Morgan L. Blades, Juraj Farkaš, Sarah E. Gilbert, Simon Holford, and Amber Jarrett
Geochronology, 4, 577–600, https://doi.org/10.5194/gchron-4-577-2022, https://doi.org/10.5194/gchron-4-577-2022, 2022
Short summary
Short summary
Advancements in technology have introduced new techniques to more quickly and cheaply date rocks with little sample preparation. A unique use of this method is to date shales and constrain when these rocks were first deposited. This approach can also time when such sequences were subsequently affected by heat or fluids after they were deposited. This is useful, as the formation of precious-metal-bearing systems or petroleum source rocks is commonly associated with such processes.
Daniil V. Popov
Geochronology, 4, 399–407, https://doi.org/10.5194/gchron-4-399-2022, https://doi.org/10.5194/gchron-4-399-2022, 2022
Short summary
Short summary
This work provides equations allowing the use of minerals with variable concentrations of parent and daughter isotopes as primary standards to correct for elemental fractionation during the analysis by laser ablation inductively coupled plasma mass spectrometry.
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
Bar Elisha, Perach Nuriel, Andrew Kylander-Clark, and Ram Weinberger
Geochronology, 3, 337–349, https://doi.org/10.5194/gchron-3-337-2021, https://doi.org/10.5194/gchron-3-337-2021, 2021
Short summary
Short summary
Distinguishing between different dolomitization processes is challenging yet critical for resolving some of the issues and ambiguities related to the formation of dolomitic rocks. Accurate U–Pb absolute dating of dolomite by LA-ICP-MS could contribute to a better understanding of the dolomitization process by placing syngenetic, early diagenetic, and/or epigenetic events in the proper geological context.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
E. Troy Rasbury, Theodore M. Present, Paul Northrup, Ryan V. Tappero, Antonio Lanzirotti, Jennifer M. Cole, Kathleen M. Wooton, and Kevin Hatton
Geochronology, 3, 103–122, https://doi.org/10.5194/gchron-3-103-2021, https://doi.org/10.5194/gchron-3-103-2021, 2021
Short summary
Short summary
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to demonstrate techniques improving the understanding of U incorporation in carbonates for U/Pb dating. With the rapidly accelerating application of laser ablation analyses, there is a great need for well-characterized reference materials that can serve multiple functions. Strontium (Sr) isotope analyses and U XANES demonstrate that these samples could be used as reference materials.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Christian Paroissin, Pierre-Alexandre Grignard, Geoffrey Motte, Olivier Chailan, and Jean-Pierre Girard
Geochronology, 3, 67–87, https://doi.org/10.5194/gchron-3-67-2021, https://doi.org/10.5194/gchron-3-67-2021, 2021
Short summary
Short summary
A new methodology for the micron-scale uranium–lead dating of carbonate minerals is proposed. It is based on the extraction of ages directly from pixel images (< 1 mm2) obtained by laser ablation coupled to a mass spectrometer. The ages are calculated with a robust linear regression through the pixel values. This methodology is compared to existing approaches.
Fanis Abdullin, Luigi A. Solari, Jesús Solé, and Carlos Ortega-Obregón
Geochronology, 3, 59–65, https://doi.org/10.5194/gchron-3-59-2021, https://doi.org/10.5194/gchron-3-59-2021, 2021
Short summary
Short summary
Unetched and etched apatite grains from five samples were dated by U–Pb method using laser ablation inductively coupled plasma mass spectrometry. Our experiment indicates that etching needed for apatite fission track dating has insignificant effects on obtaining accurate U–Pb ages; thus, the laser ablation-based technique may be used for apatite fission track and U–Pb double dating.
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Andrew R. C. Kylander-Clark
Geochronology, 2, 343–354, https://doi.org/10.5194/gchron-2-343-2020, https://doi.org/10.5194/gchron-2-343-2020, 2020
Short summary
Short summary
This paper serves as a guide to those interested in dating calcite by laser ablation. Within it are theoretical and practical limits of U and Pb concentrations (and U / Pb ratios), which would allow viable extraction of ages from calcite (and other minerals with moderate U / Pb ratios), and which type of instrumentation would be appropriate for any given sample. The method described uses a new detector array, allowing for lower detection limits and thereby expanding the range of viable samples.
Hugo K. H. Olierook, Kai Rankenburg, Stanislav Ulrich, Christopher L. Kirkland, Noreen J. Evans, Stephen Brown, Brent I. A. McInnes, Alexander Prent, Jack Gillespie, Bradley McDonald, and Miles Darragh
Geochronology, 2, 283–303, https://doi.org/10.5194/gchron-2-283-2020, https://doi.org/10.5194/gchron-2-283-2020, 2020
Short summary
Short summary
Using a relatively new dating technique, in situ Rb–Sr geochronology, we constrain the ages of two generations of mineral assemblages from the Tropicana Zone, Western Australia. The first, dated at ca. 2535 Ma, is associated with exhumation of an Archean craton margin and gold mineralization. The second, dated at ca. 1210 Ma, has not been previously documented in the Tropicana Zone. It is probably associated with Stage II of the Albany–Fraser Orogeny and additional gold mineralization.
