Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-1-2023
https://doi.org/10.5194/gchron-5-1-2023
Research article
 | 
11 Jan 2023
Research article |  | 11 Jan 2023

Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS

Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman

Related subject area

SIMS, LA-ICP-MS
In situ U–Pb dating of 4 billion-year-old carbonates in the martian meteorite Allan Hills 84001
Romain Tartèse and Ian C. Lyon
Geochronology, 4, 683–690, https://doi.org/10.5194/gchron-4-683-2022,https://doi.org/10.5194/gchron-4-683-2022, 2022
Short summary
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Darwinaji Subarkah, Angus L. Nixon, Monica Jimenez, Alan S. Collins, Morgan L. Blades, Juraj Farkaš, Sarah E. Gilbert, Simon Holford, and Amber Jarrett
Geochronology, 4, 577–600, https://doi.org/10.5194/gchron-4-577-2022,https://doi.org/10.5194/gchron-4-577-2022, 2022
Short summary
Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
Daniil V. Popov
Geochronology, 4, 399–407, https://doi.org/10.5194/gchron-4-399-2022,https://doi.org/10.5194/gchron-4-399-2022, 2022
Short summary
In situ Lu–Hf geochronology of calcite
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022,https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Calcite U–Pb dating of altered ancient oceanic crust in the North Pamir, Central Asia
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022,https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary

Cited articles

Black, L., Kamo, S. L., Williams, I. S., Mundil, R., Davis, D. W., Korsch, R. J., and Foudoulis, C.: The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards, Chem. Geol., 200, 171–188, https://doi.org/10.1016/S0009-2541(03)00166-9, 2003. 
Black, L., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., and Foudoulis, C.: Improved 206Pb/238U microprobe geochronology by the monitoring of a trace element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 205, 115–140, https://doi.org/10.1016/j.chemgeo.2004.01.003, 2004. 
Black, L. P. and Jagodzinski, E. A.: Importance of establishing sources of uncertainty for the derivation of reliable SHRIMP ages, Aust. J. Earth Sci., 50, 503–512, https://doi.org/10.1046/j.1440-0952.2003.01007.x, 2003. 
Bodorkos, S., Stern, R. A., Kamo, S. L., Corfu, F., and Hickman, A. H.: OG1: A Natural Reference Material for Quantifying SIMS Instrumental Mass Fractionation (IMF) of Pb Isotopes During Zircon Dating, EOS T. Am. Geophys. Un., 90, Fall Meet. Suppl., Abstract V33B-2044, https://abstractsearch.agu.org/meetings/2009/FM/V33B-2044.html (last access: 5 January 2023), 2009. 
Bodorkos, S., Crowley, J., Metcalfe, I., Nicoll, R. S., and Sircombe, K.: Best of both worlds: combining SHRIMP and CA-TIMS methods in refining geochronological determinations for timescale calibration, in: 6th International SHRIMP Workshop–Program and Abstracts, 21–24, Canberra, ACT, Geoscience Australia Record, 2012/52, http://pid.geoscience.gov.au/dataset/ga/74275 (last access: 5 January 2023), 2012. 
Download
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.