Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-577-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-577-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
Darwinaji Subarkah
CORRESPONDING AUTHOR
Tectonics & Earth Systems (TES), Department of Earth Sciences,
University of Adelaide, Adelaide, SA 5005, Australia
MinEx CRC, Australian Resources Research Centre, Perth, WA 6151,
Australia
Angus L. Nixon
Apatite Thermochronology Lab and Services (ATLaS), Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
MinEx CRC, Australian Resources Research Centre, Perth, WA 6151,
Australia
Monica Jimenez
Stress, Structure and Seismic, Australian School of Petroleum and
Energy Resources (ASPER), University of Adelaide, Adelaide, SA 5005, Australia
Alan S. Collins
Tectonics & Earth Systems (TES), Department of Earth Sciences,
University of Adelaide, Adelaide, SA 5005, Australia
MinEx CRC, Australian Resources Research Centre, Perth, WA 6151,
Australia
Morgan L. Blades
Tectonics & Earth Systems (TES), Department of Earth Sciences,
University of Adelaide, Adelaide, SA 5005, Australia
Juraj Farkaš
Metal Isotope Group (MIG), Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
MinEx CRC, Australian Resources Research Centre, Perth, WA 6151,
Australia
Sarah E. Gilbert
Adelaide Microscopy, University of Adelaide, Adelaide, SA 5005,
Australia
Simon Holford
Stress, Structure and Seismic, Australian School of Petroleum and
Energy Resources (ASPER), University of Adelaide, Adelaide, SA 5005, Australia
Amber Jarrett
Northern Territory Geological Survey, Darwin, NT 0801, Australia
Related authors
No articles found.
Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-29, https://doi.org/10.5194/gchron-2024-29, 2024
Preprint under review for GChron
Short summary
Short summary
In this contribution we demonstrate in situ monazite Lu–Hf dating and compare results with U–Th–Pb dating. We present data from monazite reference materials and complex samples to demonstrate the viability of this method. We show that in situ Lu–Hf dating of monazite can resolve multiple age populations and may find use where the U–Th–Pb system is compromised by Pb-loss, non-radiogenic Pb contamination, excess 206 Pb, low U contents, or a combination of these factors.
Jarred Cain Lloyd, Carl Spandler, Sarah E. Gilbert, and Derrick Hasterok
EGUsphere, https://doi.org/10.5194/egusphere-2024-2908, https://doi.org/10.5194/egusphere-2024-2908, 2024
Short summary
Short summary
Laser-based dating of rocks and minerals is invaluable in geoscience. This study presents a significant advancement in our ability to model and correct for a process called downhole fractionation (DHF) that can impact the accuracy and uncertainty of dates. We develop an algorithm that quantitatively models DHF patterns. The implications are far-reaching: improved accuracy, reduced uncertainty, and easier comparisons between different samples and laboratories.
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024, https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short summary
Radiometric dating methods, involving laser ablation as the sample introduction, require robust calibrations to reference materials with similar ablation properties to the analysed samples. In the case of the rubidium–strontium dating method, calibrations are often conducted to nano powder with different ablation characteristics than the crystalline minerals. We describe the limitations of this approach and recommend an alternative calibration method involving natural minerals.
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.
Lachlan Richards, Fred Jourdan, Alan Stephen Collins, and Rosalind Clare King
Geochronology, 3, 545–559, https://doi.org/10.5194/gchron-3-545-2021, https://doi.org/10.5194/gchron-3-545-2021, 2021
Short summary
Short summary
This research is part of a PhD thesis examining evaporite detachments characteristics. 40Ar/39Ar geochronology is employed to constrain the timing of formation and deformation events. A diagenetic age of ~514 Ma is interpreted from the oldest significant step age. Other step ages may represent a Cambrian–Permian deformation event or a complex mixing age of diagenetic Ar with partially reset Ar during the Cenozoic. We report the first closure temperature for polyhalite between 254 and 277 °C.
Holly L. Taylor, Isaac J. Kell Duivestein, Juraj Farkas, Martin Dietzel, and Anthony Dosseto
Clim. Past, 15, 635–646, https://doi.org/10.5194/cp-15-635-2019, https://doi.org/10.5194/cp-15-635-2019, 2019
Short summary
Short summary
Approximately 600 million years ago, major environmental changes set the course for the emergence of animal life. Lithium (Li) isotopes in calcium carbonates can be used as a proxy to understand changes in the palaeo-environment. We conducted experiments that allow us to use Li isotopes in dolostones to extend our understanding of palaeo-environmental changes deeper into the geological record, where other calcium carbonates archives are not present.
Anthony Dosseto, Holly L. Taylor, Juraj Farkaš, Grant M. Cox, Andrew Kingston, Andrew Lorrey, Alexander J. Corrick, and Bing Shen
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-119, https://doi.org/10.5194/cp-2018-119, 2018
Revised manuscript not accepted
Short summary
Short summary
Life experienced a big boost in complexity ~ 600 million years ago. This step forward in evolution happened not long after the largest glaciations experienced in Earth's history. This study shows that following the last major
Snowball Earth, the planet's surface rapidly recovered and the first animals emerged in an environment maybe not that different from our modern oceans.
Related subject area
SIMS, LA-ICP-MS
Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
On the viability of detrital biotite Rb–Sr geochronology
Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating
Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS
In situ U–Pb dating of 4 billion-year-old carbonates in the martian meteorite Allan Hills 84001
Short communication: On the potential use of materials with heterogeneously distributed parent and daughter isotopes as primary standards for non-U–Pb geochronological applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
In situ Lu–Hf geochronology of calcite
Calcite U–Pb dating of altered ancient oceanic crust in the North Pamir, Central Asia
Towards in situ U–Pb dating of dolomite
Uranium incorporation in fluorite and exploration of U–Pb dating
U − Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation
Tools for uranium characterization in carbonate samples: case studies of natural U–Pb geochronology reference materials
Direct U–Pb dating of carbonates from micron-scale femtosecond laser ablation inductively coupled plasma mass spectrometry images using robust regression
Technical note: LA–ICP-MS U–Pb dating of unetched and etched apatites
The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U − Pb geochronology of calcite
Expanding the limits of laser-ablation U–Pb calcite geochronology
Resolving multiple geological events using in situ Rb–Sr geochronology: implications for metallogenesis at Tropicana, Western Australia
LA-ICPMS U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona)
Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations
Cate Kooymans, Charles W. Magee Jr., Kathryn Waltenberg, Noreen J. Evans, Simon Bodorkos, Yuri Amelin, Sandra L. Kamo, and Trevor Ireland
Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, https://doi.org/10.5194/gchron-6-337-2024, 2024
Short summary
Short summary
Zircon is a mineral where uranium decays to lead. Some radiation damage lets lead escape. A method called chemical abrasion (CA) dissolves out the damaged portions of zircon so that remaining zircon retains lead. We compare ion beam analyses of untreated and chemically abraded zircons. The ion beam ages for untreated zircons match the reference values for untreated zircon. The ion beam ages for CA zircon match CA reference ages. Other elements are unaffected by the chemical abrasion process.
Kyle P. Larson, Brendan Dyck, Sudip Shrestha, Mark Button, and Yani Najman
Geochronology, 6, 303–312, https://doi.org/10.5194/gchron-6-303-2024, https://doi.org/10.5194/gchron-6-303-2024, 2024
Short summary
Short summary
This study demonstrates the utility of laser-ablation-based detrital biotite Rb–Sr geochronology to investigate the rates of exhumation and burial in active mountain-building systems. It is further demonstrated that additional chemical data collected during spot analyses can be used to determine temperatures recorded in biotite. The method used has advantages over traditional methods in speed, ease of acquisition, and the ability to collect additional chemical information.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Charles W. Magee Jr., Simon Bodorkos, Christopher J. Lewis, James L. Crowley, Corey J. Wall, and Richard M. Friedman
Geochronology, 5, 1–19, https://doi.org/10.5194/gchron-5-1-2023, https://doi.org/10.5194/gchron-5-1-2023, 2023
Short summary
Short summary
SHRIMP (Sensitive High Resolution Ion MicroProbe) is an instrument that for decades has used the radioactive decay of uranium into lead to measure geologic time. The accuracy and precision of this instrument has not been seriously reviewed in almost 20 years. This paper compares several dozen SHRIMP ages in our database with more accurate and precise methods to assess SHRIMP accuracy and precision. Analytical and geological complications are addressed to try to improve the method.
