Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-51-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-51-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential impacts of chemical weathering on feldspar luminescence dating properties
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Jasquelin Peña
Department of Civil and Environmental Engineering, University of
California, Davis, One Shields Avenue, Davis, CA 95616 USA
Stéphanie Grand
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Georgina E. King
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Related authors
Melanie Bartz, Mathieu Duval, María Jesús Alonso Escarza, and Gilles Rixhon
E&G Quaternary Sci. J., 73, 139–144, https://doi.org/10.5194/egqsj-73-139-2024, https://doi.org/10.5194/egqsj-73-139-2024, 2024
Short summary
Short summary
The chronostratigraphy of the Rhine’s main terrace along the Middle Rhine Valley (MRV) is poorly constrained. This study fills this gap by using electron spin resonance (ESR) dating of quartz grains collected from the famous Kärlich site. Consistent ESR results date this terrace to ~1.5 Ma and have far-reaching implications as they numerically constrain, for the first time, the aggradation time of key terrace deposits along the MRV, providing new insights into the Rhine’s Quaternary evolution.
Benny Guralnik and Georgina Elizabeth King
EGUsphere, https://doi.org/10.5194/egusphere-2025-4186, https://doi.org/10.5194/egusphere-2025-4186, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
Luminescence dating of feldspar minerals is widely applied in geology and archaeology. However, the luminescence of feldspar is prone to signal loss termed anomalous fading, which must be accounted for to avoid age underestimation. Here, we critically review the different mathematical approaches for anomalous fading correction, and present new, computationally efficient, analytical expressions for the two most ubiquitous fading correction schemes.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025, https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology, 6, 665–682, https://doi.org/10.5194/gchron-6-665-2024, https://doi.org/10.5194/gchron-6-665-2024, 2024
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Melanie Bartz, Mathieu Duval, María Jesús Alonso Escarza, and Gilles Rixhon
E&G Quaternary Sci. J., 73, 139–144, https://doi.org/10.5194/egqsj-73-139-2024, https://doi.org/10.5194/egqsj-73-139-2024, 2024
Short summary
Short summary
The chronostratigraphy of the Rhine’s main terrace along the Middle Rhine Valley (MRV) is poorly constrained. This study fills this gap by using electron spin resonance (ESR) dating of quartz grains collected from the famous Kärlich site. Consistent ESR results date this terrace to ~1.5 Ma and have far-reaching implications as they numerically constrain, for the first time, the aggradation time of key terrace deposits along the MRV, providing new insights into the Rhine’s Quaternary evolution.
Cécile Charles, Nora Khelidj, Lucia Mottet, Bao Ngan Tu, Thierry Adatte, Brahimsamba Bomou, Micaela Faria, Laetitia Monbaron, Olivier Reubi, Natasha de Vere, Stéphanie Grand, and Gianalberto Losapio
EGUsphere, https://doi.org/10.5194/egusphere-2024-991, https://doi.org/10.5194/egusphere-2024-991, 2024
Preprint archived
Short summary
Short summary
We found that novel ecosystems created by glacier retreat are first characterized by an increase in plant diversity that is driven by a shift in soil texture. Plant diversity in turn increases soil organic matter and nutrient. Soils gradually acidifies and leads to a final stage where a dominance of few plant species reduces plant diversity. Understanding plant–soil interactions is crucial to anticipate how glacier retreat shapes biodiversity and landscapes.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Rabiul H. Biswas, Frédéric Herman, Georgina E. King, Benjamin Lehmann, and Ashok K. Singhvi
Clim. Past, 16, 2075–2093, https://doi.org/10.5194/cp-16-2075-2020, https://doi.org/10.5194/cp-16-2075-2020, 2020
Short summary
Short summary
A new approach to reconstruct the temporal variation of rock surface temperature using the thermoluminescence (TL) of feldspar is introduced. Multiple TL signals or thermometers in the range of 210 to 250 °C are sensitive to typical surface temperature fluctuations and can be used to constrain thermal histories of rocks over ~50 kyr. We show that it is possible to recover thermal histories of rocks using inverse modeling and with δ18O anomalies as a priori information.