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
Marcel Guillong, Jörn-Frederik Wotzlaw, Nathan Looser, and Oscar Laurent
Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, https://doi.org/10.5194/gchron-2-155-2020, 2020
Short summary
Short summary
The dating of carbonates by laser ablation inductively coupled plasma mass spectrometry is improved by an additional, newly characterised reference material and adapted data evaluation protocols: the shape (diameter to depth) of the ablation crater has to be as similar as possible in the reference material used and the unknown samples to avoid an offset. Different carbonates have different ablation rates per laser pulse. With robust uncertainty propagation, precision can be as good as 2–3 %.
Nick M. W. Roberts, Kerstin Drost, Matthew S. A. Horstwood, Daniel J. Condon, David Chew, Henrik Drake, Antoni E. Milodowski, Noah M. McLean, Andrew J. Smye, Richard J. Walker, Richard Haslam, Keith Hodson, Jonathan Imber, Nicolas Beaudoin, and Jack K. Lee
Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, https://doi.org/10.5194/gchron-2-33-2020, 2020
Short summary
Short summary
Here we review current progress in LA-ICP-MS U–Pb carbonate geochronology and present strategies for acquisition and interpretation of carbonate U–Pb dates. We cover topics from imaging techniques and U and Pb incorporation into calcite to potential limitations of the method – disequilibrium and isotope mobility. We demonstrate the incorporation of imaging and compositional data to help refine and interpret U–Pb dates. We expect this paper to become a
go-toreference paper for years to come.
Cited articles
Alexandre, P., Kyser, K., Thomas, D., Polito, P., and Marlat, J.:
Geochronology of unconformity-related uranium deposits in the Athabasca
Basin, Saskatchewan, Canada and their integration in the evolution of the
basin, Miner. Deposita, 44, 41–59, https://doi.org/10.1007/s00126-007-0153-3, 2009.
Baele, J.-M., Monin, L., Navez, J., and André, L.: Systematic REE
Partitioning in Cubo-Dodecahedral Fluorite from Belgium Revealed by
Cathodoluminescence Spectral Imaging and Laser Ablation-ICP-MS, Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), 1–5 August 2011, Trondheim, Norway, 23–30, https://doi.org/10.1007/978-3-642-27682-8_4, 2012.
Barbarand, J., Quesnel, F., and Pagel, M.: Lower Paleogene denudation of
Upper Cretaceous cover of the Morvan Massif and southeastern Paris Basin
(France) revealed by AFT thermochronology and constrained by stratigraphy
and paleosurfaces, Tectonophysics, 608, 1310–1327,
https://doi.org/10.1016/j.tecto.2013.06.011, 2013.
Baumgartner, R. J., Van Kranendonk, M. J., Pagès, A., Fiorentini, M. L.,
Wacey, D., and Ryan, C.: Accumulation of transition metals and metalloids in
sulfidized stromatolites of the 3.48 billion-year-old Dresser Formation,
Pilbara Craton, Precambrian Res., 337, 105534,
https://doi.org/10.1016/j.precamres.2019.105534, 2020.
Bellon, H., Gillot, P. Y., and Nativel, P.: Eocene volcanic activity in
Bourgogne, Charollais, Massif Central
(France), Earth Planet. Sc. Lett., 23, 53–58, https://doi.org/10.1016/0012-821X(74)90029-6, 1974.
Belyi, V., Vinogradov, V., and Lisitsin, A.: Sulfur isotope composition of
uranium roll ore bodies and its genetic significance,
Litologiya i Poleznye Iskopaemye, 6, 42–53, 1972.
Bergamaschi, A.: Développements méthodologiques et logiciels pour
l'imagerie X multimodale par balayage sur la ligne de lumière
Nanoscopium, Thèse de doctorat, Université Paris Saclay, Saint-Aubin, France, 146 pp., 2017.
Bergerat, F.: La fracturation nivernaise: Influences bourguignonne et
centralienne sur la structuration du Nivernais, Bulletin d'information des
géologues du bassin de Paris, 21, 27–31, 1984.
Bill, H. and Calas, G.: Color centers, associated rare-earth ions and the
origin of coloration in natural
fluorites, Phys. Chem. Miner., 3, 117–131, https://doi.org/10.1007/BF00308116, 1978.
Blakeman, R. J., Ashton, J. H., Boyce, A. J., Fallick, A. E., and Russell, M.
J.: Timing of Interplay between Hydrothermal and Surface Fluids in the Navan
Zn + Pb Orebody, Ireland: Evidence from Metal Distribution Trends, Mineral
Textures, and 34S Analyses, Econ. Geol., 97, 73–91,
https://doi.org/10.2113/gsecongeo.97.1.73, 2002.
Boiron, M. C., Cathelineau, M., Banks, D. A., Buschaert, S., Fourcade, S.,
Coulibaly, Y., Michelot, J. L., and Boyce, A.: Fluid transfers at a
basement/cover interface Part II: Large-scale introduction of chlorine into
the basement by Mesozoic basinal brines, Chem. Geol., 192, 121–140,
2002.
Bonnetti, C., Cuney, M., Michels, R., Truche, L., Malartre, F., Liu, X., and
Yang, J.: The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides
in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian
Basin, NE China, Econ. Geol., 110, 1059–1081,
https://doi.org/10.2113/econgeo.110.4.1059, 2015.
