Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-305-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-2-305-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Luminescence properties and dating of glacial to periglacial sediments from northern Switzerland
Daniela Mueller
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg,
79104 Freiburg, Germany
Frank Preusser
Institute of Earth and Environmental Sciences, University of Freiburg,
79104 Freiburg, Germany
Marius W. Buechi
Institute of Geological Sciences, University of Bern, 3012 Bern,
Switzerland
Lukas Gegg
Institute of Geological Sciences, University of Bern, 3012 Bern,
Switzerland
Gaudenz Deplazes
Nationale Genossenschaft für die Lagerung radioaktiver
Abfälle (NAGRA), 5430 Wettingen, Switzerland
Related authors
No articles found.
Madhurima Marik, Elena Serra, Gilles Rixhon, and Frank Preusser
E&G Quaternary Sci. J., 74, 169–192, https://doi.org/10.5194/egqsj-74-169-2025, https://doi.org/10.5194/egqsj-74-169-2025, 2025
Short summary
Short summary
This study examines the evolution of the lower Bruche River valley in north-eastern France through its fluvial terraces, reflecting past river dynamics and environmental changes. Terrace formations are dated using luminescence to ~ 12–14 ka, ~ 27–35 ka, and at least 200 ka. Methodological improvements over conventional luminescence dating techniques are also discussed and refined in this study.
Lukas Gegg
E&G Quaternary Sci. J., 74, 125–127, https://doi.org/10.5194/egqsj-74-125-2025, https://doi.org/10.5194/egqsj-74-125-2025, 2025
Short summary
Short summary
Drillings, outcrops, and seismic data provide insights into a glacial basin and a former river channel in northern Switzerland. Both are infilled with diverse (glacial, lacustrine, fluvial, colluvial) sediments attributed to three separate glaciations. The depth of the glacial basin depends strongly on the underlying rock type, which together with (hydro)fractures provides evidence on the conditions and erosion processes at the ice–rock interface.
Felix Martin Hofmann and Frank Preusser
E&G Quaternary Sci. J., 74, 1–35, https://doi.org/10.5194/egqsj-74-1-2025, https://doi.org/10.5194/egqsj-74-1-2025, 2025
Short summary
Short summary
Previous reconstructions conclude that the southern Black Forest, south-west Germany, temporarily hosted four ice caps during the Late Pleistocene (129 000–11 700 years before present). This work reviews existing studies on glacial landforms north-east of its highest summit, Feldberg (1493 m above sea level), in the light of new observations. Whilst this study largely confirms previous work, we reject and newly describe several glacial landforms.
Lukas Gegg, Felicitas A. Griebling, Nicole Jentz, and Ulrike Wielandt-Schuster
E&G Quaternary Sci. J., 73, 239–249, https://doi.org/10.5194/egqsj-73-239-2024, https://doi.org/10.5194/egqsj-73-239-2024, 2024
Short summary
Short summary
The subdivision and distinction of gravel units is an important tool in terrestrial Quaternary stratigraphy but can be challenging. Here, we investigate the glaciofluvial infill of the Upper Rhine Graben as an archive of recurring Alpine glaciations. With the help of statistical approaches, we identify differences in petrographic compositions, thereby differentiating two units that are likely representative of the last and penultimate glaciation, which have previously been difficult to pinpoint.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Sebastian Schaller, Marius W. Buechi, Bennet Schuster, and Flavio S. Anselmetti
Sci. Dril., 32, 27–42, https://doi.org/10.5194/sd-32-27-2023, https://doi.org/10.5194/sd-32-27-2023, 2023
Short summary
Short summary
In the frame of the DOVE (Drilling Overdeepened Alpine Valleys) project and with the support of the International Continental Scientific Drilling Program (ICDP), we drilled and recovered a 252 m long sediment core from the Basadingen Through. The Basadingen Trough, once eroded by the Rhine glacier during several ice ages, reaches over 300 m under the modern landscape. The sedimentary filling represents a precious scientific archive for understanding and reconstructing past glaciations.