Romain Tartèse and Ian C. Lyon
Geochronology, 4, 683–690, https://doi.org/10.5194/gchron-4-683-2022, https://doi.org/10.5194/gchron-4-683-2022, 2022
Short summary
Short summary
Absolute chronological constraints are crucial in Earth and planetary sciences. In recent years, U–Pb dating of carbonates has provided information on the timing of, for example, diagenesis, faulting, or hydrothermalism. These studies have targeted relatively young terrestrial carbonates up to 300 million years old. By dating 3.9 billion-year-old martian carbonates in situ using the U–Pb chronometer, we show that this system is robust in ancient samples that have had a relatively simple history.
Daniil V. Popov
Geochronology, 4, 399–407, https://doi.org/10.5194/gchron-4-399-2022, https://doi.org/10.5194/gchron-4-399-2022, 2022
Short summary
Short summary
This work provides equations allowing the use of minerals with variable concentrations of parent and daughter isotopes as primary standards to correct for elemental fractionation during the analysis by laser ablation inductively coupled plasma mass spectrometry.
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
Bar Elisha, Perach Nuriel, Andrew Kylander-Clark, and Ram Weinberger
Geochronology, 3, 337–349, https://doi.org/10.5194/gchron-3-337-2021, https://doi.org/10.5194/gchron-3-337-2021, 2021
Short summary
Short summary
Distinguishing between different dolomitization processes is challenging yet critical for resolving some of the issues and ambiguities related to the formation of dolomitic rocks. Accurate U–Pb absolute dating of dolomite by LA-ICP-MS could contribute to a better understanding of the dolomitization process by placing syngenetic, early diagenetic, and/or epigenetic events in the proper geological context.
Louise Lenoir, Thomas Blaise, Andréa Somogyi, Benjamin Brigaud, Jocelyn Barbarand, Claire Boukari, Julius Nouet, Aurore Brézard-Oudot, and Maurice Pagel
Geochronology, 3, 199–227, https://doi.org/10.5194/gchron-3-199-2021, https://doi.org/10.5194/gchron-3-199-2021, 2021
Short summary
Short summary
To explore the U–Pb geochronometer in fluorite, the spatial distribution of uranium and other substituted elements in natural crystals is investigated using induced fission-track and synchrotron radiation X-ray fluorescence mapping. LA-ICP-MS U–Pb dating on four crystals, which preserve micrometer-scale variations in U concentrations, yields identical ages within analytical uncertainty. Our results show that fluorite U–Pb geochronology has potential for dating distinct crystal growth stages.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
E. Troy Rasbury, Theodore M. Present, Paul Northrup, Ryan V. Tappero, Antonio Lanzirotti, Jennifer M. Cole, Kathleen M. Wooton, and Kevin Hatton
Geochronology, 3, 103–122, https://doi.org/10.5194/gchron-3-103-2021, https://doi.org/10.5194/gchron-3-103-2021, 2021
Short summary
Short summary
We characterize three natural carbonate samples with elevated uranium/lead (U/Pb) ratios to demonstrate techniques improving the understanding of U incorporation in carbonates for U/Pb dating. With the rapidly accelerating application of laser ablation analyses, there is a great need for well-characterized reference materials that can serve multiple functions. Strontium (Sr) isotope analyses and U XANES demonstrate that these samples could be used as reference materials.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Christian Paroissin, Pierre-Alexandre Grignard, Geoffrey Motte, Olivier Chailan, and Jean-Pierre Girard
Geochronology, 3, 67–87, https://doi.org/10.5194/gchron-3-67-2021, https://doi.org/10.5194/gchron-3-67-2021, 2021
Short summary
Short summary
A new methodology for the micron-scale uranium–lead dating of carbonate minerals is proposed. It is based on the extraction of ages directly from pixel images (< 1 mm2) obtained by laser ablation coupled to a mass spectrometer. The ages are calculated with a robust linear regression through the pixel values. This methodology is compared to existing approaches.
Fanis Abdullin, Luigi A. Solari, Jesús Solé, and Carlos Ortega-Obregón
Geochronology, 3, 59–65, https://doi.org/10.5194/gchron-3-59-2021, https://doi.org/10.5194/gchron-3-59-2021, 2021
Short summary
Short summary
Unetched and etched apatite grains from five samples were dated by U–Pb method using laser ablation inductively coupled plasma mass spectrometry. Our experiment indicates that etching needed for apatite fission track dating has insignificant effects on obtaining accurate U–Pb ages; thus, the laser ablation-based technique may be used for apatite fission track and U–Pb double dating.
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Andrew R. C. Kylander-Clark
Geochronology, 2, 343–354, https://doi.org/10.5194/gchron-2-343-2020, https://doi.org/10.5194/gchron-2-343-2020, 2020
Short summary
Short summary
This paper serves as a guide to those interested in dating calcite by laser ablation. Within it are theoretical and practical limits of U and Pb concentrations (and U / Pb ratios), which would allow viable extraction of ages from calcite (and other minerals with moderate U / Pb ratios), and which type of instrumentation would be appropriate for any given sample. The method described uses a new detector array, allowing for lower detection limits and thereby expanding the range of viable samples.
Hugo K. H. Olierook, Kai Rankenburg, Stanislav Ulrich, Christopher L. Kirkland, Noreen J. Evans, Stephen Brown, Brent I. A. McInnes, Alexander Prent, Jack Gillespie, Bradley McDonald, and Miles Darragh
Geochronology, 2, 283–303, https://doi.org/10.5194/gchron-2-283-2020, https://doi.org/10.5194/gchron-2-283-2020, 2020
Short summary
Short summary
Using a relatively new dating technique, in situ Rb–Sr geochronology, we constrain the ages of two generations of mineral assemblages from the Tropicana Zone, Western Australia. The first, dated at ca. 2535 Ma, is associated with exhumation of an Archean craton margin and gold mineralization. The second, dated at ca. 1210 Ma, has not been previously documented in the Tropicana Zone. It is probably associated with Stage II of the Albany–Fraser Orogeny and additional gold mineralization.
George Gehrels, Dominique Giesler, Paul Olsen, Dennis Kent, Adam Marsh, William Parker, Cornelia Rasmussen, Roland Mundil, Randall Irmis, John Geissman, and Christopher Lepre
Geochronology, 2, 257–282, https://doi.org/10.5194/gchron-2-257-2020, https://doi.org/10.5194/gchron-2-257-2020, 2020
Short summary
Short summary
U–Pb ages of zircon crystals are used to determine the provenance and depositional age of strata of the Triassic Chinle and Moenkopi formations and the Permian Coconino Sandstone of northern Arizona. Primary source regions include the Ouachita orogen, local Precambrian basement rocks, and Permian–Triassic magmatic arcs to the south and west. Ages from fine-grained strata provide reliable depositional ages, whereas ages from sandstones are compromised by zircon grains recycled from older strata.
Marcel Guillong, Jörn-Frederik Wotzlaw, Nathan Looser, and Oscar Laurent
Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, https://doi.org/10.5194/gchron-2-155-2020, 2020
Short summary
Short summary
The dating of carbonates by laser ablation inductively coupled plasma mass spectrometry is improved by an additional, newly characterised reference material and adapted data evaluation protocols: the shape (diameter to depth) of the ablation crater has to be as similar as possible in the reference material used and the unknown samples to avoid an offset. Different carbonates have different ablation rates per laser pulse. With robust uncertainty propagation, precision can be as good as 2–3 %.
Nick M. W. Roberts, Kerstin Drost, Matthew S. A. Horstwood, Daniel J. Condon, David Chew, Henrik Drake, Antoni E. Milodowski, Noah M. McLean, Andrew J. Smye, Richard J. Walker, Richard Haslam, Keith Hodson, Jonathan Imber, Nicolas Beaudoin, and Jack K. Lee
Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, https://doi.org/10.5194/gchron-2-33-2020, 2020
Short summary
Short summary
Here we review current progress in LA-ICP-MS U–Pb carbonate geochronology and present strategies for acquisition and interpretation of carbonate U–Pb dates. We cover topics from imaging techniques and U and Pb incorporation into calcite to potential limitations of the method – disequilibrium and isotope mobility. We demonstrate the incorporation of imaging and compositional data to help refine and interpret U–Pb dates. We expect this paper to become a
go-toreference paper for years to come.
Cited articles
Abad, I. and Nieto, F.: Physical meaning and applications of the illite
Kübler index: measuring reaction progress in low-grade metamorphism,
Diagenesis and Low-Temperature Metamorphism, Theory, Methods and Regional
Aspects, Seminarios, Sociedad Espanola: Sociedad Espanola Mineralogia,
53–64, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.556.7352&rep=rep1&type=pdf (last access: 25 August 2022), 2007.