Bonnetti, C., Liu, X., Zhaobin, Y., Cuney, M., Michels, R., Malartre, F.,
Mercadier, J., and Cai, J.: Coupled uranium mineralisation and bacterial
sulphate reduction for the genesis of the Baxingtu sandstone-hosted U
deposit, SW Songliao Basin, NE China, Ore Geol. Rev., 82, 108–129,
https://doi.org/10.1016/j.oregeorev.2016.11.013, 2017.
Bonnetti, C., Zhou, L., Riegler, T., Brugger, J., and Fairclough, M.: Large S
isotope and trace element fractionations in pyrite of uranium roll front
systems result from internally-driven biogeochemical
cycle, Geochim. Cosmochim. Ac., 282, 113–132,,
https://doi.org/10.1016/j.gca.2020.05.019, 2020.
Bosze, S. and Rakovan, J.: Surface-structure-controlled sectoral zoning of
the rare earth elements in fluorite from Long Lake, New York, and Bingham,
New Mexico, USA, Geochim. Cosmochim. Ac., 66, 997–1009,
https://doi.org/10.1016/S0016-7037(01)00822-5, 2002.
Brigaud, B., Bonifacie, M., Pagel, M., Blaise, T., Calmels, D., Haurine, F.,
and Landrein, P.: Past hot fluid flows in limestones detected by Δ47–(U-Pb) and not recorded by other geothermometers, Geology, 48,
851–856, https://doi.org/10.1130/G47358.1, 2020.
Burisch, M., Walter, B. F., and Markl, G.: Silicification of Hydrothermal
Gangue Minerals in Pb-Zn-Cu-Fluorite-Quartz-Baryte Veins,
Can. Mineral., 55, 501–514, https://doi.org/10.3749/canmin.1700005, 2017.
Cai, C., Dong, H., Li, H., Xiao, X., Ou, G., and Zhang, C.: Mineralogical and
geochemical evidence for coupled bacterial uranium mineralization and
hydrocarbon oxidation in the Shashagetai deposit, NW China, Chem. Geol., 236, 167–179, https://doi.org/10.1016/j.chemgeo.2006.09.007, 2007.
Campbell, K. M., Kukkadapu, R. K., Qafoku, N. P., Peacock, A. D., Lesher,
E., Williams, K. H., Bargar, J. R., Wilkins, M. J., Figueroa, L., Ranville,
J., Davis, J. A., and Long, P. E.: Geochemical, mineralogical and
microbiological characteristics of sediment from a naturally reduced zone in
a uranium-contaminated aquifer, Appl. Geochem., 27, 1499–1511,
https://doi.org/10.1016/j.apgeochem.2012.04.013, 2012.
Cardon, O.: Datation Re-Os sur pyrite et traçage des sources des
métaux dans des gisements de type porphyre et épithermal neutre:
Exemple des gisements de Bolcana, Troita et Magura, Monts Apuseni, Roumanie,
Thèse de doctorat, Université Henri Poincaré, Nancy, France, 234 pp., 2007.
Carpéna, J., Doubinger, J., Guérin, R., Juteau, J. and Monnier, M.:
Le volcanisme acide de l'ouest-morvan dans son cadre géologique:
caractéristique géochimique, structurale et chronologique de mise en
place, B. Soc. Geol. Fr., 5, 839–859, 1984.
Cathelineau, M., Boiron, M.-C., Fourcade, S., Ruffet, G., Clauer, N.,
Belcourt, O., Coulibaly, Y., Banks, D. A., and Guillocheau, F.: A major Late
Jurassic fluid event at the basin/basement unconformity in western France:
and K–Ar dating, fluid chemistry, and related geodynamic context, Chem. Geol., 322–323, 99–120,
https://doi.org/10.1016/j.chemgeo.2012.06.008, 2012.
Chatagnon, B., Galland, D., Gloux, P., and Méary, A.: L'lon
Paramagnétique Tm2+ dans la Fluorite: Un Témoin de la
Radioactivité dans le Gisement, Miner. Deposita, 17, 411–422,
https://doi.org/10.1007/BF00204469, 1982.
Chen, Y., Jin, R., Miao, P., Li, J., Guo, H., and Chen, L.: Occurrence of
pyrites in sandstone-type uranium deposits: Relationships with uranium
mineralization in the North Ordos Basin, China, Ore Geol. Rev., 109,
426–447, https://doi.org/10.1016/j.oregeorev.2019.03.037, 2019.
Cherniak, D. J., Zhang, X. Y., Wayne, N. K., and Watson, E. B.: Sr, Y, and
REE diffusion in fluorite, Chem. Geol., 181, 99–111,
https://doi.org/10.1016/S0009-2541(01)00267-4, 2001.
Chesley, J. T., Halliday, A. N., and Scrivener, R. C.: Samarium-Neodymium
Direct Dating of Fluorite Mineralization, Science, 252, 949–951,
https://doi.org/10.1126/science.252.5008.949, 1991.
Chi, G., Li, Z., Chu, H., Bethune, K. M., Quirt, D. H., Ledru, P., Normand,
C., Card, C., Bosman, S., Davis, W. J., and Potter, E. G.: A shallow-burial
mineralization model for the unconformity-related uranium deposits in the
Athabasca basin, Econ. Geol., 113, 1209–1217,
https://doi.org/10.5382/econgeo.2018.4588, 2018.