Cited articles
Adatte, T., Stinnesbeck, W., and Keller, G.: Lithostratigraphic and mineralogic correlations of near K/T boundary clastic sediments in northeastern Mexico: implications for origin and nature of deposition, Geol. Soc. Am. Spec. Papers, 307, 211–226, https://doi.org/10.1130/0-8137-2307-8.211, 1996.
Aitken, M. J.: Thermoluminescence Dating, Academic Press, London, ISBN 0-12-046380-6, 1985.
Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for
feldspar IRSL using SAR, Radiat. Meas., 37, 487–492,
https://doi.org/10.1016/S1350-4487(03)00018-0, 2003.
Bartz, M., Peña, J., Grand, S., and King, G. E.: Potential impacts of chemical weathering on feldspar luminescence dating properties, Zenodo [data set], https://doi.org/10.5281/zenodo.7463140, 2022.
Berger, G. W., Pillans, B. J., and Tonkin, P. J.: Luminescence chronology of
loess-paleosol sequences from Canterbury, South Island, New Zealand, New
Zeal. J. Geol. Geophys., 44, 501–516, https://doi.org/10.1080/00288306.2001.9514952,
2001.
Berner, R. A. and Holdren, G. R.: Mechanism of feldspar weathering – II.
Observations of feldspars from soils, Geochim. Cosmochim. Acta, 43,
1173–1186, https://doi.org/10.1016/0016-7037(79)90110-8, 1979.
Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T., and Murray, A. S.:
Developments in radiation, stimulation and observation facilities in
luminescence measurements, Radiat. Meas., 37, 535–541,
https://doi.org/10.1016/S1350-4487(03)00020-9, 2003.
Buylaert, J. P., Murray, A. S., Thomsen, K. J., and Jain, M.: Testing the
potential of an elevated temperature IRSL signal from K-feldspar, Radiat.
Meas., 44, 560–565, https://doi.org/10.1016/j.radmeas.2009.02.007, 2009.
Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and
Sohbati, R.: A robust feldspar luminescence dating method for Middle and
Late Pleistocene sediments, Boreas, 41, 435–451,
https://doi.org/10.1111/j.1502-3885.2012.00248.x, 2012.
Chardon, E. S., Livens, F. R., and Vaughan, D. J.: Reactions of feldspar surfaces with aqueous solutions, Earth Sci. Rev., 78, 1–26, https://doi.org/10.1016/j.earscirev.2006.03.002, 2006.
Collignon, C., Ranger, J., and Turpault, M. P.: Seasonal dynamics of Al- and
Fe-bearing secondary minerals in an acid forest soil: influence of Norway
spruce roots (Picea abies (L.) Karst.), Eur. J. Soil Sci., 63, 592–602,
https://doi.org/10.1111/j.1365-2389.2012.01470.x, 2012.
Deer, W. A., Howie, R. A., and Zussman, J.: An Introduction to the Rock-Forming Minerals, Mineralogical Society of Great Britain and Ireland, ISBN 9780903056274, https://doi.org/10.1180/DHZ, 2013.
Dietze, M., Kreutzer, S., Burow, C., Fuchs, M. C., Fischer, M., and Schmidt,
C.: The abanico plot: Visualising chronometric data with individual standard
errors, Quat. Geochronol., 31, 12–18, https://doi.org/10.1016/j.quageo.2015.09.003,
2016.
Duller, G. A. T.: Behavioural studies of stimulated luminescence from
feldspars, Radiat. Meas., 27, 663–694, https://doi.org/10.1016/S1350-4487(97)00216-3, 1997.
Epihov, D. Z., Saltonstall, K., Batterman, S. A., Hedin, L. O., Hall, J. S.,
van Breugel, M., Leake, J. R., and Beerling, D. J.: Legume–microbiome
interactions unlock mineral nutrients in regrowing tropical forests, P.
Natl. Acad. Sci. USA, 118, e2022241118, https://doi.org/10.1073/pnas.2022241118, 2021.
Finch, A. A. and Klein, J.: The causes and petrological significance of
cathodoluminescence emissions from alkali feldspars, Contrib. Mineral.