Abbott, S. T. and Sweet, I. P.: Tectonic control on third-order sequences
in a siliciclastic ramp-style basin: An example from the Roper Superbasin
(Mesoproterozoic), northern Australia, Aust. J. Earth Sci.,
47, 637–657, https://doi.org/10.1046/j.1440-0952.2000.00795.x, 2000.
Abbott, S. T., Sweet, I. P., Plumb, K. A., Young, D. N., Cutovinos, A.,
Ferenczi, P. A., and Pietsch, B. A.: Roper Region: Urapunga and Roper River
Special, Northern Territory (Second Edition), 1 : 250 000 geological map series explanatory notes, SD 53-10, 11, Northern Territory Geological Survey and Geoscience Australia, Darwin, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81859 (last access: 25 August 2022), 2001.
Ahmad, A. and Munson, T. J.: Geology and mineral resources of the Northern
Territory, Special Publication, edited by: Munson, T. J., Johnston, K. J.,
and Fuller, M. H., Northern Territory Geological Survey, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81446 (last access: 25 August 2022), 2013.
Árkai, P., Sassi, F., and Desmons, J.: Towards a unified nomenclature in
metamorphic petrology: 4, Very low-to low-grade metamorphic rocks. A
proposal on behalf of the IUGS Subcommission on the Systematics of
Metamorphic Rocks, International Union of Geological Sciences (IUGS), https://www.ugr.es/~agcasco/personal/IUGS/pdf-IUGS/scmr_low_r2_verylowtolowgrademetamorphicrocks.pdf (last access: 25 August 2022), 2002.
Armistead, S. E., Collins, A. S., Redaa, A., Jepson, G., Gillespie, J.,
Gilbert, S., Blades, M. L., Foden, J. D., and Razakamanana, T.: Structural
evolution and medium-temperature thermochronology of central Madagascar:
implications for Gondwana amalgamation, J. Geol. Soc. Aust., 177, 784, https://doi.org/10.1144/jgs2019-132, 2020.
Awwiller, D. N. and Mack, L. E.: Diagenetic Resetting of Sm-Nd Isotope
Systematics in Wilcox Group Sandstones and Shales, San Marcos Arch,
South-Central Texas, AAPG Bull., 39, 321–330, https://archives.datapages.com/data/gcags/data/039/039001/0321.htm (last access: 25 August 2022), 1989.
Awwiller, D. N. and Mack, L. E.: Diagenetic modification of Sm-Nd model
ages in Tertiary sandstones and shales, Texas Gulf Coast, Geology, 19,
311–314, https://doi.org/10.1130/0091-7613(1991)019<0311:Dmosnm>2.3.Co;2, 1991.
Baldermann, A., Abdullayev, E., Taghiyeva, Y., Alasgarov, A., and
Javad-Zada, Z.: Sediment petrography, mineralogy and geochemistry of the
Miocene Islam Dağ Section (Eastern Azerbaijan): Implications for the
evolution of sediment provenance, palaeo-environment and (post-)
depositional alteration patterns, Sedimentology, 67, 152–172, 2020.
Bevan, D., Coath, C. D., Lewis, J., Schwieters, J., Lloyd, N., Craig, G.,
Wehrs, H., and Elliott, T.: In situ Rb–Sr dating by collision cell,
multicollection inductively-coupled plasma mass-spectrometry with pre-cell
mass-filter,(CC-MC-ICPMS/MS), J. Anal. Atom. Spectrom., 36,
917–931, 2021.
Blenkinsop, T. G.: Definition of low-grade metamorphic zones using illite
crystallinity, J. Metamorph. Geol., 6, 623–636, 1988.
Bodorkos, S., Crowley, J. L., Claoué-Long, J. C., Anderson, J. R., and
Magee, C. W.: Precise U–Pb baddeleyite dating of the Derim Derim Dolerite,
McArthur Basin, Northern Territory: old and new SHRIMP and ID-TIMS
constraints, Aust. J. Earth Sci., 68, 1–15, https://doi.org/10.1080/08120099.2020.1749929, 2022.
Boreham, C., Crick, I., and Powell, T.: Alternative calibration of the
Methylphenanthrene Index against vitrinite reflectance: Application to
maturity measurements on oils and sediments, Org. Geochem., 12,
289–294, 1988.
Brown, D. A., Simpson, A., Hand, M., Morrissey, L. J., Gilbert, S., Tamblyn,
R., and Glorie, S.: Laser-ablation Lu-Hf dating reveals Laurentian garnet in
subducted rocks from southern Australia, Geology, 50, 837–842, https://doi.org/10.1130/G49784.1, 2022.
Burtner, R. L. and Warner, M. A.: Relationship between illite/smectite
diagenesis and hydrocarbon generation in Lower Cretaceous Mowry and Skull
Creek shales of the northern Rocky Mountain area, Clay. Clay Miner.,
34, 390–402, 1986.
Capogreco, N.: Provenance and thermal history of the Beetaloo Basin using
illite crystallinity and zircon geochronology and trace element data, BSc thesis, University of Adelaide, https://hdl.handle.net/2440/126541 (last access: 25 August 2022), 2017.
Carvajal-Ortiz, H. and Gentzis, T.: Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited, Int. J. Coal Geol., 152, 113–122, 2015.
Chamley, H.: Clay formation through weathering, in: Clay sedimentology,
Springer, 21–50, https://doi.org/10.1007/978-3-642-85916-8_2, 1989.
Charbit, S., Guillou, H., and Turpin, L.: Cross calibration of K–Ar
standard minerals using an unspiked Ar measurement technique, Chem.
Geol., 150, 147–159, 1998.
Charlier, B. L., Ginibre, C., Morgan, D., Nowell, G. M., Pearson, D.,
Davidson, J. P., and Ottley, C.: Methods for the microsampling and
high-precision analysis of strontium and rubidium isotopes at single crystal
scale for petrological and geochronological applications, Chem. Geol.,
232, 114–133, 2006.
Chen, J., Blume, H.-P., and Beyer, L.: Weathering of rocks induced by lichen
colonization – a review, Catena, 39, 121–146, 2000.
Condie, K. C.: Another look at rare earth elements in shales, Geochim.
Cosmochim. Ac., 55, 2527–2531, https://doi.org/10.1016/0016-7037(91)90370-K, 1991.
Cornford, C., Gardner, P., and Burgess, C.: Geochemical truths in large data
sets. I: Geochemical screening data, Org. Geochem., 29, 519–530,
1998.
Cox, G. M., Jarrett, A., Edwards, D., Crockford, P. W., Halverson, G. P.,
Collins, A. S., Poirier, A., and Li, Z.-X.: Basin redox and primary
productivity within the Mesoproterozoic Roper Seaway, Chem. Geol., 440,
101–114, https://doi.org/10.1016/j.chemgeo.2016.06.025, 2016.
Cox, G. M., Sansjofre, P., Blades, M. L., Farkas, J., and Collins, A. S.:
Dynamic interaction between basin redox and the biogeochemical nitrogen
cycle in an unconventional Proterozoic petroleum system, Sci. Rep., 9, 5200, https://doi.org/10.1038/s41598-019-40783-4, 2019.
Cox, G. M., Collins, A. S., Jarrett, A. J., Blades, M. L., Shannon, A. V.,
Yang, B., Farkas, J., Hall, P. A., O'Hara, B., and Close, D., and Baruch, E. T.: A
very unconventional hydrocarbon play: the Mesoproterozoic Velkerri Formation
of northern Australia, AAPG Bulletin, 106, 1213–1237, https://doi.org/10.1306/12162120148, 2022.
Crick, I., Boreham, C., Cook, A., and Powell, T.: Petroleum geology and
geochemistry of Middle Proterozoic McArthur Basin, northern Australia II:
Assessment of source rock potential, AAPG Bull., 72, 1495–1514, 1988.
Cuadros, J.: Clay minerals interaction with microorganisms: a review, Clay
Miner., 52, 235–261, 2017.
Deepak, A., Löhr, S., Abbott, A. N., Han, S., Wheeler, C., and Sharma,
M.: Testing the Precambrian reverse weathering hypothesis using a
1-billion-year record of marine shales, 2022 Goldschmidt Conference, 12 July 2022, Honolulu, Hawai'i, USA, https://conf.goldschmidt.info/goldschmidt/2022/meetingapp.cgi/Paper/10825 (last access: 25 August 2022), 2022.