Lukas Gegg and Johann Gegg
Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, https://doi.org/10.5194/sd-32-55-2023, 2023
Short summary
Short summary
Geoscientists working with drill cores often struggle with proper photo documentation. We present a simple smartphone-based setup for acquiring high-resolution undistorted core pictures as an alternative to state-of-the-art commercial line scan imaging systems that are typically expensive and inflexible. It makes use of the phone's panoramic picture mode while being guided along the core in question on a rail, and the resulting images are of similar quality to classic line scan photos.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Cited articles
Aitken, M. J.: An Introduction to Optical Dating – The Dating of Quaternary
Sediments by the Use of Photon-stimulated Luminescence, Oxford University
Press, 267 pp., https://doi.org/10.5860/choice.36-6294, 1998.
Anselmetti, F. S., Drescher-Schneider, R., Furrer, H., Graf, H. R., Lowick,
S. E., Preusser, F., and Riedi, M. A: A ∼ 180,000 years
sedimentation history of a perialpine overdeepened glacial trough (Wehntal,
N-Switzerland), Swiss J. Geosci., 103, 345–361,
https://doi.org/10.1007/s00015-010-0041-1, 2010.
Arnold, L. J., Bailey, R. M., and Tucker, G. E.: Statistical treatment of
fluvial dose distributions from southern Colorado arroyo deposits,
https://doi.org/10.1016/j.quageo.2006.05.003, Quat. Geochronol., 2, 162–167,
2007.
Auclair, M., Lamothe, M., and Huot, S: Measurement of anomalous fading for
feldspar IRSL using SAR. Radiat. Meas., 37, 487–492,
https://doi.org/10.1016/s1350-4487(03)00018-0, 2003.
Bini, A., Buoncristiani, J. F., Coutterand, S., Ellwanger, D., Felber, M.,
Florineth, D., Graf, H. R., Keller, O., Kelly, M., Schlüchter, C., and
Schoeneich, P.: Die Schweiz während des letzteiszeitlichen Maximums
(LGM) (Map 1 : 500 000), Swisstopo, Wabern, 2009.
Bitterli-Dreher, P., Graf, H. R., Naef, H., Diebold, P., Matousek, F.,
Burger, H., ND Pauli-Gabi, T.: Geologischer Atlas der Schweiz 1 : 25 000, Blatt
1070 Baden, Erläuterungen, Bundesamt für Landestopografie swisstopo,
152 pp., 2007.
Bluszcz, A. and Adamiec, G.: Application of differential evolution to
fitting OSL decay curves, Radiat, Meas., 41, 886–891,
https://doi.org/10.1016/j.radmeas.2006.05.016, 2006.
Buechi, M. W., Lowick, S. E., and Anselmetti, F. S.: Luminescence dating of
glaciolacustrine silt in overdeepened basin fills beyond the last
interglacial, Quat. Geochronol., 37, 55–67,
https://doi.org/10.1016/j.quageo.2016.09.009, 2017.
Buylaert, J. P., Thiel, C., Murray, A. S., Vandenberghe, D. A., Yi, S., and Lu,
H.: IRSL and post-IR residual dose recorded in modern dust samples from the
Chinese Loess Plateau, Geochronometria, 38, 432–440,
https://doi.org/10.2478/s13386-011-0047-0, 2011.
Cunningham, A. C. and Wallinga, J.: Selection of integration time intervals
for quartz OSL decay curves, Quat. Geochronol., 5, 657–666,
https://doi.org/10.1016/j.quageo.2010.08.004, 2010.
Degering, D. and Degering, A: Change is the only constant – time-dependent
dose rates in luminescence dating, Quat. Geochronol., 58, 1–14,
https://doi.org/10.1016/j.quageo.2020.101074, 2020.
Dehnert, A., Lowick, S. E., Preusser, F., Anselmetti, F. S.,
Drescher-Schneider, R., Graf, H. R., Heller, F., Horstmeyer, H., Kemna, H.
A., Nowactzyk, N. R., Züger, A., and Furrer, H.: Evolution of an
overdeepened trough in the northern Alpine Foreland at Niederweningen,
Switzerland, Quat. Sci. Rev., 34, 127–145,
https://doi.org/10.1016/j.quascirev.2011.12.015, 2012.
DIN 18132:2012-04: Baugrund, Versuche und Versuchsgeräte – Bestimmung
des Wasseraufnahmevermögens, https://doi.org/10.31030/1870018, 2016.