Petrol., 135, 234–243, https://doi.org/10.1007/s004100050509, 1999.
Garcia-Guinea, J., Townsend, P. D., Sanchez-Muñoz, L., and Rojo, J. M.:
Ultraviolet-blue ionic luminescence of alkali feldspars from bulk and
interfaces, Phys. Chem. Miner., 26, 658–667, https://doi.org/10.1007/s002690050231,
1999.
Geake, J. E., Walker, G., Telfer, D. J., Mills, A. A., Massey, H. S. W.,
Brown, G. M., Eglinton, G., Runcorn, S. K., and Urey, H. C.: The cause and
significance of luminescence in lunar plagioclase, Philos. Trans. R. Soc.
London. Ser. A, Math. Phys. Sci., 285, 403–408, https://doi.org/10.1098/rsta.1977.0081, 1977.
Goldich, S. S.: A Study in Rock-Weathering, J. Geol., 46, 17–58,
https://doi.org/10.1086/624619, 1938.
Götze, J., Habermann, D., Neuser, R. D., and Richter, D. K.:
High-resolution spectrometric analysis of rare earth elements-activated
cathodoluminescence in feldspar minerals, Chem. Geol., 153, 81–91,
https://doi.org/10.1016/S0009-2541(98)00153-3, 1999.
Gout, R., Oelkers, E. H., Schott, J., and Wick, A.: The surface chemistry and
structure of acid-leached albite: New insights on the dissolution mechanism
of the alkali feldspars, Geochim. Cosmochim. Acta, 61, 3013–3018,
https://doi.org/10.1016/S0016-7037(97)00122-1, 1997.
Gruber, C., Zhu, C., Georg, R. B., Zakon, Y., and Ganor, J.: Resolving the
gap between laboratory and field rates of feldspar weathering, Geochim.
Cosmochim. Acta, 147, 90–106, https://doi.org/10.1016/j.gca.2014.10.013, 2014.
Guralnik, B., Jain, M., Herman, F., Ankjærgaard, C., Murray, A. S.,
Valla, P. G., Preusser, F., King, G. E., Chen, R., Lowick, S. E., Kook, M., and Rhodes, E. J.: OSL-thermochronometry of feldspar from the KTB borehole,
Germany, Earth Planet. Sci. Lett., 423, 232–243,
https://doi.org/10.1016/j.epsl.2015.04.032, 2015.
Hofmeister, A. M. and Rossman, G. R.: Chapter 11. Color in feldspars, edited
by: Ribbe, P. H., De Gruyter, https://doi.org/10.1515/9781501508547-016, 271–280, 1983.
Holdren, G. R. and Berner, R. A.: Mechanism of feldspar weathering – I.
Experimental studies, Geochim. Cosmochim. Acta, 43, 1161–1171,
https://doi.org/10.1016/0016-7037(79)90109-1, 1979.
Huntley, D. J.: Comment on “Isochron dating of sediments using luminescence
of K-feldspar grains” by B. Li et al., J. Geophys. Res., 116, F01012, https://doi.org/10.1029/2010JF001856, 2011.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars
and the measurement and correction for it in optical dating, Can. J. Earth
Sci., 38, 1093–1106, https://doi.org/10.1139/e01-013, 2001.
Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W.: Optical dating
of sediments, Nature, 313, 105–107, https://doi.org/10.1038/313105a0, 1985.
International Organization for Standardization: Soil, treated biowaste, sludge and waste – Digestion of aqua regia soluble fractions of elements, ISO standard 54321:2020, https://www.iso.org/standard/75441.html, last access: 13 October 2020.
Jeong, G. Y. and Choi, J.-H.: Variations in quartz OSL components with
lithology, weathering and transportation, Quat. Geochronol., 10, 320–326,
https://doi.org/10.1016/J.QUAGEO.2012.02.023, 2012.
Jeong, G. Y., Cheong, C.-S., and Choi, J.-H.: The effect of weathering on
optically stimulated luminescence dating, Quat. Geochronol., 2,
117–122, https://doi.org/10.1016/J.QUAGEO.2006.05.023, 2007.