Dellisanti, F., Pini, G. A., and Baudin, F.: Use of T max as a thermal
maturity indicator in orogenic successions and comparison with clay mineral
evolution, Clay Miner., 45, 115–130, 2010.
Dembicki Jr., H.: Three common source rock evaluation errors made by
geologists during prospect or play appraisals, AAPG Bull., 93, 341–356,
2009.
Derkowski, A., Środoń, J., Franus, W., Uhlík, P., Banaś,
M., Zieliński, G., Čaplovičová, M., and Franus, M.: Partial
dissolution of glauconitic samples: Implications for the methodology of K-Ar
and Rb-Sr dating, Clay. Clay Miner., 57, 531–554, https://doi.org/10.1346/CCMN.2009.0570503, 2009.
Dickin, A. P.: Radiogenic isotope geology, Cambridge university press, ISBN 9781107099449, 2018.
Disnar, J. R.: Détermination de paléotempératures maximales
d'enfouissement de sédiments charbonneux à partir de données de
pyrolyse, CR. Acad. Sci. II B, 303, 691–696, 1986.
Disnar, J. R.: Determination of maximum paleotemperatures of burial (MPTB)
of sedimentary rocks from pyrolysis data on the associated organic matter:
basic principles and practical application, Chem. Geol., 118, 289–299,
https://doi.org/10.1016/0009-2541(94)90182-1, 1994.
Dodson, M. H.: Closure temperature in cooling geochronological and
petrological systems, Contrib. Mineral. Petr., 40,
259–274, https://doi.org/10.1007/BF00373790, 1973.
Duddy, I., Green, P., Gibson, H., and Hegarty, K.: Regional Palaeothermal
episodes in Northern Australia, Timor Sea Petrol. Geosci., Proc. Timor Sea
Symp. 2003, 20 June 2003, Darwin, Australia, http://www.geotrack.com.au/papers/timor_sea_symposium_duddy_et_al.pdf (last access: 25 August 2022), 2004.
Dutkiewicz, A., Volk, H., Ridley, J., and George, S. C.: Geochemistry of oil
in fluid inclusions in a middle Proterozoic igneous intrusion: implications
for the source of hydrocarbons in crystalline rocks, Org. Geochem.,
35, 937–957, https://doi.org/10.1016/j.orggeochem.2004.03.007, 2004.
Eberl, D., and Velde, B.: Beyond the Kubler index, Clay Miner., 24,
571–577, 1989.
Espitalié, J.: Use of Tmax as a maturation index for different types of
organic matter: comparison with vitrinite reflectance, Collection colloques
et séminaires – Institut français du pétrole, 475–496, http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7895690 (last access: 25 August 2022), 1986.
Espitalié, J., Madec, M., Tissot, B., Mennig, J., and Leplat, P.: Source
rock characterization method for petroleum exploration, Offshore Technology
Conference, 1 May 1977, Houston, Texas, USA, https://doi.org/10.4043/2935-MS, 1977.
Evins, L. Z., Jourdan, F., and Phillips, D. J. L.: The Cambrian Kalkarindji
Large Igneous Province: Extent and characteristics based on new 40Ar 39Ar and geochemical data, Lithos, 110, 294–304, 2009.
Faure, G.: Principles of isotope geology, Wiley, https://www.osti.gov/biblio/7100564 (last access: 25 August 2022), 1977.
Field, D. and Råheim, A.: A geologically meaningless Rb–Sr total rock
isochron, Nature, 282, 497–499, https://doi.org/10.1038/282497a0, 1979.
Merriman, R. J. and Frey, M.: Patterns of very low-grade metamorphism in metapelitic rocks, Low-grade Metamorphism, Blackwell, Oxford, 61–107, https://doi.org/10.1002/9781444313345.ch3, 1999.
Frogtech Geoscience: Digital Information Package, DIP: SEEBASE® study and GIS for greater McArthur Basin, Northern Territory Geological Survey, 17, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87064 (last access: 25 August 2022), 2018.
Galán, E.: Genesis of clay minerals, Developments in clay science, 1,
1129–1162, 2006.
George, S. and Ahmed, M.: Use of aromatic compound distributions to
evaluate organic maturity of the Proterozoic middle Velkerri Formation,
McArthur Basin, Australia, https://archives.datapages.com/data/petroleum-exploration-society-of-australia/conferences/014/014001/pdfs/253.htm (last access: 25 August 2022), 2002.
Glass, L. M. and Phillips, D. J. G.: The Kalkarindji continental flood
basalt province: A new Cambrian large igneous province in Australia with
possible links to faunal extinctions, Geolog, 34, 461–464, 2006.
Gorojovsky, L. and Alard, O.: Optimisation of laser and mass spectrometer
parameters for the in situ analysis of Rb Sr ratios by LA-ICP-MS/MS, J. Anal. Atom. Spectrom., 35, 2322–2336, https://doi.org/10.1039/D0JA00308E, 2020.
Govindaraju, K., Rubeska, I., and Paukert, T.: 1994 Report On Zinnwaldite
Zw-C Analysed By Ninety-Two Git-Iwg Member-Laboratories, Geostandard.
Newslett., 18, 1–42, https://doi.org/10.1111/j.1751-908X.1994.tb00502.x, 1994.
Guggenheim, S., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A.,
Eberl, D. D., Formoso, M. L., Galán, E., Merriman, R. J., and Peacor, D.
R.: Report of the Association Internationale pour l'Etude des Argiles
(AIPEA) Nomenclature Committee for 2001: order, disorder and crystallinity
in phyllosilicates and the use of the “crystallinity index”, Clay Miner.,
37, 389–393, 2002.
Hahn, O. and Walling, E.: Über die Möglichkeit geologischer
Altersbestimmungen rubidiumhaltiger Mineralien und Gesteine, Z. Anorg. Allg. Chem., 236, 78–82, 1938.
Hahn, O., Strassman, F., Mattauch, J., and Ewald, H.: Geologische
Altersbestimmungen mit der strontiummethode, Chem. Ztg., 67, 55–56, 1943.
Hall, L., Boreham, C. J., Edwards, D. S., Palu, T., Buckler, T., Troup, A.,
and Hill, A.: Cooper Basin Source Rock Geochemistry, Geoscience Australia, https://doi.org/10.11636/Record.2016.006, 2016.
Hall, L. S., Orr, M. L., Lech, M. E., Lewis, S., Bailey, A. H. E., Owens,
R., Bradshaw, B. E., and Bernardel, G.: Geological and Bioregional
Assessments: assessing the prospectivity for tight, shale and deep-coal
resources in the Cooper Basin, Beetaloo Subbasin and Isa Superbasin, The
APPEA Journal, 61, 477–484, 2021.
Harrison, T. M., Heizler, M. T., McKeegan, K. D., and Schmitt, A. K.: In
situ 40K–40Ca “double-plus” SIMS dating resolves Klokken feldspar 40K–40Ar paradox, Earth Planet. Sc. Lett., 299, 426–433, 2010.
Hillier, S.: Erosion, sedimentation and sedimentary origin of clays, in:
Origin and mineralogy of clays, Springer, 162–219, https://doi.org/10.1007/978-3-662-12648-6_4, 1995.
Hogmalm, K. J., Zack, T., Karlsson, A. K. O., Sjöqvist, A. S. L., and
Garbe-Schönberg, D.: In situ Rb–Sr and K–Ca dating by LA-ICP-MS/MS: an
evaluation of N2O and SF6 as reaction gases, J. Anal. Atom. Spectrom., 32, 305-313, https://doi.org/10.1039/c6ja00362a, 2017.
Hogmalm, K. J., Dahlgren, I., Fridolfsson, I., and Zack, T.: First in situ
Re-Os dating of molybdenite by LA-ICP-MS/MS, Miner. Deposita, 54,
821–828, 2019.
Hunt, J. M.: Petroleum geochemistry and geology, W. H. Freeman, ISBN 9780716724414, https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/8737015 (last access: 25 August 2022), 1995.
Isson, T. T. and Planavsky, N. J.: Reverse weathering as a long-term
stabilizer of marine pH and planetary climate, Nature, 560, 471–475, https://doi.org/10.1038/s41586-018-0408-4, 2018.
Iyer, K., Svensen, H., and Schmid, D. W.: SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions, Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, 2018.
Jackson, M., Sweet, I., Page, R., and Bradshaw, B.: The South Nicholson and
Roper Groups: evidence for the early Mesoproterozoic Roper Superbasin,
Integrated Basin Analysis of the Isa Superbasin using Seismic, Well-log, and
Geopotential Data: An Evaluation of the Economic Potential of the Northern
Lawn Hill Platform: Canberra, Australia, Australian Geological Survey
Organisation Record, 19 pp., 1999.