Duller, G. A.: A new method for the analysis of infrared stimulated
luminescence data from potassium feldspar, Radiat. Meas., 23,
281–285, https://doi.org/10.1016/1350-4487(94)90053-1, 1994.
Duller, G. A.: Behavioural studies of stimulated luminescence from
feldspars, Radiat. Meas., 27, 663–694,
https://doi.org/10.1016/s1350-4487(97)00216-3, 1997.
Duller, G. A.: Single grain optical dating of glacigenic deposits, Quat.
Geochronol, 1, 296–304, https://doi.org/10.1016/j.quageo.2006.05.018, 2006.
Gaar, D. and Preusser, F.: Luminescence dating of mommoth remains from northern
Switzerland, Quat. Geochronol., 10, 257–263,
https://doi.org/10.1016/j.quageo.2012.02.007, 2012.
Gaar, D., Lowick, S. E., and Preusser, F.: Performance of different luminescence
approaches for the dating of known-age glaciofluvial deposits from northern
Switzerland, Geochronometria, 41, 65–80,
https://doi.org/10.2478/s13386-013-0139-0, 2013.
Galbraith, R. F. and Roberts, R. G.: Statistical aspects of equivalent dose
and error calculation and display in OSL dating: An overview and some
recommendations, Quat. Geochronol., 11, 1–27,
https://doi.org/10.1016/j.quageo.2012.04.020, 2012.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.:
Optical dating of single and multiple grains of quartz from Jinmium rock
shelter, Northern Australia: Part I, experimental design and statistical
models, Archaeometry, 41, 339–364,
https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Gegg, L., Kuster, A. M., Schmid, D., and Buechi, M. W.: Quaternary Boreholes QBO
Riniken-1 & -2 (QRIN1 & QRIN2), Data Report, Nagra Arbeitsbericht NAB
18–40, 8 pp.,
available at: https://www.nagra.ch/de/cat/publikationen/arbeitsberichte-nabs/nabs-2018/downloadcenter.htm (last access: 4 February 2019),
2018.
Godfrey-Smith, D. I., Huntley, D. J., and Chen, W. H.: Optical dating studies of
quartz and feldspar sediment extracts, Quat. Sci. Rev., 7, 373–380,
https://doi.org/10.1016/0277-3791(88)90032-7, 1988.
Graf, A. A., Strasky, S., Ivy-Ochs, S., Akçar, N, Kubik, P. W.,
Burkhard, M., and Schlüchter, C.: First results of cosmogenic dated pre-Last
Glaciation erratics from the Montoz area, Jura Mountains, Switzerland,
Quatern. Int., 164–165, 43–52, https://doi.org/10.1016/j.quaint.2006.12.022,
2007.
Graf, H. R.: Stratigraphie von Mittel- und Spätpleistozän in der
Nordschweiz, Textband, Federal Office of Topography swisstopo, 198 pp., 2009.
Huntley, D .J.: An explanation of the power-law decay of luminescence, J.
Phys.-Condens. Mat., 18, 1359–1365,
https://doi.org/10.1088/0953-8984/18/4/020, 2006.
Huntley, D. J. and Baril, M. R.: The K content of the K-feldspars being
measured in optical dating or in thermoluminescence dating, Anc. TL, 15,
11–13, 1997.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars
and measurement and correction for it in optical dating, Can. J. Earth Sci.,
38, 1093–1106, https://doi.org/10.1139/e01-013, 2001.
Jain, M., Murray, A. S., and Bøtter-Jensen, L.: Characterisation of
blue-light stimulated luminescence components in different quartz samples:
implications for dose measurement, Radiat. Meas., 37, 441–449,
https://doi.org/10.1016/s1350-4487(03)00052-0, 2003.
Kars, R. H., Wallinga, J., and Cohen, K. M.: A new approach towards anomalous
fading correction for feldspar IRSL dating – tests on samples in field
saturation, Radiat. Meas., 43, 786–790,
https://doi.org/10.1016/j.radmeas.2008.01.021, 2008.
King, G. E. and Burow, C.: Calc_Huntley2006(): Apply the
Huntley (2006) model, Function version 0.4.1, in:
Luminescence: Comprehensive Luminescence Dating Data Analysis, edited by: Kreutzer, S., Burow, C.,
Dietz, M., Fuchs, M. C., Schmidt, C., Fischer, M., and Friedrich, J., R package
version 0.9.0.109, available at: https://CRAN.R-project.org/package=Luminescence (last access: 7 November 2019), 2019.