Cinelu, S. and Cuney, M.: Sodic metasomatism and U–Zr mineralization: A
model based on the Kurupung batholith (Guyana), Goldschmidt conference, 27 August–1 September 2006, Melbourne, Australia, A103, https://doi.org/doi:10.1016/j.gca.2006.06.120, 2006.
De Bonis, A., Santagata, A., Galasso, A., Sansone, M., and Teghil, R.:
Femtosecond laser ablation of CaF2: Plasma characterization and thin films deposition, Appl. Surf. Sci., 302, 145–148,
https://doi.org/10.1016/j.apsusc.2013.09.089, 2014.
De Corte, F., Bellemans, F., van den Haute, P., Ingelbrecht, C., and Nicholl,
C.: A new U doped glass certified by the European Commission for the
calibration of fission-track dating, in: Advances in Fission-Track
Geochronology, Springer Dordrecht, The Netherlands, 67–78,
https://doi.org/10.1007/978-94-015-9133-1_5, 1998.
Deng, X.-D. and Li, J.-W.: Mineralogy and geochronology of supergene Mn-oxides in the Dongxiangqiao deposit, Hunan Province, South China, Miner. Petrol., 111, 253–265,
https://doi.org/10.1007/s00710-016-0466-y, 2017.
Dill, H. G. and Weber, B.: Accessory minerals of fluorite and their
implication regarding the environment of formation (Nabburg-Wölsendorf
fluorite district, SE Germany), with special reference to fetid fluorite
(“Stinkspat”), Ore Geol. Rev., 37, 65–86,
https://doi.org/10.1016/j.oregeorev.2010.01.004, 2010.
Dill, H. G., Hansen, B. T., and Weber, B.: REE contents, REE minerals and
Sm Nd isotopes of granite- and unconformity-related fluorite mineralization
at the western edge of the Bohemian Massif: With special reference to the
Nabburg-Wölsendorf District, SE Germany, Ore Geol. Rev., 40,
132–148, https://doi.org/10.1016/j.oregeorev.2011.06.003, 2011.
Ding, T., Valkiers, S., Kipphardt, H., De Bièvre, P., Taylor, P. D. P.,
Gonfiantini, R., and Krouse, R.: Calibrated sulfur isotope abundance ratios
of three IAEA sulfur isotope reference materials and V-CDT with a
reassessment of the atomic weight of sulfur, Geochim. Cosmochim. Ac., 65, 2433–2437, https://doi.org/10.1016/S0016-7037(01)00611-1, 2001.
Elisha, B., Nuriel, P., Kylander-Clark, A., and Weinberger, R.: Towards in-situ U–Pb dating of dolomites, Geochronology Discuss. [preprint], https://doi.org/10.5194/gchron-2020-19, in review, 2020.
Enkelmann, E., Jonckheere, R., and Ratschbacher, L.: Absolute measurements of
the uranium concentration in thick samples using fission-track detectors,
Nucl. Instrum. Meth. B, 229, 489–498, https://doi.org/10.1016/j.nimb.2005.01.003, 2005.
European Commission: Study on the review of the list of critical raw materials: final report, Directorate General for Internal Market, Industry, Entrepreneurship and SMEs, Deloitte Sustainability, British Geological Survey, Bureau de Recherches Géologiques et Minières, and Toegepast natuurwetenschappelijk onderzoek, Publications Office, Luxemburg, 2017.
Evans, N. J., Wilson, N. S. F., Cline, J. S., McInnes, B. I. A., and Byrne,
J.: Fluorite (U–Th) He thermochronology: Constraints on the low temperature
history of Yucca Mountain, Nevada, Appl. Geochem., 20, 1099–1105,
https://doi.org/10.1016/j.apgeochem.2005.02.008, 2005.
Forbes, P., Pacquet, A., Chantret, F., Oumarou, J., and Pagel, M.: Marqueurs
du volcanisme dans le gisement d'uranium d'Akouta (République du Niger),
Cr. Acad. Sci. II, 298, 647–650, 1984.
Galindo, C., Tornos, F., Darbyshire, D. P. F., and Casquet, C.: The age and
origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama
(Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope
study, Chem. Geol., 112, 351–364,
https://doi.org/10.1016/0009-2541(94)90034-5, 1994.
Gigon, J., Deloule, E., Mercadier, J., Huston, D. L., Richard, A., Annesley,
I. R., Wygralak, A. S., Skirrow, R. G., Mernagh, T. P., and Masterman, K.:
Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia)
using lead isotopes, Geology, 48, 478–482,
https://doi.org/10.1130/G47001.1, 2020.
Gigoux, M., Delpech, G., Guerrot, C., Pagel, M., Augé, T., Négrel,
P., and Brigaud, B.: Evidence for an Early Cretaceous mineralizing event
above the basement/sediment unconformity in the intracratonic Paris Basin:
paragenetic sequence and Sm-Nd dating of the world-class Pierre-Perthuis
stratabound fluorite deposit, Miner. Deposita, 50, 455–463,
https://doi.org/10.1007/s00126-015-0592-1, 2015.