Jackson, M. J., Muir, M. D., and Plumb, K. A.: Geology of the Southern McArthur Basin, Northern Territory, Australian Government Pub. Service, https://dev.ecat.ga.gov.au/geonetwork/srv/api/records/a05f7892-9cf6-7506-e044-00144fdd4fa6 (last access: 25 August 2022), 1987.
Jarrett, A. J., Cox, G. M., Brocks, J. J., Grosjean, E., Boreham, C. J., and
Edwards, D. S.: Microbial assemblage and palaeoenvironmental reconstruction
of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia,
Geobiology, 17, 360–380, 2019.
Jarvie, D. M.: Factors affecting Rock-Eval derived kinetic parameters,
Chem. Geol., 93, 79–99, 1991.
Jarvie, D. M., Claxton, B. L., Henk, F., and Breyer, J. T.: Oil and shale
gas from the Barnett Shale, Ft, Worth Basin, Texas (abs.): AAPG Annual
Meeting Program, 3 June 2001, Denver, Colorado, USA, A100, https://www.searchanddiscovery.com/abstracts/html/2001/annual/abstracts/0386.htm (last access: 25 August 2022), 2001.
Jenkin, G. R., Rogers, G., Fallick, A. E., and Farrow, C. M.: Rb-Sr closure
temperatures in bi-mineralic rocks: a mode effect and test for different
diffusion models, Chem. Geol., 122, 227–240, 1995.
Jochum, K. and Stoll, B.: Reference materials for elemental and isotopic
analyses by LA-(MC)-ICP-MS: Successes and outstanding needs, in: Laser ablation ICP-MS in the Earth sciences: Current practices and outstanding issues, edited by: Sylvestor, P., Economic Geology, ISBN 9-0-921294-49-8, 40, 147–168, http://hdl.handle.net/11858/00-001M-0000-0014-8633-5 (last access: 25 August 2022), 2008.
Jochum, K. P., Willbold, M., Raczek, I., Stoll, B., and Herwig, K.: Chemical
Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G,
GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and
LA-ICP-MS, Geostand. Geoanal. Res., 29, 285–302, 2005.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and
Enzweiler, J.: Determination of Reference Values for NIST SRM 610–617
Glasses Following ISO Guidelines, Geostand. Geoanal. Res.,
35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Jourdan, F., Hodges, K., Sell, B., Schaltegger, U., Wingate, M., Evins, L.,
Söderlund, U., Haines, P., Phillips, D., and Blenkinsop, T. J. G.:
High-precision dating of the Kalkarindji large igneous province, Australia,
and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction, Geology, 42, 543–546, 2014.
Kendall, B., Creaser, R., Gordon, G., and Anbar, A.: Re-Os and Mo isotope
systematics of black shales from the Middle Proterozoic Velkerri and
Wollogorang Formations, McArthur Basin, northern Australia, Geochim.
Cosmochim. Ac., 73, 2534–2558, https://doi.org/10.1016/j.gca.2009.02.013, 2009.
Kennedy, M., Droser, M., Mayer, L. M., Pevear, D., and Mrofka, D.: Late
Precambrian oxygenation; inception of the clay mineral factory, Science,
311, 1446–1449, 2006.
Kosakowski, G., Kunert, V., Clauser, C., Franke, W., and Neugebauer, H. J.:
Hydrothermal transients in Variscan crust: paleo-temperature mapping and
hydrothermal models, Tectonophysics, 306, 325–344, https://doi.org/10.1016/S0040-1951(99)00064-5, 1999.
Kubler, B.: La cristallinité de l'illite et les zones tout à fait
supérieures du métamorphisme, Etages tectoniques, 105–121, http://refhub.elsevier.com/S0048-9697(14)00679-2/rf0220 (last access: 25 August 2022), 1967.
Kvalheim, O. M., Christy, A. A., Telnæs, N., and Bjørseth, A.:
Maturity determination of organic matter in coals using the
methylphenanthrene distribution, Geochim. Cosmochim. Ac., 51,
1883–1888, https://doi.org/10.1016/0016-7037(87)90179-7, 1987.
Lanigan, K. and Ledlie, I. M.: Walton-1,2 EP 24 McArthur Basin, Northern
Territory Well Completion Report, Pacific Oil and Gas, Northern Territory,
AustraliaPR1989-0088, 1990.
Lanigan, K. and Torkington, J.: Well Completion Report EP19 – Sever 1, Daly
Sub-basin of the McArthur Basin, Pacific Oil and Gas, Northern Territory,
AustraliaPR1990-0069, 1991.
Laureijs, C. T., Coogan, L. A., and Spence, J.: In-situ RbSr dating of
celadonite from altered upper oceanic crust using laser ablation ICP-MS/MS,
Chem. Geol., 579, 120339, https://doi.org/10.1016/j.chemgeo.2021.120339, 2021.
Ledlie, I. M. and Maim, K.: Lawrence 1 EP 5 McArthur Basin, Northern
Territory Well Completion Report, Pacific Oil and Gas, Northern Territory,
AustraliaPR1989-0005, 1989.
Lee, M. and Parsons, I.: Biomechanical and biochemical weathering of
lichen-encrusted granite: textural controls on organic–mineral interactions
and deposition of silica-rich layers, Chem. Geol., 161, 385–397, 1999.
Lemiux, Y.: Altree 2, Burdo 1, Chanin 1, Jamison 1, McManus 1, Shenandoah
1A, Walton 2, Balmain-1, Elliott-1 pyrolysis and tight rock analysis,
Talisman Energy, Advanced Well Technologies,
Northern Territory Geological Survey, Northern Territory, AustraliaCSR0192,
2011.
Lev, S. M., McLennan, S. M., and Hanson, G. N.: Mineralogic controls on REE
mobility during black-shale diagenesis, J. Sediment. Res., 69,
1071–1082, https://doi.org/10.2110/jsr.69.1071, 1999.
Li, S., Wang, X.-C., Li, C.-F., Wilde, S. A., Zhang, Y., Golding, S. D.,
Liu, K., and Zhang, Y.: Direct Rubidium-Strontium Dating of Hydrocarbon
Charge Using Small Authigenic Illitic Clay Aliquots from the Silurian
Bituminous Sandstone in the Tarim Basin, NW China, Sci. Rep., 9,
1–13, 2019.
Li, S.-S., Santosh, M., Farkaš, J., Redaa, A., Ganguly, S., Kim, S. W.,
Zhang, C., Gilbert, S., and Zack, T.: Coupled U-Pb and Rb-Sr laser ablation
geochronology trace Archean to Proterozoic crustal evolution in the Dharwar
Craton, India, Precambrian Res., 343, 105709, https://doi.org/10.1016/j.precamres.2020.105709, 2020.
Lloyd, J. C.: PowerShell LADR error correlation workaround, GitHub [code], https://github.com/jarredclloyd/PowerShell_LADR_errorcorrelation_workaround, last access: 25 August 2022.
Mackenzie, F. T. and Kump, L. R.: Reverse weathering, clay mineral
formation, and oceanic element cycles, Science, 270, 586–586, 1995.
Mählmann, R. F., Bozkaya, Ö., Potel, S., Le Bayon, R.,
Šegvić, B., and Nieto, F.: The pioneer work of Bernard Kübler
and Martin Frey in very low-grade metamorphic terranes: paleo-geothermal
potential of variation in Kübler-Index/organic matter reflectance
correlations. A review, Swiss J. Geosci., 105, 121–152, 2012.
McMahon, W. J. and Davies, N. S.: Evolution of alluvial mudrock forced by
early land plants, Science, 359, 1022–1024, 2018.
Mergelov, N., Mueller, C. W., Prater, I., Shorkunov, I., Dolgikh, A.,
Zazovskaya, E., Shishkov, V., Krupskaya, V., Abrosimov, K., and Cherkinsky,
A.: Alteration of rocks by endolithic organisms is one of the pathways for
the beginning of soils on Earth, Sci. Rep., 8, 1–15, 2018.
Meunier, A., Velde, B., and Velde, B.: Illite: Origins, evolution and
metamorphism, Springer Science & Business Media, ISBN 9783540204862, 2004.
Minster, J. F., Ricard, L. P., and Allègre, C. J.: 87Rb-87Sr chronology of enstatite meteorites, Earth Planet. Sc. Lett., 44, 420–440,
https://doi.org/10.1016/0012-821X(79)90081-5, 1979.
