Articles | Volume 7, issue 2
https://doi.org/10.5194/gchron-7-199-2025
https://doi.org/10.5194/gchron-7-199-2025
Research article
 | 
05 Jun 2025
Research article |  | 05 Jun 2025

A comparison between in situ monazite Lu–Hf and U–Pb geochronology

Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert

Related authors

Insights into the tectonic evolution of the Svecofennian orogeny based on in situ Lu–Hf dating of garnet and apatite from Olkiluoto, southwestern Finland
Jon Engström, Kathryn Cutts, Stijn Glorie, Esa Heilimo, Ester M. Jolis, and Radoslaw M. Michallik
Solid Earth, 16, 97–117, https://doi.org/10.5194/se-16-97-2025,https://doi.org/10.5194/se-16-97-2025, 2025
Short summary
The quantification of downhole fractionation for laser ablation mass spectrometry
Jarred Cain Lloyd, Carl Spandler, Sarah E. Gilbert, and Derrick Hasterok
EGUsphere, https://doi.org/10.5194/egusphere-2024-2908,https://doi.org/10.5194/egusphere-2024-2908, 2024
Short summary
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024,https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024,https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Darwinaji Subarkah, Angus L. Nixon, Monica Jimenez, Alan S. Collins, Morgan L. Blades, Juraj Farkaš, Sarah E. Gilbert, Simon Holford, and Amber Jarrett
Geochronology, 4, 577–600, https://doi.org/10.5194/gchron-4-577-2022,https://doi.org/10.5194/gchron-4-577-2022, 2022
Short summary

Related subject area

SIMS, LA-ICP-MS
U–Pb dating on calcite paleosol nodules: first absolute age constraints on the Miocene continental succession of the Paris Basin
Vincent Monchal, Rémi Rateau, Kerstin Drost, Cyril Gagnaison, Bastien Mennecart, Renaud Toullec, Koen Torremans, and David Chew
Geochronology, 7, 139–156, https://doi.org/10.5194/gchron-7-139-2025,https://doi.org/10.5194/gchron-7-139-2025, 2025
Short summary
Zircon micro-inclusions as an obstacle for in situ garnet U-Pb geochronology: An example from the As Sifah eclogite locality, Oman
Jesse B. Walters, Joshu M. Garber, Aratz Beranoaguirre, Leo Millonig, Axel Gerdes, Tobias Grützner, and Horst R. Marschall
EGUsphere, https://doi.org/10.5194/egusphere-2025-366,https://doi.org/10.5194/egusphere-2025-366, 2025
Short summary
Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024,https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
On the viability of detrital biotite Rb–Sr geochronology
Kyle P. Larson, Brendan Dyck, Sudip Shrestha, Mark Button, and Yani Najman
Geochronology, 6, 303–312, https://doi.org/10.5194/gchron-6-303-2024,https://doi.org/10.5194/gchron-6-303-2024, 2024
Short summary
Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023,https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary

Cited articles

Budzyń, B., Sláma, J., Corfu, F., Crowley, J., Schmitz, M., Williams, M. L., Jercinovic, M. J., Kozub-Budzyń, G. A., Konečny, P., Rzepa, G., and Włodek, A.: TS-Mnz – A new monazite age reference material for U-Th-Pb microanalysis, Chem. Geol., 572, 120195, https://doi.org/10.1016/j.chemgeo.2021.120195, 2021. 
Clark, C., Brown, M., Knight, B., Johnson, T. E., Mitchell, R. J., and Gupta, S.: Ultraslow cooling of an ultrahot orogen, Geology, 52, 880–884, https://doi.org/10.1130/G52442.1, 2024. 
De Biévre, P. and Taylor, P. D. P.: Table of the isotopic compositions of the elements, Int. J. Mass Spectrom., 123, 149–166, https://doi.org/10.1016/0168-1176(93)87009-H, 1993. 
De Vries Van Leeuwen, A.: Monazite Lu–Hf and U–Pb data – A comparison between in situ monazite Lu–Hf and U–Pb geochronology, The University of Adelaide [data set], https://doi.org/10.25909/27441327.v4, 2024. 
De Vries Van Leeuwen, A. T., Hand, M., Morrissey, L. J., and Raimondo, T.: Th–U powered metamorphism: Thermal consequences of a chemical hotspot, J. Metamorph. Geol., 39, 541–565, https://doi.org/10.1111/jmg.12590, 2021. 
Download
Short summary
In this contribution, we demonstrate in situ monazite lutetium–hafnium dating and compare results with uranium–lead dating. We present data from monazite reference materials and complex samples to demonstrate the viability of this method. We show that in situ lutetium–hafnium dating of monazite can resolve multiple age populations and may find use in scenarios where the uranium–lead system has been compromised.
Share