Gigoux, M., Brigaud, B., Pagel, M., Delpech, G., Guerrot, C., Augé, T.,
and Négrel, P.: Genetic constraints on world-class carbonate- and
siliciclastic-hosted stratabound fluorite deposits in Burgundy (France)
inferred from mineral paragenetic sequence and fluid inclusion studies, Ore Geol. Rev., 72, 940–962, https://doi.org/10.1016/j.oregeorev.2015.09.013, 2016.
Gleadow, A. J. W.: Fission-track dating methods: What are the real
alternatives?, Nuclear Tracks, 5, 3–14,
https://doi.org/10.1016/0191-278X(81)90021-4, 1981.
Gogoll, S., Stenzel, E., Johansen, H., Reichling, M., and Matthias, E.:
Laser-damage of cleaved and polished CaF2 at 248 nm,
Nucl. Instrum. Meth. B, 116, 279–283, https://doi.org/10.1016/0168-583X(96)00061-4,
1996.
Grønlie, A., Harder, V., and Roberts, D.: Preliminary fission-track ages
of fluorite mineralisation along fracture zones, inner Trondheimsfjord,
Central Norway, Norsk geologisk tidsskrift, 70, 173–178, 1990.
Guillocheau, F.: Evolution tectonique méso-cénozoïque du bassin
de Paris: contraintes stratigraphiques 3D, Geodin. Acta, 13,
189–245, https://doi.org/10.1016/S0985-3111(00)00118-2, 2000.
Guillong, M., Wotzlaw, J.-F., Looser, N., and Laurent, O.: Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material, Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, 2020.
Heim, C., Lausmaa, J., Sjövall, P., Toporski, J., Dieing, T., Simon, K.,
Hansen, B. T., Kronz, A., Arp, G., Reitner, J., and Thiel, V.: Ancient
microbial activity recorded in fracture fillings from granitic rocks
(Äspö Hard Rock Laboratory, Sweden): Ancient microbial activity
recorded in fracture fillings, Geobiology, 10, 280–297,
https://doi.org/10.1111/j.1472-4669.2012.00328.x, 2012.
Hill, C. A., Polyak, V. J., Asmerom, Y., and Provencio, P. P.: Constraints on
a Late Cretaceous uplift, denudation, and incision of the Grand Canyon
region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine
limestone, Tectonics, 35, 896–906, https://doi.org/10.1002/2016TC004166,
2016.
Horon, O., Megnien, C., and Lefavrais-Raymond, A.: Carte géologique de la
France, feuille 466: Avallon, France, 1 / 50 000, BRGM, Orléans, France, 1966.
Hough, G., Swapp, S., Frost, C., and Fayek, M.: Sulfur Isotopes in
Biogenically and Abiogenically Derived Uranium Roll-Front Deposits, Econ. Geol., 114, 353–373, https://doi.org/10.5382/econgeo.2019.4634, 2019.
Ingham, E. S., Cook, N. J., Cliff, J., Ciobanu, C. L., and Huddleston, A.: A
combined chemical, isotopic and microstructural study of pyrite from
roll-front uranium deposits, Lake Eyre Basin, South Australia, Geochim. Cosmochim. Ac., 125, 440–465, https://doi.org/10.1016/j.gca.2013.10.017, 2014.
Jia, T. Q., Li, X. X., Feng, D. H., Cheng, C. F., Li, R. X., Chen, H., and
Xu, Z. Z.: Theoretical and experimental study on femtosecond laser induced
damage in CaF2 crystals, Appl. Phys. A-Mater., 81, 645–649,
https://doi.org/10.1007/s00339-004-2685-z, 2005.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and
Enzweiler, J.: Determination of Reference Values for NIST SRM 610-617
Glasses Following ISO Guidelines, Geostand. Geoanal. Res.,
35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Johansen, H., Gogoll, S., Stenzel, E., and Reichling, M.: Scanning electron
microscopical inspection of uncoated CaF2 single crystals,
Phys. Status Solidi A, 150, 613–624, https://doi.org/10.1002/pssa.2211500205, 1995.
Jonckheere, R.: On the densities of etchable fission tracks in a mineral and
co-irradiated external detector with reference to fission-track dating of
minerals, Chem. Geol., 200, 41–58, https://doi.org/10.1016/S0009-2541(03)00116-5, 2003.
Kahn, S. and Forgue, V.: Range-energy relation and energy loss of fission
fragments in solids, Phys. Rev., 163, 290–296, https://doi.org/10.1103/PhysRev.163.290, 1967.
Kahou, Z. S., Brichau, S., Poujol, M., Duchêne, S., Campos, E., Leisen,
M., d'Abzac, F.-X., Riquelme, R., and Carretier, S.: First U-Pb LA-ICP-MS in
situ dating of supergene copper mineralization: case study in the
Chuquicamata mining district, Atacama Desert, Chile, Miner. Deposita,
56, 239–252, https://doi.org/10.1007/s00126-020-00960-2, 2020.
Kawasaki, K. and Symons, D. T. A.: Paleomagnetism of fluorite veins in the
Devonian St. Lawrence granite, Newfoundland, Canada,
Can. J. Earth Sci., 45, 969–980, https://doi.org/10.1139/E08-045, 2008.
Kempe, U., Plötze, M., Brachmann, A., and Böttcher, R.: Stabilisation
of divalent rare earth elements in natural fluorite, Miner. Petrol., 76, 213–234, 2002.
LaFlamme, C., Martin, L., Jeon, H., Reddy, S. M., Selvaraja, V., Caruso, S.,
Bui, T. H., Roberts, M. P., Voute, F., Hagemann, S., Wacey, D., Littman, S.,
Wing, B., Fiorentini, M., and Kilburn, M. R.: In situ multiple sulfur isotope
analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to
refine magmatic ore genetic models, Chem. Geol., 444, 1–15,
https://doi.org/10.1016/j.chemgeo.2016.09.032, 2016.
Lanzirotti, A., Tappero, R., and Schulze, D. G.: Practical Application of
Synchrotron-Based Hard X-Ray Microprobes in Soil Sciences, in: Developments
in Soil Science, Elsevier, 27–72, https://doi.org/10.1016/S0166-2481(10)34002-5, 2010.
Lardeaux, J. M., Schulmann, K., Faure, M., Janoušek, V., Lexa, O.,
Skrzypek, E., Edel, J. B., and Štípská, P.: The Moldanubian Zone
in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif
revisited: differences and similarities, Geol. Soc. Spec. Publ., 405, 7–44, https://doi.org/10.1144/SP405.14, 2014.
Lawson, M., Shenton, B. J., Stolper, D. A., Eiler, J. M., Rasbury, E. T.,
Becker, T. P., Phillips-Lander, C. M., Buono, A. S., Becker, S. P., Pottorf,
R., Gray, G. G., Yurewicz, D., and Gournay, J.: Deciphering the diagenetic
history of the El Abra Formation of eastern Mexico using reordered clumped
isotope temperatures and U-Pb dating, Geol. Soc. Am. Bull., 130, 617–629,
https://doi.org/10.1130/B31656.1, 2018.
Leach, D. L., Sangster, D. F., Kelley, K. D., Large, R. R., Garven, G.,
Allen, C. R., Gutzmer, J., and Walters, S.: Sediment-hosted lead-zinc
deposits: A global perspective, Econ. Geol., 3, 561–607, https://doi.org/10.5382/AV100.18, 2005.
Lefort, J. P. and Agarwal, B. N. P.: Topography of the Moho undulations in
France from gravity data: their age and origin, Tectonophysics, 350,
193–213, https://doi.org/10.1016/S0040-1951(02)00114-2, 2002.
Machel, H. G.: Bacterial and thermochemical sulfate reduction in diagenetic
settings – old and new insights, Sediment. Geol., 140, 143–175,
https://doi.org/10.1016/S0037-0738(00)00176-7, 2001.
Magnall, J. M., Gleeson, S. A., Stern, R. A., Newton, R. J., Poulton, S. W.,
and Paradis, S.: Open system sulphate reduction in a diagenetic environment
– Isotopic analysis of barite (δ34S and δ18O) and pyrite
(δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits,
Selwyn Basin, Canada, Geochim. Cosmochim. Ac., 180, 146–163,
https://doi.org/10.1016/j.gca.2016.02.015, 2016.
Mangenot, X., Gasparrini, M., Rouchon, V., and Bonifacie, M.: Basin-scale
thermal and fluid flow histories revealed by carbonate clumped isotopes
(Δ47) – Middle Jurassic carbonates of the Paris Basin depocentre,
Sedimentology, 65, 123–150, https://doi.org/10.1111/sed.12427, 2018.
Mark, D. F., Parnell, J., Kelley, S. P., Lee, M., Sherlock, S. C., and Carr,
A.: Dating of Multistage Fluid Flow in Sandstones, Science, 309,
2048–2051, https://doi.org/10.1126/science.1116034, 2005.
Markey, R., Stein, H. J., and Morgan, J. W.: Highly precise Re–Os dating for
molybdenite using alkaline fusion and NTIMS, Talanta, 45, 935–946,
https://doi.org/10.1016/S0039-9140(97)00198-7, 1998.
Martz, P., Mercadier, J., Perret, J., Villeneuve, J., Deloule, E.,
Cathelineau, M., Quirt, D., Doney, A., and Ledru, P.: Post-crystallization
alteration of natural uraninites: Implications for dating, tracing, and
nuclear forensics, Geochim. Cosmochim. Ac., 249, 138–159,
https://doi.org/10.1016/j.gca.2019.01.025, 2019.
Mathur, R., Ruiz, J., Titley, S., Gibbins, S., and Margotomo, W.: Different
crustal sources for Au-rich and Au-poor ores of the Grasberg Cu–Au porphyry
deposit, Earth Planet. Sc. Lett., 183, 7–14,
https://doi.org/10.1016/S0012-821X(00)00256-9, 2000.
Medjoubi, K., Leclercq, N., Langlois, F., Buteau, A., Lé, S., Poirier,
S., Mercère, P., Sforna, M. C., Kewish, C. M., and Somogyi, A.:
Development of fast, simultaneous and multi-technique scanning hard X-ray
microscopy at Synchrotron Soleil, J. Synchrotron Radiat., 20,
293–299, https://doi.org/10.1107/S0909049512052119, 2013.
Moscati, R. J. and Neymark, L. A.: U-Pb geochronology of tin deposits
associated with the Cornubian Batholith of southwest England: Direct dating
of cassiterite by in situ LA-ICPMS, Miner. Deposita, 55, 1–20,
https://doi.org/10.1007/s00126-019-00870-y, 2020.
Nakai, S., Halliday, A. N., Kesler, S. E., Jones, H. D., Kyle, J. R., and
Lane, T. E.: Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT)
ore deposits, Geochim. Cosmochim. Ac., 57, 417–427,
https://doi.org/10.1016/0016-7037(93)90440-8, 1993.
Nuriel, P., Rosenbaum, G., Uysal, T. I., Zhao, J., Golding, S. D.,
Weinberger, R., Karabacak, V., and Avni, Y.: Formation of fault-related
calcite precipitates and their implications for dating fault activity in the
East Anatolian and Dead Sea fault zones, Geol. Soc. Spec. Publ., 359, 229–248, https://doi.org/10.1144/SP359.13, 2011.
Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., Hacker, B. R., and
Craddock, J. P.: The onset of the Dead Sea transform based on calcite
age-strain analyses, Geology, 45, 587–590,
https://doi.org/10.1130/G38903.1, 2017.
Nuriel, P., Miller, D. M., Schmidt, K. M., Coble, M. A., and Maher, K.:
Ten-million years of activity within the Eastern California Shear Zone from
U-Pb dating of fault-zone opal, Earth Planet. Sc. Lett., 521,
37–45, https://doi.org/10.1016/j.epsl.2019.05.047, 2019.
Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B.,
Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P., Sutcliffe, C., Davis,
D., and Chaduteau, C.: Improving paleohydrological and diagenetic
reconstructions in calcite veins and breccia of a sedimentary basin by
combining Δ47 temperature, δ18O water and U-Pb age, Chem. Geol., 481, 1–17, https://doi.org/10.1016/j.chemgeo.2017.12.026, 2018.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite:
Freeware for the visualisation and processing of mass spectrometric data,
J. Anal. Atom. Spectrom., 26, 2508, https://doi.org/10.1039/c1ja10172b, 2011.
Peverelli, V., Ewing, T., Rubatto, D., Wille, M., Berger, A., Villa, I. M., Lanari, P., Pettke, T., and Herwegh, M.: U – Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation, Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, 2021.
Pi, T., Solé, J., Golzarri, J., Rickards, J., and Espinosa, G.:
Autoradiography of geological fluorite samples for determination of uranium
and thorium distribution using nuclear track
methodology, Rev. Mex. Fis., 53, 57–60, 2007.
Piccione, G., Rasbury, E. T., Elliott, B. A., Kyle, J. R., Jaret, S. J.,
Acerbo, A. S., Lanzirotti, A., Northrup, P., Wooton, K., and Parrish, R. R.:
Vein fluorite U-Pb dating demonstrates post – 6.2 Ma rare-earth element
mobilization associated with Rio Grande rifting, Geosphere, 15,
1958–1972, https://doi.org/10.1130/GES02139.1, 2019.
Pons, T.: Caractérisation des oxy-hydroxydes de fer et des
éléments associés (S, Se, As, Mo, V, Zr) dans les environnements
redox favorables aux gisements d'uranium, Thèse de doctorat, Université Paris Sud, Orsay, France, 280 pp., 2015.
Rackley, R. I.: Environment of Wyoming Tertiary uranium
deposits, AAPG Bull., 56, 755–774, 1972.
Rafique, M. S., Bashir, S., Husinsky, W., Hobro, A., and Lendl, B.: Surface
analysis correlated with the Raman measurements of a femtosecond laser
irradiated CaF2, Appl. Surf. Sci., 258, 3178–3183,
https://doi.org/10.1016/j.apsusc.2011.11.059, 2012.
Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U-Pb dating
of carbonates, Rev. Geophys., 47, RG3001, https://doi.org/10.1029/2007RG000246, 2009.
Reichling, M., Johansen, H., Gogoll, S., Stenzel, E., and Matthias, E.:
Laser-stimulated desorption and damage at polished CaF2 surfaces irradiated with 532 nm laser light, Nucl. Instrum. Methods, 91, 628–633, https://doi.org/10.1016/0168-583X(94)96299-5, 1994.
Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood,
M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U-Pb
geochronology, Geochem. Geophy. Geosys., 18, 2807–2814,
https://doi.org/10.1002/2016GC006784, 2017.
Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., and Lee, J. K.: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations, Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, 2020.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ:
25 years of image analysis, Nat. Methods, 9, 671–675,
https://doi.org/10.1038/nmeth.2089, 2012.
Sizaret, S.: Genèse du Système Hydrothermal à
Fluorine-Barytine-Fer de Chaillac, (Indre, France), Thèse de doctorat,
Université d'Orléans, Orléans, France, 271 pp., 2006.
Solé, V. A., Papillon, E., Cotte, M., Walter, P., and Susini, J.: A
multiplatform code for the analysis of energy-dispersive X-ray fluorescence
spectra, Spectrochim. Acta B, 62, 63–68, https://doi.org/10.1016/j.sab.2006.12.002, 2007.
Somogyi, A., Medjoubi, K., Baranton, G., Le Roux, V., Ribbens, M., Polack,
F., Philippot, P., and Samama, J.-P.: Optical design and multi-length-scale
scanning spectro-microscopy possibilities at the Nanoscopium beamline of
Synchrotron Soleil, J. Synchrotron Radiat., 22, 1118–1129,
https://doi.org/10.1107/S1600577515009364, 2015.
Soulé de Lafont, D. and Lhégu, J.: Les gisements stratiformes de
fluorine du Morvan (sud-est du Bassin de Paris, France), Fascicules
sur les gisements Français 2, Paris, France, p. 40, 1980.
Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope
evolution by a two-stage model, Earth Planet. Sc. Lett., 26,
207–221, 1975.
Stein, H. J., Markey, R. J., Morgan, J. W., Hannah, J. L., and Schersten, A.:
The remarkable Re-Os chronometer in molybdenite: how and why it
works, Terra Nova, 13, 479–486, https://doi.org/10.1046/j.1365-3121.2001.00395.x,
2001.
Sylvester, P. J. (Ed.): Matrix effects in laser ablation-ICP-MS, in:
Laser Ablation–ICP–MS in the Earth Sciences: Current practices and outstanding issues (Short Course), Mineralogical Association of Canada, 40, 67–78, 2008.
Symons, D. T. A.: Paleomagnetism and the Late Jurassic genesis of the
Illinois-Kentucky fluorspar deposits, Econ. Geol., 89, 438–449,
https://doi.org/10.2113/gsecongeo.89.3.438, 1994.
Symons, D. T. A., Kawasaki, K., Tornos, F., Velasco, F., and Rosales, I.:
Temporal constraints on genesis of the Caravia-Berbes fluorite deposits of
Asturias, Spain, from paleomagnetism, Ore Geol. Rev., 80, 754–766,
https://doi.org/10.1016/j.oregeorev.2016.08.020, 2017.
Vermeesch, P.: IsoplotR: A free and open toolbox for
geochronology, Geosci. Front., 9, 1479–1493,
https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vialette, Y.: Age des granites du Massif Central, B. Soc. Geol. Fr., S7-XV, 260–270, https://doi.org/10.2113/gssgfbull.S7-XV.3-4.260, 1973.
Vochten, R., Esmans, E., and Vermeirsch, W.: Study of the solid and gaseous
inclusions in the fluorites from Wölsendorf (Bavaria, F. R. of Germany)
and Margnac (Haute Vienne, France) by microprobe and mass spectrometry, Chem. Geol., 20, 253–263, 1977.
Walter, B. F., Gerdes, A., Kleinhanns, I. C., Dunkl, I., von Eynatten, H.,
Kreissl, S., and Markl, G.: The connection between hydrothermal fluids,
mineralization, tectonics and magmatism in a continental rift setting:
Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the
Rhinegraben in SW Germany, Geochim. Cosmochim. Ac., 240, 11–42,
https://doi.org/10.1016/j.gca.2018.08.012, 2018.
Wolff, R., Dunkl, I., Kempe, U., and von Eynatten, H.: The Age of the Latest
Thermal Overprint of Tin and Polymetallic Deposits in the Erzgebirge,
Germany: Constraints from Fluorite (U-Th-Sm) He Thermochronology, Econ. Geol., 110, 2025–2040, https://doi.org/10.2113/econgeo.110.8.2025, 2015.
Wolff, R., Dunkl, I., Kempe, U., Stockli, D., Wiedenbeck, M., and von Eynatten, H.: Variable helium diffusion characteristics in fluorite, Geochim. Cosmochim. Ac., 188, 21–34, https://doi.org/10.1016/j.gca.2016.05.029, 2016.
Wu, Y.-F., Fougerouse, D., Evans, K., Reddy, S. M., Saxey, D. W.,
Guagliardo, P., and Li, J.-W.: Gold, arsenic, and copper zoning in pyrite: A
record of fluid chemistry and growth kinetics, Geology, 47, 641–644,
https://doi.org/10.1130/G46114.1, 2019.
Xing, Y., Etschmann, B., Liu, W., Mei, Y., Shvarov, Y., Testemale, D.,
Tomkins, A., and Brugger, J.: The role of fluorine in hydrothermal
mobilization and transportation of Fe, U and REE and the formation of IOCG
deposits, Chem. Geol., 504, 158–176,
https://doi.org/10.1016/j.chemgeo.2018.11.008, 2019.
Ziegler, J. F., Ziegler, M. D., and Biersack, J. P.: SRIM – The stopping and
range of ions in matter, Nucl. Instrum. Meth. B, 268, 1818–1823, https://doi.org/10.1016/j.nimb.2010.02.091, 2010.
Short summary
To explore the U–Pb geochronometer in fluorite, the spatial distribution of uranium and other substituted elements in natural crystals is investigated using induced fission-track and synchrotron radiation X-ray fluorescence mapping. LA-ICP-MS U–Pb dating on four crystals, which preserve micrometer-scale variations in U concentrations, yields identical ages within analytical uncertainty. Our results show that fluorite U–Pb geochronology has potential for dating distinct crystal growth stages.
To explore the U–Pb geochronometer in fluorite, the spatial distribution of uranium and other...