Mukherjee, I. and Large, R. R.: Pyrite trace element chemistry of the
Velkerri Formation, Roper Group, McArthur Basin: Evidence for atmospheric
oxygenation during the Boring Billion, Precambrian Res., 281, 13–26,
https://doi.org/10.1016/j.precamres.2016.05.003, 2016.
Munson, T.: Sedimentary Characterisation of the Wilton Package, Greater
MacArthur Basin, Northern Territory, Northern Territory Geological Survey, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83806 (last access: 25 August 2022), 2016.
Munson, T. and Revie, D.: Stratigraphic
subdivision of the Velkerri Formation, Roper Group, McArthur Basin, Northern
Territory, Northern Territory Geological Survey, Record 2018-006, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87322 (last access: 25 August 2022), 2018.
Nebel, O.: Rb–Sr Dating, in: Encyclopedia of Scientific Dating Methods, edited by: Rink, W. J. and Thompson, J. W., Springer Dordrecht,
1–19, https://doi.org/10.1007/978-94-007-6326-5_116-1, 2014.
Nebel, O., Scherer, E. E., and Mezger, K.: Evaluation of the 87Rb decay
constant by age comparison against the U–Pb system, Earth Planet. Sc. Lett., 301, 1–8, https://doi.org/10.1016/j.epsl.2010.11.004, 2011.
Nguyen, K., Love, G. D., Zumberge, J. A., Kelly, A. E., Owens, J. D.,
Rohrssen, M. K., Bates, S. M., Cai, C., and Lyons, T. W.: Absence of
biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper
Group: Searching across a marine redox gradient in mid-Proterozoic
habitability, Geobiology, 17, 247–260, 2019.
Nixon, A. L., Glorie, S., Collins, A. S., Blades, M. L., Simpson, A., and
Whelan, J. A.: Inter-cratonic geochronological and geochemical correlations
of the Derim Derim–Galiwinku/Yanliao reconstructed Large Igneous Province
across the North Australian and North China cratons, Gondwana Res., 103, 473–486, https://doi.org/10.1016/j.gr.2021.10.027, 2021.
Nixon, A. L., Glorie, S., Hasterok, D., Collins, A. S., Fernie, N., and
Fraser, G.: Low-temperature thermal history of the McArthur Basin: Influence
of the Cambrian Kalkarindji Large Igneous Province on hydrocarbon
maturation, Basin Res., https://doi.org/10.1111/bre.12691, online first, 2022.
Norris, A. and Danyushevsky, L.: Towards Estimating the Complete
Uncertainty Budget of Quantified Results Measured by LA-ICP-MS, Goldschmidt,
Boston, MA, USA, https://goldschmidtabstracts.info/2018/1894.pdf (last access: 25 August 2022), 2018.
NTGS: Altree 1 and 2 EP 24 McArthur Basin, Northern Territory Well
Completion Report, Pacific Oil and Gas, Northern Territory, Australia, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79405 (last access: 25 August 2022), 1989.
NTGS: Core Sample Analysis. Total Organic Carbon, Programmed Pyrolysis Data.
Altree 2, Balmain 1, Elliott 1, Jamison 1, in: Core Sampling Reports, Falcon
Oil & Gas Weatherford Laboratories, Northern Territory, Australia, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/84880 (last access: 25 August 2022), 2009.
NTGS: EP24 Altree 2 Petrology and organic geochemistry, Eni Australia,
Geotechnical Services, Falcon Oil & Gas, Northern Territory Geological
Survey, Northern Territory, Australia, CSR0185, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/84887 (last access: 25 August 2022), 2010.
NTGS: Quantitative X-Ray Diffraction Analysis of 30 samples, edited by: Northern Territory Geological Survey, Core Sampling Reports, Northern Territory Geological Survey, Northern Territory, Australia, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/84920 (last access: 25 August 2022), 2012.
NTGS: Basic Well Completion Report, NT EP167, Tarlee S3, Pangaea Resources,
Northern Territory, Australia, PR2015-0016, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83524 (last access: 25 August 2022), 2014.
NTGS: Basic Well Completion Report NT EP167 Birdum Creek 1, Pangaea
Resources, Northern Territory, Australia, PR2016-W006, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86120 (last access: 25 August 2022), 2015.
NTGS: Basic Well Completion Report NT – EP167 Wyworrie 1, Pangaea Resources,
Northern Territory, Australia, PR2016-W007, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86440 (last access: 25 August 2022), 2016.
Ola, P. S., Aidi, A. K., and Bankole, O. M.: Clay mineral diagenesis and
source rock assessment in the Bornu Basin, Nigeria: Implications for thermal
maturity and source rock potential, Mar. Petrol. Geol., 89,
653–664, 2018.
Olierook, H. K. H., Rankenburg, K., Ulrich, S., Kirkland, C. L., Evans, N. J., Brown, S., McInnes, B. I. A., Prent, A., Gillespie, J., McDonald, B., and Darragh, M.: Resolving multiple geological events using in situ Rb–Sr geochronology: implications for metallogenesis at Tropicana, Western Australia, Geochronology, 2, 283–303, https://doi.org/10.5194/gchron-2-283-2020, 2020.
Page, R. W., Jackson, M. J., and Krassay, A. A.: Constraining sequence
stratigraphy in north Australian basins: SHRIMP U–Pb zircon geochronology
between Mt Isa and McArthur River, Aust. J. Earth Sci.,
47, 431–459, https://doi.org/10.1046/j.1440-0952.2000.00797.x, 2000.
Papanastassiou, D. A. and Wasserburg, G. J.: RbSr ages from the ocean of
storms, Earth Planet. Sc. Lett., 8, 269–278, https://doi.org/10.1016/0012-821X(70)90111-1, 1970.
Pearce, N. J., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S.
E., Neal, C. R., and Chenery, S. P.: A compilation of new and published
major and trace element data for NIST SRM 610 and NIST SRM 612 glass
reference materials, Geostandard. Newslett., 21, 115–144, 1997.
Peters, K. E.: Guidelines for evaluating petroleum source rock using
programmed pyrolysis, AAPG Bull., 70, 318–329, 1986.
Peters, K. E. and Cassa, M. R.: Applied source rock geochemistry: Chapter
5: Part II. Essential elements, American Association of Petroleum Geologists, 93–120, https://archives.datapages.com/data/specpubs/methodo2/data/a077/a077/0001/0050/0093.htm (last access: 25 August 2022), 1994.
Piedad-Sánchez, N., Izart, A., Martıìnez, L., Suárez-Ruiz, I.,
Elie, M., and Menetrier, C.: Paleothermicity in the Central Asturian Coal
Basin, North Spain, Int. J. Coal Geol., 58, 205–229,
https://doi.org/10.1016/j.coal.2004.02.001, 2004.
Plumb, K. and Wellman, P.: McArthur Basin, Northern Territory: mapping of
deep troughs using gravity and magnetic anomalies, BMR J. Aust. Geol. Geop., 10, 243–251, 1987.
Poitrasson, F., Pin, C., and Duthou, J.-L.: Hydrothermal remobilization of
rare earth elements and its effect on Nd isotopes in rhyolite and granite,
Earth Planet. Sc. Lett., 130, 1–11, https://doi.org/10.1016/0012-821X(94)00257-Y, 1995.
Pollastro, R. M.: Considerations and applications of the illite/smectite
geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age,
Clay. Clay Miner., 41, p. 119, 1993.
Radke, M., Willsch, H., Leythaeuser, D., and Teichmüller, M.: Aromatic
components of coal: relation of distribution pattern to rank, Geochim. Cosmochim. Ac., 46, 1831–1848, 1982.
Rafiei, M. and Kennedy, M.: Weathering in a world without terrestrial life
recorded in the Mesoproterozoic Velkerri Formation, Nat. Commun.,
10, 3448, https://doi.org/10.1038/s41467-019-11421-4, 2019.
Rafiei, M., Löhr, S., Baldermann, A., Webster, R., and Kong, C.:
Quantitative petrographic differentiation of detrital vs diagenetic clay
minerals in marine sedimentary sequences: Implications for the rise of
biotic soils, Precambrian Res., 350, 105948, https://doi.org/10.1016/j.precamres.2020.105948, 2020.
Rawlings, D. J.: Stratigraphic resolution of a multiphase intracratonic
basin system: the McArthur Basin, northern Australia, Aust. J. Earth Sci., 46, 703–723, https://doi.org/10.1046/j.1440-0952.1999.00739.x, 1999.