Klasen, N., Fiebig, M., and Preusser, F.: Applying luminescence methodology to
key sites of Alpine glaciations in Southern Germany, Quatern. Int., 420,
240–258, https://doi.org/10.1016/j.quaint.2015.11.023, 2016.
Kock, S., Kramers, J. D., Preusser, F., and Wetzel, A.: Dating of Late
Pleistocene terrace deposits of the River Rhine using Uranium series and
luminescence methods: Potential and limitations, Quat. Geochronol., 4,
363–373, https://doi.org/10.1016/j.quageo.2009.04.002, 2009.
Kreutzer, S. and Mercier, N.: Calc_Lamothe2003(): Apply
fading correction after Lamothe et al., 2003. Function version 0.1.0, in:
Luminescence: Comprehensive Luminescence Dating Data
Analysis, edited by: Kreutzer, S., Burow, C., Dietz, M., Fuchs, M. C., Schmidt, C., Fischer, M., and
Friedrich, J., R package version 0.9.0.109, available at: https://CRAN.R-project.org/package=Luminescence, last access: 12 November 2019.
Lai, Z. P.: Chronology and the upper dating limit for loess samples from
Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol,
J. Asian Earth Sci., 37, 176–185,
https://doi.org/10.1016/j.jseaes.2009.08.003, 2010.
Lai, Z. P., Zöller, L., Fuchs, M., and Brückner, H.: Alpha efficiency
determination for OSL of quartz extracted from Chinese loess, Radiat. Meas.,
43, 767–770, https://doi.org/10.1016/j.radmeas.2008.01.022, 2008.
Lamothe, M., Auclair, M., Hamzaoui, C., and Huot, S.: Towards a prediction of
long-term anomalous fading of feldspar IRSL, Radiat. Meas., 37, 493–498,
https://doi.org/10.1016/s1350-4487(03)00016-7, 2003.
Lang, A., Hatté, C., Rousseau, D. D., Antoine, P., Fontugne, M., and
Zöller, L., Hambach, U.: High-resolution chronologies for loess:
comparing AMS 14C and optical dating results, Quat. Scie. Rev., 22,
953–959, https://doi.org/10.1016/s0277-3791(03)00035-0, 2003.
Li, B. and Li, S.-H.: Comparison of De estimates using the fast
component and the medium component of quartz OSL, Radiat. Meas. 41, 125–136,
https://doi.org/10.1016/j.radmeas.2005.06.037, 2006a.
Li, S.-H. and Li, B.: Dose measurement using fast component of LM-OSL
signals from quartz, Radiat. Meas., 41, 534–541,
https://doi.org/10.1016/j.radmeas.2005.04.029, 2006b.
Lowick, S. E., Preusser, F., Pini, R., and Ravazzi, C.: Underestimation of fine
grain quartz OSL dating towards the Eemian: Comparison with
palynostratigraphy from Azzano Decimo, northern Italy, Quat. Geochronol., 5,
583–590, https://doi.org/10.1016/j.quageo.2009.12.003, 2010.
Lowick, S. E., Trauerstein, M., and Preusser, F.: Testing the application of
post IR-IRSL dating to fine grain waterlain sediments, Quat. Geochronol., 8,
33–40, https://doi.org/10.1016/j.quageo.2011.12.003, 2012.
Lowick, S. E., Buechi, M. W., Gaar, D., Graf, H. R., and Preusser, F.:
Luminescence dating of Middle Pleistocene proglacial deposits from northern
Switzerland: methodological aspects and stratigraphical conclusions, Boreas,
44, 459–482, https://doi.org/10.1111/bor.12114, 2015.
Mauz, B., Packmann, S., and Lang, A.: The alpha effectiveness in silt-sized
quartz: New data obtained by single and multiple aliquot protocols, Anc. TL,
24, 47–52, 2006.
Mayya, Y. S., Morthekai, P., Murari, M. K., and Singhvi, A. K.: Towards
quantifying beta microdosimetric effects in single-grain quartz dose
distribution, Radiat. Meas., 41, 1032–1039, 2006.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an
improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32,
57–73, https://doi.org/10.1016/s1350-4487(99)00253-x, 2000.