Kars, R. H., Reimann, T., Ankjærgaard, C., and Wallinga, J.: Bleaching of
the post-IR IRSL signal: new insights for feldspar luminescence dating,
Boreas, 43, 780–791, https://doi.org/10.1111/bor.12082, 2014.
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., and Kleber, M.: Mineral protection of soil carbon counteracted by root
exudates, Nat. Clim. Chang., 5, 588–595, https://doi.org/10.1038/nclimate2580, 2015.
King, G. E., Herman, F., Lambert, R., Valla, P. G., and Guralnik, B.:
Multi-OSL-thermochronometry of feldspar, Quat. Geochronol., 33, 76–87,
https://doi.org/10.1016/j.quageo.2016.01.004, 2016.
Krbetschek, M. R., Götze, J., Dietrich, A., and Trautmann, T.: Spectral
information from minerals relevant for luminescence dating, Radiat. Meas.,
27, 695–748, https://doi.org/10.1016/S1350-4487(97)00223-0, 1997.
Lapp, T., Kook, M., Murray, A. S., Thomsen, K. J., Buylaert, J.-P., and Jain,
M.: A new luminescence detection and stimulation head for the Risø TL/OSL
reader, Radiat. Meas., 81, 178–184, https://doi.org/10.1016/j.radmeas.2015.02.001, 2015.
Lasaga, A. C.: Chemical kinetics of water-rock interactions, J. Geophys.
Res.-Sol. Ea., 89, 4009–4025, https://doi.org/10.1029/JB089iB06p04009, 1984.
Mariano, A. N. and Ring, P. J.: Europium-activated cathodoluminescence in minerals, Geochim. Cosmochim. Acta, 39, 649–660, https://doi.org/10.1016/0016-7037(75)90008-3, 1975.
Marfunin, A. S.: Spectroscopy, Luminescence and Radiation Centers in
Minerals, Springer, Berlin, https://doi.org/10.1007/978-3-642-67112-8, 1979.
Nesbitt, H. W., Markovics, G., and price, R. C.: Chemical processes affecting
alkalis and alkaline earths during continental weathering, Geochim.
Cosmochim. Acta, 44, 1659–1666, https://doi.org/10.1016/0016-7037(80)90218-5, 1980.
Oelkers, E. H. and Schott, J.: Experimental study of anorthite dissolution
and the relative mechanism of feldspar hydrolysis, Geochim. Cosmochim. Acta,
59, 5039–5053, https://doi.org/10.1016/0016-7037(95)00326-6, 1995.
Opolot, E. and Finke, P. A.: Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25), Biogeosciences, 12, 6791–6808, https://doi.org/10.5194/bg-12-6791-2015, 2015.
Parsons, I.: Feldspars defined and described: a pair of posters published by
the Mineralogical Society. Sources and supporting information, Mineral.
Mag., 74, 529–551, https://doi.org/10.1180/minmag.2010.074.3.529, 2010.
Pfeifer, H.-R., Lavanchy, J.-C., and Serneels, V.: Bulk chemical analysis of
geological and industrial materials by X-ray fluorescence, recent
developments and application to materials rich in iron oxide, J. Trace
Microprobe Tech., 9, 127–147, 1991.
Prasad, A. K., Lapp, T., Kook, M., and Jain, M.: Probing luminescence centers
in Na rich feldspar, Radiat. Meas., 90, 292–297,
https://doi.org/10.1016/j.radmeas.2016.02.033, 2016.
Reimann, T., Thomsen, K. J., Jain, M., Murray, A. S., and Frechen, M.:
Single-grain dating of young sediments using the pIRIR signal from feldspar,
Quat. Geochronol., 11, 28–41, https://doi.org/10.1016/j.quageo.2012.04.016, 2012.
Ribbe, P. H.: Feldspar Mineralogy. Reviews in Mineralogy, 2nd edn.,
Mineralogical Society of America, Washington D.C., ISBN 0-939950-14-6, 1983.
Riedesel, S.: Exploring variability in the luminescence properties of
feldspars, PhD thesis, Aberystwyth University, uk.bl.ethos.831244, 2020.
Riedesel, S., Bell, A. M. T., Duller, G. A. T., Finch, A. A., Jain, M.,
King, G. E., Pearce, N. J., and Roberts, H. M.: Exploring sources of
variation in thermoluminescence emissions and anomalous fading in alkali
feldspars, Radiat. Meas., 141, 106541, https://doi.org/10.1016/j.radmeas.2021.106541, 2021.
Schwertmann, U.: Use of oxalate for Fe extraction from soils, Can. J. Soil
Sci., 53, 244–246, https://doi.org/10.4141/cjss73-037, 1973.
Shotyk, W. and Nesbitt, H. W.: Incongruent and congruent dissolution of
plagioclase feldspar: effect of feldspar composition and ligand
complexation, Geoderma, 55, 55–78, https://doi.org/10.1016/0016-7061(92)90005-R, 1992.
Speit, B. and Lehmann, G.: Radiation defects in feldspars, Phys. Chem.
Miner., 8, 77–82, https://doi.org/10.1007/BF00309017, 1982.
Spooner, N. A.: The anomalous fading of infrared-stimulated luminescence
from feldspars, Radiat. Meas., 23, 625–632,
https://doi.org/10.1016/1350-4487(94)90111-2, 1994.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory
fading rates of various luminescence signals from feldspar-rich sediment
extracts, Radiat. Meas., 43, 1474–1486, https://doi.org/10.1016/J.RADMEAS.2008.06.002, 2008.
Trauerstein, M., Lowick, S. E., Preusser, F., and Schlunegger, F.: Small
aliquot and single grain IRSL and post-IR IRSL dating of fluvial and
alluvial sediments from the Pativilca valley, Peru, Quat. Geochronol., 22,
163–174, https://doi.org/10.1016/j.quageo.2013.12.004, 2014.
U.S. EPA: Method 3050B: Acid digestion of sediments, sludges and soils, Revision 2, Washington, DC, USA, https://www.epa.gov/esam/epa-method-3050b-acid-digestion-sediments-sludges-and-soils (last access: 13 October 2020), 1996.
Valla, P. G., Lowick, S. E., Herman, F., Champagnac, J. D., Steer, P., and
Guralnik, B.: Exploring IRSL50 fading variability in bedrock feldspars and
implications for OSL thermochronometry, Quat. Geochronol., 36, 55–66,
https://doi.org/10.1016/j.quageo.2016.08.004, 2016.
Wang, X. and Miao, X.: Weathering history indicated by the luminescence
emissions in Chinese loess and paleosol, Quat. Sci. Rev., 25,
1719–1726, https://doi.org/10.1016/j.quascirev.2005.11.009, 2006.
White, A. F. and Brantley, S. L.: The effect of time on the weathering of
silicate minerals: Why do weathering rates differ in the laboratory and
field?, Chem. Geol., 202, 479–506, https://doi.org/10.1016/j.chemgeo.2003.03.001,
2003.
Yuan, G., Cao, Y., Schulz, H.-M., Hao, F., Gluyas, J., Liu, K., Yang, T.,
Wang, Y., Xi, K., and Li, F.: A review of feldspar alteration and its
geological significance in sedimentary basins: From shallow aquifers to deep
hydrocarbon reservoirs, Earth-Sci. Rev., 191, 114–140,
https://doi.org/10.1016/j.earscirev.2019.02.004, 2019.
Zhang, Z. and Furman, A.: Soil redox dynamics under dynamic hydrologic
regimes – A review, Sci. Total Environ., 763, 143026,
https://doi.org/10.1016/j.scitotenv.2020.143026, 2021.
Zhu, C.: In situ feldspar dissolution rates in an aquifer, Geochim.
Cosmochim. Acta, 69, 1435–1453, https://doi.org/10.1016/j.gca.2004.09.005, 2005.
Short summary
Chemical weathering alters the chemical composition of mineral grains, and it follows that luminescence dating signals may also be progressively modified. We artificially weathered feldspar samples under different chemical conditions to understand the effect of feldspar partial dissolution on their luminescence properties. Only minor changes were observed on luminescence dating properties, implying that chemical alteration of feldspar surfaces may not affect luminescence dating signals.
Chemical weathering alters the chemical composition of mineral grains, and it follows that...