Redaa, A., Farkaš, J., Gilbert, S., Collins, A. S., Wade, B., Löhr,
S., Zack, T., and Garbe-Schönberg, D.: Assessment of elemental
fractionation and matrix effects during in situ Rb–Sr dating of phlogopite
by LA-ICP-MS/MS: implications for the accuracy and precision of mineral
ages, J. Anal. Atom. Spectrom., 36, 322–344, https://doi.org/10.1039/D0JA00299B, 2021a.
Redaa, A., Farkaš, J., Hassan, A., Collins, A. S., Gilbert, S., and
Löhr, S. C.: Constraints from in-situ Rb-Sr dating on the timing of
tectono-thermal events in the Umm Farwah shear zone and associated Cu-Au
mineralisation in the Southern Arabian Shield, Saudi Arabia, J.
Asian Earth Sci., 224, 105037, https://doi.org/10.1016/j.jseaes.2021.105037, 2021b.
Revie, D.: XRD analysis greater McArthur Basin. NTGS Core Sampling Reports,
Northern Territory Geological Survey, Northern Territory, Australia, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/85053 (last access: 25 August 2022), 2014.
Revie, D.: Interpretive summary of integrated petroleum geochemistry of
selected wells in the greater McArthur Basin, NT, Australia, Northern
Territory Geological Survey, Weatherford Laboratories, Northern Territory, Australia, CSR0413, 2016.
Revie, D. and MacDonald, G.: Volumetric resource assessment of the lower
Kyalla and middle Velkerri formations of the McArthur Basin, Annual
Geoscience Exploration Seminar (AGES) Proceedings, 29 March 2017, Alice Springs, Northern Territory, Australia, 29, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/85107 (last access: 25 August 2022), 2017.
Revie, D., Normington, V., and Jarrett, A.: Shale resource data from the
greater McArthur Basin, Northern Territory Geological Survey, 1445-5358, 2022.
Ribeiro, B. V., Finch, M. A., Cawood, P. A., Faleiros, F. M., Murphy, T. D.,
Simpson, A., Glorie, S., Tedeschi, M., Armit, R., and Barrote, V. R.: From
microanalysis to supercontinents: Insights from the Rio Apa Terrane into the
Mesoproterozoic SW Amazonian Craton evolution during Rodinia assembly,
J. Metamorph. Geol., 40, 631–663, https://doi.org/10.1111/jmg.12641, 2021.
Riediger, C. L.: Solid bitumen reflectance and Rock-Eval Tmax as maturation
indices: an example from the “Nordegg Member”, Western Canada Sedimentary
Basin, Int. J. Coal Geol., 22, 295–315, https://doi.org/10.1016/0166-5162(93)90031-5, 1993.
Rösel, D. and Zack, T.: LA-ICP-MS/MS Single-Spot Rb-Sr Dating,
Geostand. Geoanal. Res., 46, 143–168, https://doi.org/10.1111/ggr.12414, 2022.
Sander, R., Pan, Z., Connell, L. D., Camilleri, M., Grigore, M., and Yang,
Y.: Controls on methane sorption capacity of Mesoproterozoic gas shales from
the Beetaloo Sub-basin, Australia and global shales, Int. J. Coal Geol., 199, 65–90, 2018.
Scheiblhofer, E., Moser, U., Löhr, S., Wilmsen, M., Farkaš, J.,
Gallhofer, D., Bäckström, A. M., Zack, T., and Baldermann, A.:
Revisiting Glauconite Geochronology: Lessons Learned from In Situ
Radiometric Dating of a Glauconite-Rich Cretaceous Shelfal Sequence,
Minerals, 12, 818, https://doi.org/10.3390/min12070818, 2022.
Schmitz, M. D. and Schoene, B.: Derivation of isotope ratios, errors, and
error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked
isotope dilution thermal ionization mass spectrometric data, Geochem.
Geophy. Geosy., 8, Q08006, https://doi.org/10.1029/2006GC001492, 2007.
Selby, D.: U-Pb zircon geochronology of the Aptian/Albian boundary implies
that the GL-O international glauconite standard is anomalously young,
Cretaceous Res., 30, 1263–1267, https://doi.org/10.1016/j.cretres.2009.07.001, 2009.
Şengün, F., Bertrandsson Erlandsson, V., Hogmalm, J., and Zack, T.:
In situ Rb-Sr dating of K-bearing minerals from the orogenic Akçaabat
gold deposit in the Menderes Massif, Western Anatolia, Turkey, J.
Asian Earth Sci., 185, 104048, https://doi.org/10.1016/j.jseaes.2019.104048, 2019.
Shepherd, T. J. and Darbyshire, D. P. F.: Fluid inclusion Rb–Sr isochrons
for dating mineral deposits, Nature, 290, 578–579, https://doi.org/10.1038/290578a0, 1981.
Simmons, E. C.: rubidiumRubidium: Element and geochemistry, in:
Geochemistry, Springer Netherlands, Dordrecht, 555–556, https://doi.org/10.1007/1-4020-4496-8_278, 1998.
Simpson, A., Gilbert, S., Tamblyn, R., Hand, M., Spandler, C., Gillespie,
J., Nixon, A., and Glorie, S.: In-situ LuHf geochronology of garnet, apatite
and xenotime by LA ICP MS/MS, Chem. Geol., 577, 120299, https://doi.org/10.1016/j.chemgeo.2021.120299, 2021.
Simpson, A., Glorie, S., Hand, M., Spandler, C., Gilbert, S., and Cave, B.: In situ Lu–Hf geochronology of calcite, Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, 2022.
Singer, A.: The paleoclimatic interpretation of clay minerals in soils and
weathering profiles, Earth-Sci. Rev., 15, 303–326, 1980.
Southgate, P. N., Bradshaw, B. E., Domagala, J., Jackson, M. J., Idnurm, M.,
Krassay, A. A., Page, R. W., Sami, T. T., Scott, D. L., Lindsay, J. F.,
McConachie, B. A., and Tarlowski, C.: Chronostratigraphic basin framework
for Palaeoproterozoic rocks (1730–1575 Ma) in northern Australia and
implications for base-metal mineralisation, Aust. J. Earth Sci., 47, 461–483, https://doi.org/10.1046/j.1440-0952.2000.00787.x, 2000.
Subarkah, D., Blades, M. L., Collins, A. S., Farkaš, J., Gilbert, S.,
Löhr, S. C., Redaa, A., Cassidy, E., and Zack, T.: Unraveling the
histories of Proterozoic shales through in situ Rb-Sr dating and trace
element laser ablation analysis, Geology, 50, 66–70, https://doi.org/10.1130/G49187.1, 2021.
Subarkah, D., Nixon, A., Jimenez Lloreda, M., Collins, A., Blades, M., Farkas, J., Gilbert, S., Holford, S., and Jarrett, A.: GCHRON-2022-8_SuppFigures, The University of Adelaide [figure], https://doi.org/10.25909/6315ea488cc5f, 2022.
Summons, R. E., Taylor, D., and Boreham, C. J.: Geochemical Tools For
Evaluating Petroleum Generation In Middle Proterozoic Sediments Of The
Mcarthur Basin, Northern Territory, Australia, The APPEA Journal, 34,
692–706, 1994.
Tamblyn, R., Hand, M., Morrissey, L., Zack, T., Phillips, G., and Och, D.:
Resubduction of lawsonite eclogite within a serpentinite-filled subduction
channel, Contrib. Mineral. Petr., 175, 74, https://doi.org/10.1007/s00410-020-01712-1, 2020.
Tamblyn, R., Hand, M., Simpson, A., Gilbert, S., Wade, B., and Glorie, S.:
In situ laser ablation Lu–Hf geochronology of garnet across the Western
Gneiss Region: campaign-style dating of metamorphism, J.
Geol. Soc., 179, 4, https://doi.org/10.1144/jgs2021-094, 2021.
Taylor, D., Kontorovich, A. E., Larichev, A. I., and Glikson, M.: Petroleum
Source Rocks In The Roper Group Of The Mcarthur Basin: Source
Characterisation And Maturity Determinations Using Physical And Chemical
Methods, The APPEA Journal, 34, 279–296, 1994.
Tillberg, M., Drake, H., Zack, T., Kooijman, E., Whitehouse, M. J., and
Åström, M. E.: In situ Rb-Sr dating of slickenfibres in deep
crystalline basement faults, Sci. Rep., 10, 562, https://doi.org/10.1038/s41598-019-57262-5, 2020.