Murray, A. S., Buylaert, J. P., Henriksen, M., Svendsen, J. I., and Mangerud,
J.: Testing the reliability of quartz OSL ages beyond the Eemian, Radiat.
Meas., 43, 776–780, https://doi.org/10.1016/j.radmeas.2008.01.014, 2008.
Murray, A. S., Thomsen, K. J., Masuda, N., Buylaert, J. P., and Jain, M.:
Identifying well-bleached quartz using the different bleaching rates of
quartz and feldspar luminescence signals, Radiat. Meas., 47, 688–695,
https://doi.org/10.1016/j.radmeas.2012.05.006, 2012.
Nathan, R. P. and Mauz, B.: On the dose-rate estimate of carbonate-rich
sediments for trapped charge dating, Radiat. Meas., 43, 14–25,
https://doi.org/10.1016/j.radmeas.2007.12.012, 2008.
Olley, J. M., Pietsch, T., and Roberts, R. G.: Optical dating of Holocene
sediments from a variety of geomorphic settings using single grains of
quartz, Geomorphology, 60, 337–358,
https://doi.org/10.1016/j.geomorph.2003.09.020, 2004.
Pawley, S. M., Toms, P., Armitage, S. J., and Rose, J.: Quartz luminescence
dating of Anglian Stage (MIS 12) fluvial sediments: Comparison of SAR age
estimates to the terrace chronology of the Middle Thames valley, UK, Quat.
Geochronol., 5, 569–582, https://doi.org/10.1016/j.quageo.2009.09.013, 2010.
Peng, J., Li, B., More, J., Garbow, B., Hillstrom, K., Burkhardt, J.,
Gilbert, P., and Varadhan, R.: numOSL: Numeric Routines for Optically Stimulated
Luminescence Dating, R package version 2.6, https://CRAN.R-project.org/package=numOSL (last access: 12 November 2019), 2018.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contribution to dose rates for
luminescence and ESR dating: large depths and long-term time variations,
Radiat. Meas., 23, 497–500,
https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Preusser, F.: Luminescence dating of fluvial sediments and overbank deposits
from Gossau, Switzerland: fine grain dating, Quat. Geochronol., 18, 217–222,
https://doi.org/10.1016/s0277-3791(98)00054-7, 1999a.
Preusser, F.: Lumineszenzdatierung fluviatiler Sedimente: Fallbeispiele aus
der Schweiz und Norddeutschland, Kölner Forum für Geologie und
Paläontologie, 3/1999, edited by: Herbig, H. G., Geologisches Institut
der Universität zu Köln, 62 pp., 1999b.
Preusser, F., Müller, B. U., and Schüchter, C.: Luminescence dating of
sediments from Luthern Valley, Central Switzerland, and implications for the
chronology of the last glacial cycle, Quaternary Res., 55, 215–222,
https://doi.org/10.1006/qres.2000.2208, 2001.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.:
Quaternary glaciation history of northern Switzerland, Quat. Sci. J., 60, 282–305, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Preusser, F., Muru, M., and Rosentau, A.: Comparing different post-IR IRSL
approaches for the dating of Holocene coastal foredunes from Ruhnu Island,
Estonia, Geochronometria, 41, 342–351,
https://doi.org/10.2478/s13386-013-0169-7, 2014.
Raab, T., Leopold, M., and Völkel, J.: Character, age, and ecological
significance of Pleistocene periglacial slope deposits in Germany, Phys.
Geogr., 28, 451–473, https://doi.org/10.2747/0272-3646.28.6.451, 2007.
Rees-Jones, J.: Optical dating of young sediments using fine-grain quartz,
Anc. TL, 13, 9–14, 1995.
Schmidt, C., Bösken, J., and Kolb, T.: Is there a common alpha- efficiency
in polymineral samples measured by various infrared stimulated luminescence
protocols?, Geochronometria, 45, 160–172,
https://doi.org/10.1515/geochr-2015-0095, 2018a.