Tissot, B., Durand, B., Espitalie, J., and Combaz, A.: Influence of nature
and diagenesis of organic matter in formation of petroleum, AAPG Bull.,
58, 499–506, 1974.
Tissot, B., Pelet, R., and Ungerer, P.: Thermal history of sedimentary
basins, maturation indices, and kinetics of oil and gas generation, AAPG Bull., 71, 1445–1466, 1987.
Torgersen, E., Viola, G., Zwingmann, H., and Harris, C.: Structural and
temporal evolution of a reactivated brittle–ductile fault – Part II:
Timing of fault initiation and reactivation by K–Ar dating of synkinematic
illite/muscovite, Earth Planet. Sc. Lett., 410, 212–224,
https://doi.org/10.1016/j.epsl.2014.09.051, 2015.
Varajao, A. and Meunier, A.: Particle morphological evolution during the
conversion of I/S to illite in Lower Cretaceous shales from Sergipe-Alagoas
Basin, Brazil, Clay. Clay Miner., 43, 14–28, 1995.
Velde, B. and Espitalié, J.: Comparison of kerogen maturation and
illite/smectite somposition in diagnesis, J. Petrol. Geol., 12,
103–110, 1989.
Velde, B. and Vasseur, G.: Estimation of the diagenetic smectite to illite
transformation in time-temperature space, Am. Mineral., 77,
967–976, 1992.
Vermeesch, P.: Quantitative geomorphology of the White Mountains
(California) using detrital apatite fission track thermochronology, J. Geophys. Res.-Earth, 112, F03004, https://doi.org/10.1029/2006JF000671, 2007.
Vermeesch, P.: On the visualisation of detrital age distributions, Chem. Geol., 312–313, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012.
Vermeesch, P.: Multi-sample comparison of detrital age distributions,
Chem. Geol., 341, 140–146, https://doi.org/10.1016/j.chemgeo.2013.01.010, 2013.
Vermeesch, P.: IsoplotR : A free and open toolbox for geochronology,
Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Villa, I. M.: Isotopic closure, Terra Nova, 10, 42–47, https://doi.org/10.1046/j.1365-3121.1998.00156.x, 1998.
Villa, I. M., De Bièvre, P., Holden, N., and Renne, P.: IUPAC-IUGS
recommendation on the half life of 87Rb, Geochim. Cosmochim. Ac.,
164, 382–385, 2015.
Volk, H., George, S. C., Dutkiewicz, A., and Ridley, J.: Characterisation of
fluid inclusion oil in a Mid-Proterozoic sandstone and dolerite (Roper
Superbasin, Australia), Chem. Geol., 223, 109–135, https://doi.org/10.1016/j.chemgeo.2004.12.024, 2005.
Waliczek, M., Machowski, G., Poprawa, P., Świerczewska, A., and
Więcław, D.: A novel VRo, Tmax, and S indices conversion formulae on
data from the fold-and-thrust belt of the Western Outer Carpathians
(Poland), Int. J. Coal Geol., 234, 103672, https://doi.org/10.1016/j.coal.2020.103672, 2021.
Wang, X.-C., Li, Z.-X., Li, X.-H., Li, J., Liu, Y., Long, W.-G., Zhou,
J.-B., and Wang, F. J. J. O. P.: Temperature, pressure, and composition of
the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia:
a consequence of a young thermal mantle plume close to subduction zones?, J. Petrology, 53, 177–233, https://doi.org/10.1093/petrology/egr061, 2012.
Waples, D. W.: Time and temperature in petroleum formation: application of
Lopatin's method to petroleum exploration, AAPG Bull., 64, 916–926, 1980.
Warr, L. and Mählmann, R. F.: Recommendations for Kübler index
standardization, Clay Miner., 50, 283–286, 2015.
Warr, L. N. and Rice, A. H. N.: Interlaboratory standardization and
calibration of day mineral crystallinity and crystallite size data, J. Metamorph. Geol., 12, 141–152, 1994.
Warren, J. K., George, S. C., Hamilton, P. J., and Tingate, P.: Proterozoic
Source Rocks: Sedimentology and Organic Characteristics of the Velkerri
Formation, Northern Territory, Australia1, AAPG Bull., 82, 442–463, https://doi.org/10.1306/1D9BC435-172D-11D7-8645000102C1865D, 1998.
Welte, D. and Tissot, P.: Petroleum formation and occurrence, Springer, ISBN 9783642878138, 1984.
Wilhelms, A., Teln, N., Steen, A., and Augustson, J.: A quantitative study
of aromatic hydrocarbons in a natural maturity shale sequence – the
3-methylphenanthrene/retene ratio, a pragmatic maturity parameter, Org. Geochem., 29, 97–105, https://doi.org/10.1016/S0146-6380(98)00112-0, 1998.
Williams-Jones, A., Migdisov, A., and Samson, I.: Hydrothermal Mobilisation
of the Rare Earth Elements – a Tale of “Ceria” and “Yttria”, Elements, 8, 355–360, https://doi.org/10.2113/gselements.8.5.355, 2012.
Wilson, M. J.: The origin and formation of clay minerals in soils: past,
present and future perspectives, Clay Miner., 34, 7–25, 1999.
Yang, B., Smith, T. M., Collins, A. S., Munson, T. J., Schoemaker, B.,
Nicholls, D., Cox, G., Farkas, J., and Glorie, S.: Spatial and temporal
variation in detrital zircon age provenance of the hydrocarbon-bearing upper
Roper Group, Beetaloo Sub-basin, Northern Territory, Australia, Precambrian
Res., 304, 140–155, https://doi.org/10.1016/j.precamres.2017.10.025, 2018.
Yang, B., Collins, A., Blades, M., Capogreco, N., Payne, J., Munson, T.,
Cox, G., and Glorie, S.: Middle-late Mesoproterozoic tectonic geography of
the North Australia Craton: U–Pb and Hf isotopes of detrital zircon grains
in the Beetaloo Sub-basin, Northern Territory, Australia, J.
Geol. Soci., 176, 771, https://doi.org/10.1144/jgs2018-159, 2019.
Yang, B., Collins, A. S., Cox, G. M., Jarrett, A. J. M., Denyszyn, S.,
Blades, M. L., Farkaš, J., and Glorie, S.: Using Mesoproterozoic
Sedimentary Geochemistry to Reconstruct Basin Tectonic Geography and Link
Organic Carbon Productivity to Nutrient Flux from a Northern Australian
Large Igneous Province, Basin Res., 32, 1734–1750, https://doi.org/10.1111/bre.12450, 2020.
Yang, S. and Horsfield, B.: Critical review of the uncertainty of Tmax in
revealing the thermal maturity of organic matter in sedimentary rocks,
Int. J. Coal Geol., 225, 103500, https://doi.org/10.1016/j.coal.2020.103500, 2020.
Yang, Y.-H., Zhang, H.-F., Chu, Z.-Y., Xie, L.-W., and Wu, F.-Y.: Combined
chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest
and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd
isotope systems using Multi-Collector ICP-MS and TIMS, Int. J. Mass Spectrom., 290, 120–126, 2010.
Yim, S.-G., Jung, M.-J., Jeong, Y.-J., Kim, Y., and Cheong, A. C.-s.: Mass
fractionation of Rb and Sr isotopes during laser
ablation-multicollector-ICPMS: in situ observation and correction, Journal
of Analytical Science and Technology, 12, 10, https://doi.org/10.1186/s40543-021-00263-9, 2021.
Yoder, H. S. and Eugster, H. P.: Synthetic and natural muscovites,
Geochim. Cosmochim. Ac., 8, 225–280, https://doi.org/10.1016/0016-7037(55)90001-6, 1955.
Zack, T., and Hogmalm, K. J.: Laser ablation Rb Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell, Chem. Geol., 437, 120–133, https://doi.org/10.1016/j.chemgeo.2016.05.027,
2016.
Zambell, C., Adams, J., Gorring, M., and Schwartzman, D.: Effect of lichen
colonization on chemical weathering of hornblende granite as estimated by
aqueous elemental flux, Chem. Geol., 291, 166–174, 2012.
Short summary
Advancements in technology have introduced new techniques to more quickly and cheaply date rocks with little sample preparation. A unique use of this method is to date shales and constrain when these rocks were first deposited. This approach can also time when such sequences were subsequently affected by heat or fluids after they were deposited. This is useful, as the formation of precious-metal-bearing systems or petroleum source rocks is commonly associated with such processes.
Advancements in technology have introduced new techniques to more quickly and cheaply date rocks...