Schmidt, C., Friedrich, J., Adamiec, G., Chruścińska, A., Fasoli,
M., Kreutzer, S., Martini, M., Panzeri, L., Polymeris, G. S.,
Przegiętka, K., Valla, P. G., King, G. E., and Sanderson, D. C.: How
reproducible are kinetic parameter constraints of quartz luminescence? An
interlaboratory comparison for the 110 ∘C TL peak, Radiat. Meas.,
110, 14–24, https://doi.org/10.1016/j.radmeas.2018.01.002, 2018b.
Spencer, J. Q. and Owen, L. A.: Optically stimulated luminescence dating of
Late Quaternary glaciogenic sediments in the upper Hunza valley: validating
the timing of glaciation and assessing dating methods, Quat. Scie. Rev., 23,
175–191, https://doi.org/10.1016/s0277-3791(03)00220-8, 2004.
Spooner, N. A.: On the optical dating signal of quartz, Radiat. Meas., 23, 593–600, https://doi.org/10.1016/1350-4487(94)90105-8, 1994.
Steffen, D., Preusser, F., and Schlunegger, F.: OSL quartz age underestimation
due to unstable signal components, Quat. Geochronol., 4, 353–362,
https://doi.org/10.1016/j.quageo.2009.05.015, 2009.
Swisstopo: swissALTI3D, Bundesamt für Landestopographie, swisstopo, available at: https://shop.swisstopo.admin.ch/en/products/height_models/alti3D (last access: 31 August 2018), 2013.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory
fading rates of various luminescence signals from feldspar-rich sediment
extracts, Radiat. Meas., 43, 1474–1486,
https://doi.org/10.1016/j.radmeas.2008.06.002, 2008.
Thiel, C., Buyleart, J-P., Murray, A. S., Terhost, B., Hofer, I., Tsukamoto,
S., and Frechen, M.: Luminescence dating of the Stratzing loess profile
(Austria) – Testing the potential of an elevated temperature post-IR IRSL
protocol, Quatern. Int., 234, 23–31, https://https://doi.org/10.1016/j.quaint.2010.05.018, 2011.
Timar, A., Vandenberghe, D. A., Panaiotu, E. C., Panaiotu, C. G., Necula,
C., Cosma, C., and van den Haute, P.: Optical dating of Romanian loess using
fine-grained quartz, Quat. Geochronol., 5, 143–148,
https://doi.org/10.1016/j.quageo.2009.03.003, 2010.
Timar-Gabor, A., Vandenberghe, D. A., Vasiliniuc, S., Panaoitu, E. E.,
Dimofte, D., and Cosma, C.: Optical dating of Romanian loess: A comparison
between silt-sized and sand-sized quartz, Quatern. Int., 240, 62–70,
https://doi.org/10.1016/j.quaint.2010.10.007, 2011.
Trauerstein, M., Lowick, S. E., Preusser, F., and Veit, H.: Testing the
suitability of dim sedimentary quartz from northern Switzerland for OSL
burial dose estimation, Geochronomoetria, 44, 66–76,
https://doi.org/10.1515/geochr-2015-0058, 2017.
Wallinga, J., Murray, A. S., and Duller, G. A.: Underestimation of equivalent
dose in single-aliquot optical dating of feldspar caused by preheating,
Radiat. Meas., 32, 691–695, https://doi.org/10.1016/s1350-4487(00)00127-x,
2000.
Wintle, A. G.: Anomalous Fading of Thermoluminescence in Mineral Samples,
Nature, 245, 143–144, https://doi.org/10.1038/245143a0, 1973.
Wintle, A. G.: Luminescence dating: where it has been and where it is going,
Boreas, 37, 471–482, https://doi.org/10.1111/j.1502-3885.2008.00059.x, 2008.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated
luminescence characteristics and their relevance in single-aliquot
regeneration dating protocols, Radiat. Meas. 41, 369–391,
https://doi.org/10.1016/j.radmeas.2005.11.001, 2006.
Zhang, J. and Li., S.-H.: Review of the Post-IR IRSL Dating Protocols of
K-Feldspar, Methods and Protocols, 3, 7, 1–20,
https://doi.org/10.3390/mps3010007, 2020.
Zimmermann, D. W.: Thermoluminescent dating using fine grains from pottery,
Archaeometry, 13, 29–52, https://doi.org/10.1111/j.1475-4754.1971.tb00028.x,
1971.
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed....