Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-305-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-2-305-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Luminescence properties and dating of glacial to periglacial sediments from northern Switzerland
Daniela Mueller
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg,
79104 Freiburg, Germany
Frank Preusser
Institute of Earth and Environmental Sciences, University of Freiburg,
79104 Freiburg, Germany
Marius W. Buechi
Institute of Geological Sciences, University of Bern, 3012 Bern,
Switzerland
Lukas Gegg
Institute of Geological Sciences, University of Bern, 3012 Bern,
Switzerland
Gaudenz Deplazes
Nationale Genossenschaft für die Lagerung radioaktiver
Abfälle (NAGRA), 5430 Wettingen, Switzerland
Related authors
No articles found.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Sebastian Schaller, Marius W. Buechi, Bennet Schuster, and Flavio S. Anselmetti
Sci. Dril., 32, 27–42, https://doi.org/10.5194/sd-32-27-2023, https://doi.org/10.5194/sd-32-27-2023, 2023
Short summary
Short summary
In the frame of the DOVE (Drilling Overdeepened Alpine Valleys) project and with the support of the International Continental Scientific Drilling Program (ICDP), we drilled and recovered a 252 m long sediment core from the Basadingen Through. The Basadingen Trough, once eroded by the Rhine glacier during several ice ages, reaches over 300 m under the modern landscape. The sedimentary filling represents a precious scientific archive for understanding and reconstructing past glaciations.
Lukas Gegg and Johann Gegg
Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, https://doi.org/10.5194/sd-32-55-2023, 2023
Short summary
Short summary
Geoscientists working with drill cores often struggle with proper photo documentation. We present a simple smartphone-based setup for acquiring high-resolution undistorted core pictures as an alternative to state-of-the-art commercial line scan imaging systems that are typically expensive and inflexible. It makes use of the phone's panoramic picture mode while being guided along the core in question on a rail, and the resulting images are of similar quality to classic line scan photos.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Felix Martin Hofmann, Florian Rauscher, William McCreary, Jan-Paul Bischoff, and Frank Preusser
E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, https://doi.org/10.5194/egqsj-69-61-2020, 2020
Short summary
Short summary
The Black Forest was covered by a 1000 km2 large ice cap during the last glaciation. Glacial landforms in the area north-west of the highest summit of the Black Forest, the Feldberg (1493 m above sea level), were investigated to select suitable sampling sites for dating glacial landforms in future studies. Some of the terminal moraines described in this study are mapped for the first time. The application of dating methods will provide insights into the chronology of the last glaciation.
Ferréol Salomon, Darío Bernal-Casasola, José J. Díaz, Macarena Lara, Salvador Domínguez-Bella, Damien Ertlen, Patrick Wassmer, Pierre Adam, Philippe Schaeffer, Laurent Hardion, Cécile Vittori, Stoil Chapkanski, Hugo Delile, Laurent Schmitt, Frank Preusser, Martine Trautmann, Alessia Masi, Cristiano Vignola, Laura Sadori, Jacob Morales, Paloma Vidal Matutano, Vincent Robin, Benjamin Keller, Ángel Sanchez Bellón, Javier Martínez López, and Gilles Rixhon
Sci. Dril., 27, 35–47, https://doi.org/10.5194/sd-27-35-2020, https://doi.org/10.5194/sd-27-35-2020, 2020
Short summary
Short summary
PalaeoCADIX-Z is an interdisciplinary project that studied three cores drilled in a marine palaeochannel that ran through the ancient city of Cádiz (Spain). These cores reveal a ≥ 50 m thick Holocene sedimentary sequence. Importantly, most of the deposits date from the 1st millennium BCE to the 1st millennium CE. Geoarchaeologists, geomorphologists, archaeologists, sedimentologists, palaeoenvironmentalists, geochemists, and geochronologists collaborated within this project.
Dorian Gaar, Hans Rudolf Graf, and Frank Preusser
E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, https://doi.org/10.5194/egqsj-68-53-2019, 2019
Short summary
Short summary
Deposits related to the last advance of Reuss Glacier are dated using a luminescence methodology. An age of 25 ka for sediment directly overlying the lodgement till corresponds with existing age constraints for the last maximal position of glaciers. Luminescence dating further implies an earlier advance of Reuss Glacier into the lowlands during Marine Isotope Stage 4. The data are discussed regarding potential changes in the source of precipitation during the Late Pleistocene.
Judit Deák, Frank Preusser, Marie-Isabelle Cattin, Jean-Christophe Castel, and François-Xavier Chauvière
E&G Quaternary Sci. J., 67, 41–72, https://doi.org/10.5194/egqsj-67-41-2019, https://doi.org/10.5194/egqsj-67-41-2019, 2019
Short summary
Short summary
Provided here are novel data concerning site formation processes and Middle Palaeolithic human presence at Cotencher cave (Switzerland). A local glaciation around 70 ka was followed by ice-free conditions, when artefacts and faunal remains were displaced by solifluction processes. Evidence of local glacier development around 36 ka is also presented. This interdisciplinary study contributes new elements for the understanding of climatic changes and human passage in the central Jura Mountains.
Julien Seguinot, Susan Ivy-Ochs, Guillaume Jouvet, Matthias Huss, Martin Funk, and Frank Preusser
The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, https://doi.org/10.5194/tc-12-3265-2018, 2018
Short summary
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
David Eschbach, Laurent Schmitt, Gwenaël Imfeld, Jan-Hendrik May, Sylvain Payraudeau, Frank Preusser, Mareike Trauerstein, and Grzegorz Skupinski
Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, https://doi.org/10.5194/hess-22-2717-2018, 2018
Short summary
Short summary
In this study we show the relevance of an interdisciplinary study for improving restoration within the framework of a European LIFE+ project on the French side of the Upper Rhine (Rohrschollen Island). Our results underscore the advantage of combining functional restoration with detailed knowledge of past trajectories in complex hydrosystems. We anticipate our approach will expand the toolbox of decision-makers and help orientate functional restoration actions in the future.
Lorenz Wüthrich, Marcel Bliedtner, Imke Kathrin Schäfer, Jana Zech, Fatemeh Shajari, Dorian Gaar, Frank Preusser, Gary Salazar, Sönke Szidat, and Roland Zech
E&G Quaternary Sci. J., 66, 91–100, https://doi.org/10.5194/egqsj-66-91-2017, https://doi.org/10.5194/egqsj-66-91-2017, 2017
Related subject area
Luminescence dating
Zircon luminescence dating revisited
Short communication: Synchrotron-based elemental mapping of single grains to investigate variable infrared-radiofluorescence emissions for luminescence dating
Insight into the dynamics of a long-runout mass movement using single-grain feldspar luminescence in the Pokhara Valley, Nepal
Technical note: Darkroom lighting for luminescence dating laboratory
Differential bleaching of quartz and feldspar luminescence signals under high-turbidity conditions
XLUM: an open data format for exchange and long-term preservation of luminescence data
Potential impacts of chemical weathering on feldspar luminescence dating properties
Attenuation of beta radiation in granular matrices: implications for trapped-charge dating
Luminescence age calculation through Bayesian convolution of equivalent dose and dose-rate distributions: the De_Dr model
Technical note: Quantifying uranium-series disequilibrium in natural samples for dosimetric dating – Part 1: gamma spectrometry
The μDose system: determination of environmental dose rates by combined alpha and beta counting – performance tests and practical experiences
Erosion rates in a wet, temperate climate derived from rock luminescence techniques
Technical note: On the reliability of laboratory beta-source calibration for luminescence dating
Spatially resolved infrared radiofluorescence: single-grain K-feldspar dating using CCD imaging
Towards an improvement of optically stimulated luminescence (OSL) age uncertainties: modelling OSL ages with systematic errors, stratigraphic constraints and radiocarbon ages using the R package BayLum
Extended-range luminescence dating of quartz and alkali feldspar from aeolian sediments in the eastern Mediterranean
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-10, https://doi.org/10.5194/gchron-2024-10, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Anna-Maartje de Boer, Wolfgang Schwanghart, Jürgen Mey, Basanta Raj Adhikari, and Tony Reimann
Geochronology, 6, 53–70, https://doi.org/10.5194/gchron-6-53-2024, https://doi.org/10.5194/gchron-6-53-2024, 2024
Short summary
Short summary
This study tested the application of single-grain feldspar luminescence for dating and reconstructing sediment dynamics of an extreme mass movement event in the Himalayan mountain range. Our analysis revealed that feldspar signals can be used to estimate the age range of the deposits if the youngest subpopulation from a sample is retrieved. The absence of clear spatial relationships with our bleaching proxies suggests that sediments were transported under extremely limited light exposure.
Marine Frouin, Taylor Grandfield, William Huebsch, and Owen Evans
Geochronology, 5, 405–412, https://doi.org/10.5194/gchron-5-405-2023, https://doi.org/10.5194/gchron-5-405-2023, 2023
Short summary
Short summary
Here, we present the lighting setting implemented in the new Luminescence Dating Research Laboratory at Stony Brook University, USA. First, we performed spectral measurements on different light sources and filters. Then, we measured the loss of dose in quartz and feldspar samples when exposed to various light sources and durations. Finally, we conclude that our lighting setting is suitable for a luminescence darkroom laboratory; it is simple, inexpensive to build, and durable.
Jürgen Mey, Wolfgang Schwanghart, Anna-Maartje de Boer, and Tony Reimann
Geochronology, 5, 377–389, https://doi.org/10.5194/gchron-5-377-2023, https://doi.org/10.5194/gchron-5-377-2023, 2023
Short summary
Short summary
This study presents the results of an outdoor flume experiment to evaluate the effect of turbidity on the bleaching of fluvially transported sediment. Our main conclusions are that even small amounts of sediment lead to a substantial change in the intensity and frequency distribution of light within the suspension and that flow turbulence is an important prerequisite for bleaching grains during transport.
Sebastian Kreutzer, Steve Grehl, Michael Höhne, Oliver Simmank, Kay Dornich, Grzegorz Adamiec, Christoph Burow, Helen M. Roberts, and Geoff A. T. Duller
Geochronology, 5, 271–284, https://doi.org/10.5194/gchron-5-271-2023, https://doi.org/10.5194/gchron-5-271-2023, 2023
Short summary
Short summary
The concept of open data has become the modern science meme. Funding bodies and publishers support open data. However, the open data mandate frequently encounters technical obstacles, such as a lack of a suitable data format for data sharing and long-term data preservation. Such issues are often community-specific and demand community-tailored solutions. We propose a new human-readable data format for data exchange and long-term preservation of luminescence data called XLUM.
Melanie Bartz, Jasquelin Peña, Stéphanie Grand, and Georgina E. King
Geochronology, 5, 51–64, https://doi.org/10.5194/gchron-5-51-2023, https://doi.org/10.5194/gchron-5-51-2023, 2023
Short summary
Short summary
Chemical weathering alters the chemical composition of mineral grains, and it follows that luminescence dating signals may also be progressively modified. We artificially weathered feldspar samples under different chemical conditions to understand the effect of feldspar partial dissolution on their luminescence properties. Only minor changes were observed on luminescence dating properties, implying that chemical alteration of feldspar surfaces may not affect luminescence dating signals.
Alastair C. Cunningham, Jan-Pieter Buylaert, and Andrew S. Murray
Geochronology, 4, 517–531, https://doi.org/10.5194/gchron-4-517-2022, https://doi.org/10.5194/gchron-4-517-2022, 2022
Short summary
Short summary
Mineral grains within sediment or rock absorb a radiation dose from the decay of radionuclides in the host matrix. For the beta dose component, the estimated dose rate must be adjusted for the attenuation of beta particles within the mineral grains. We show here that the mean dose rate to dosimeter grains in a granular matrix is dependent on the grain-size distributions of the source grains, the bulk sediment, and the grain size of the dosimeters.
Norbert Mercier, Jean-Michel Galharret, Chantal Tribolo, Sebastian Kreutzer, and Anne Philippe
Geochronology, 4, 297–310, https://doi.org/10.5194/gchron-4-297-2022, https://doi.org/10.5194/gchron-4-297-2022, 2022
Short summary
Short summary
Dosimetric dating methods based on the analysis of luminescence signals emitted by granular minerals extracted from sedimentary deposits now play an important role in the study of the Quaternary. Here we propose a new approach in which the age of the deposit is calculated by combining the equivalent dose and dose-rate distributions. The underlying Bayesian mathematical model and its implementation via an R code are provided, together with the results obtained for a finite set of configurations.
Barbara Mauz, Paul J. Nolan, and Peter G. Appleby
Geochronology, 4, 213–225, https://doi.org/10.5194/gchron-4-213-2022, https://doi.org/10.5194/gchron-4-213-2022, 2022
Short summary
Short summary
It is of critical importance to dosimetric dating techniques that the quantity of the radiation dose is estimated accurately. Here we describe gamma spectrometry in terms of instrument, measurement procedures, and data analyses required for estimating parent nuclide activities. The description includes analytical procedures required to generate data with sufficient accuracy and precision for samples in secular equilibrium. We also outline procedures required to quantify disequilibrium.
Thomas Kolb, Konrad Tudyka, Annette Kadereit, Johanna Lomax, Grzegorz Poręba, Anja Zander, Lars Zipf, and Markus Fuchs
Geochronology, 4, 1–31, https://doi.org/10.5194/gchron-4-1-2022, https://doi.org/10.5194/gchron-4-1-2022, 2022
Short summary
Short summary
The µDose system is an innovative analytical instrument developed for the cost- and time-efficient determination of environmental radionuclide concentrations required for the calculation of sedimentation ages in palaeo-environmental and geo-archaeological research. The results of our study suggest that accuracy and precision of µDose measurements are comparable to those of well-established methods and that the new approach shows the potential to become a standard tool in environmental dosimetry.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Dirk Mittelstraß and Sebastian Kreutzer
Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, https://doi.org/10.5194/gchron-3-299-2021, 2021
Short summary
Short summary
Our contribution enhances the infrared radiofluorescence dating technique, used to determine the last sunlight exposure of potassium feldspars in a range of about 600 to 600 000 years backwards. We recorded radiofluorescence images of fine sands and processed them with tailored open-source software to obtain ages from single grains. Finally, we tested our new method successfully on two natural sediment samples. Studies in Earth science will benefit from improved age accuracy and new insights.
Guillaume Guérin, Christelle Lahaye, Maryam Heydari, Martin Autzen, Jan-Pieter Buylaert, Pierre Guibert, Mayank Jain, Sebastian Kreutzer, Brice Lebrun, Andrew S. Murray, Kristina J. Thomsen, Petra Urbanova, and Anne Philippe
Geochronology, 3, 229–245, https://doi.org/10.5194/gchron-3-229-2021, https://doi.org/10.5194/gchron-3-229-2021, 2021
Short summary
Short summary
This paper demonstrates how to model optically stimulated luminescence (OSL) and radiocarbon ages in a Bayesian framework, using a dedicated software tool called BayLum. We show the effect of stratigraphic constraints, of modelling the covariance of ages when the same equipment is used for a series of OSL samples, and of including independent ages on a chronological inference. The improvement in chronological resolution is significant.
Galina Faershtein, Naomi Porat, and Ari Matmon
Geochronology, 2, 101–118, https://doi.org/10.5194/gchron-2-101-2020, https://doi.org/10.5194/gchron-2-101-2020, 2020
Short summary
Short summary
Optically stimulated luminescence dates the last exposure of quartz and feldspar minerals to sunlight. We investigated its sub-methods (TT-OSL, VSL, and pIRIR) to date middle and early Pleistocene sediments. Inspection of natural signals of samples can reveal saturated samples that produce only minimum ages. Using these sub-methods, minimum ages of up to the early Pleistocene can be obtained for eastern Mediterranean aeolian sediments of Nilotic origin.
Cited articles
Aitken, M. J.: An Introduction to Optical Dating – The Dating of Quaternary
Sediments by the Use of Photon-stimulated Luminescence, Oxford University
Press, 267 pp., https://doi.org/10.5860/choice.36-6294, 1998.
Anselmetti, F. S., Drescher-Schneider, R., Furrer, H., Graf, H. R., Lowick,
S. E., Preusser, F., and Riedi, M. A: A ∼ 180,000 years
sedimentation history of a perialpine overdeepened glacial trough (Wehntal,
N-Switzerland), Swiss J. Geosci., 103, 345–361,
https://doi.org/10.1007/s00015-010-0041-1, 2010.
Arnold, L. J., Bailey, R. M., and Tucker, G. E.: Statistical treatment of
fluvial dose distributions from southern Colorado arroyo deposits,
https://doi.org/10.1016/j.quageo.2006.05.003, Quat. Geochronol., 2, 162–167,
2007.
Auclair, M., Lamothe, M., and Huot, S: Measurement of anomalous fading for
feldspar IRSL using SAR. Radiat. Meas., 37, 487–492,
https://doi.org/10.1016/s1350-4487(03)00018-0, 2003.
Bini, A., Buoncristiani, J. F., Coutterand, S., Ellwanger, D., Felber, M.,
Florineth, D., Graf, H. R., Keller, O., Kelly, M., Schlüchter, C., and
Schoeneich, P.: Die Schweiz während des letzteiszeitlichen Maximums
(LGM) (Map 1 : 500 000), Swisstopo, Wabern, 2009.
Bitterli-Dreher, P., Graf, H. R., Naef, H., Diebold, P., Matousek, F.,
Burger, H., ND Pauli-Gabi, T.: Geologischer Atlas der Schweiz 1 : 25 000, Blatt
1070 Baden, Erläuterungen, Bundesamt für Landestopografie swisstopo,
152 pp., 2007.
Bluszcz, A. and Adamiec, G.: Application of differential evolution to
fitting OSL decay curves, Radiat, Meas., 41, 886–891,
https://doi.org/10.1016/j.radmeas.2006.05.016, 2006.
Buechi, M. W., Lowick, S. E., and Anselmetti, F. S.: Luminescence dating of
glaciolacustrine silt in overdeepened basin fills beyond the last
interglacial, Quat. Geochronol., 37, 55–67,
https://doi.org/10.1016/j.quageo.2016.09.009, 2017.
Buylaert, J. P., Thiel, C., Murray, A. S., Vandenberghe, D. A., Yi, S., and Lu,
H.: IRSL and post-IR residual dose recorded in modern dust samples from the
Chinese Loess Plateau, Geochronometria, 38, 432–440,
https://doi.org/10.2478/s13386-011-0047-0, 2011.
Cunningham, A. C. and Wallinga, J.: Selection of integration time intervals
for quartz OSL decay curves, Quat. Geochronol., 5, 657–666,
https://doi.org/10.1016/j.quageo.2010.08.004, 2010.
Degering, D. and Degering, A: Change is the only constant – time-dependent
dose rates in luminescence dating, Quat. Geochronol., 58, 1–14,
https://doi.org/10.1016/j.quageo.2020.101074, 2020.
Dehnert, A., Lowick, S. E., Preusser, F., Anselmetti, F. S.,
Drescher-Schneider, R., Graf, H. R., Heller, F., Horstmeyer, H., Kemna, H.
A., Nowactzyk, N. R., Züger, A., and Furrer, H.: Evolution of an
overdeepened trough in the northern Alpine Foreland at Niederweningen,
Switzerland, Quat. Sci. Rev., 34, 127–145,
https://doi.org/10.1016/j.quascirev.2011.12.015, 2012.
DIN 18132:2012-04: Baugrund, Versuche und Versuchsgeräte – Bestimmung
des Wasseraufnahmevermögens, https://doi.org/10.31030/1870018, 2016.
Duller, G. A.: A new method for the analysis of infrared stimulated
luminescence data from potassium feldspar, Radiat. Meas., 23,
281–285, https://doi.org/10.1016/1350-4487(94)90053-1, 1994.
Duller, G. A.: Behavioural studies of stimulated luminescence from
feldspars, Radiat. Meas., 27, 663–694,
https://doi.org/10.1016/s1350-4487(97)00216-3, 1997.
Duller, G. A.: Single grain optical dating of glacigenic deposits, Quat.
Geochronol, 1, 296–304, https://doi.org/10.1016/j.quageo.2006.05.018, 2006.
Gaar, D. and Preusser, F.: Luminescence dating of mommoth remains from northern
Switzerland, Quat. Geochronol., 10, 257–263,
https://doi.org/10.1016/j.quageo.2012.02.007, 2012.
Gaar, D., Lowick, S. E., and Preusser, F.: Performance of different luminescence
approaches for the dating of known-age glaciofluvial deposits from northern
Switzerland, Geochronometria, 41, 65–80,
https://doi.org/10.2478/s13386-013-0139-0, 2013.
Galbraith, R. F. and Roberts, R. G.: Statistical aspects of equivalent dose
and error calculation and display in OSL dating: An overview and some
recommendations, Quat. Geochronol., 11, 1–27,
https://doi.org/10.1016/j.quageo.2012.04.020, 2012.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.:
Optical dating of single and multiple grains of quartz from Jinmium rock
shelter, Northern Australia: Part I, experimental design and statistical
models, Archaeometry, 41, 339–364,
https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Gegg, L., Kuster, A. M., Schmid, D., and Buechi, M. W.: Quaternary Boreholes QBO
Riniken-1 & -2 (QRIN1 & QRIN2), Data Report, Nagra Arbeitsbericht NAB
18–40, 8 pp.,
available at: https://www.nagra.ch/de/cat/publikationen/arbeitsberichte-nabs/nabs-2018/downloadcenter.htm (last access: 4 February 2019),
2018.
Godfrey-Smith, D. I., Huntley, D. J., and Chen, W. H.: Optical dating studies of
quartz and feldspar sediment extracts, Quat. Sci. Rev., 7, 373–380,
https://doi.org/10.1016/0277-3791(88)90032-7, 1988.
Graf, A. A., Strasky, S., Ivy-Ochs, S., Akçar, N, Kubik, P. W.,
Burkhard, M., and Schlüchter, C.: First results of cosmogenic dated pre-Last
Glaciation erratics from the Montoz area, Jura Mountains, Switzerland,
Quatern. Int., 164–165, 43–52, https://doi.org/10.1016/j.quaint.2006.12.022,
2007.
Graf, H. R.: Stratigraphie von Mittel- und Spätpleistozän in der
Nordschweiz, Textband, Federal Office of Topography swisstopo, 198 pp., 2009.
Huntley, D .J.: An explanation of the power-law decay of luminescence, J.
Phys.-Condens. Mat., 18, 1359–1365,
https://doi.org/10.1088/0953-8984/18/4/020, 2006.
Huntley, D. J. and Baril, M. R.: The K content of the K-feldspars being
measured in optical dating or in thermoluminescence dating, Anc. TL, 15,
11–13, 1997.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars
and measurement and correction for it in optical dating, Can. J. Earth Sci.,
38, 1093–1106, https://doi.org/10.1139/e01-013, 2001.
Jain, M., Murray, A. S., and Bøtter-Jensen, L.: Characterisation of
blue-light stimulated luminescence components in different quartz samples:
implications for dose measurement, Radiat. Meas., 37, 441–449,
https://doi.org/10.1016/s1350-4487(03)00052-0, 2003.
Kars, R. H., Wallinga, J., and Cohen, K. M.: A new approach towards anomalous
fading correction for feldspar IRSL dating – tests on samples in field
saturation, Radiat. Meas., 43, 786–790,
https://doi.org/10.1016/j.radmeas.2008.01.021, 2008.
King, G. E. and Burow, C.: Calc_Huntley2006(): Apply the
Huntley (2006) model, Function version 0.4.1, in:
Luminescence: Comprehensive Luminescence Dating Data Analysis, edited by: Kreutzer, S., Burow, C.,
Dietz, M., Fuchs, M. C., Schmidt, C., Fischer, M., and Friedrich, J., R package
version 0.9.0.109, available at: https://CRAN.R-project.org/package=Luminescence (last access: 7 November 2019), 2019.
Klasen, N., Fiebig, M., and Preusser, F.: Applying luminescence methodology to
key sites of Alpine glaciations in Southern Germany, Quatern. Int., 420,
240–258, https://doi.org/10.1016/j.quaint.2015.11.023, 2016.
Kock, S., Kramers, J. D., Preusser, F., and Wetzel, A.: Dating of Late
Pleistocene terrace deposits of the River Rhine using Uranium series and
luminescence methods: Potential and limitations, Quat. Geochronol., 4,
363–373, https://doi.org/10.1016/j.quageo.2009.04.002, 2009.
Kreutzer, S. and Mercier, N.: Calc_Lamothe2003(): Apply
fading correction after Lamothe et al., 2003. Function version 0.1.0, in:
Luminescence: Comprehensive Luminescence Dating Data
Analysis, edited by: Kreutzer, S., Burow, C., Dietz, M., Fuchs, M. C., Schmidt, C., Fischer, M., and
Friedrich, J., R package version 0.9.0.109, available at: https://CRAN.R-project.org/package=Luminescence, last access: 12 November 2019.
Lai, Z. P.: Chronology and the upper dating limit for loess samples from
Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol,
J. Asian Earth Sci., 37, 176–185,
https://doi.org/10.1016/j.jseaes.2009.08.003, 2010.
Lai, Z. P., Zöller, L., Fuchs, M., and Brückner, H.: Alpha efficiency
determination for OSL of quartz extracted from Chinese loess, Radiat. Meas.,
43, 767–770, https://doi.org/10.1016/j.radmeas.2008.01.022, 2008.
Lamothe, M., Auclair, M., Hamzaoui, C., and Huot, S.: Towards a prediction of
long-term anomalous fading of feldspar IRSL, Radiat. Meas., 37, 493–498,
https://doi.org/10.1016/s1350-4487(03)00016-7, 2003.
Lang, A., Hatté, C., Rousseau, D. D., Antoine, P., Fontugne, M., and
Zöller, L., Hambach, U.: High-resolution chronologies for loess:
comparing AMS 14C and optical dating results, Quat. Scie. Rev., 22,
953–959, https://doi.org/10.1016/s0277-3791(03)00035-0, 2003.
Li, B. and Li, S.-H.: Comparison of De estimates using the fast
component and the medium component of quartz OSL, Radiat. Meas. 41, 125–136,
https://doi.org/10.1016/j.radmeas.2005.06.037, 2006a.
Li, S.-H. and Li, B.: Dose measurement using fast component of LM-OSL
signals from quartz, Radiat. Meas., 41, 534–541,
https://doi.org/10.1016/j.radmeas.2005.04.029, 2006b.
Lowick, S. E., Preusser, F., Pini, R., and Ravazzi, C.: Underestimation of fine
grain quartz OSL dating towards the Eemian: Comparison with
palynostratigraphy from Azzano Decimo, northern Italy, Quat. Geochronol., 5,
583–590, https://doi.org/10.1016/j.quageo.2009.12.003, 2010.
Lowick, S. E., Trauerstein, M., and Preusser, F.: Testing the application of
post IR-IRSL dating to fine grain waterlain sediments, Quat. Geochronol., 8,
33–40, https://doi.org/10.1016/j.quageo.2011.12.003, 2012.
Lowick, S. E., Buechi, M. W., Gaar, D., Graf, H. R., and Preusser, F.:
Luminescence dating of Middle Pleistocene proglacial deposits from northern
Switzerland: methodological aspects and stratigraphical conclusions, Boreas,
44, 459–482, https://doi.org/10.1111/bor.12114, 2015.
Mauz, B., Packmann, S., and Lang, A.: The alpha effectiveness in silt-sized
quartz: New data obtained by single and multiple aliquot protocols, Anc. TL,
24, 47–52, 2006.
Mayya, Y. S., Morthekai, P., Murari, M. K., and Singhvi, A. K.: Towards
quantifying beta microdosimetric effects in single-grain quartz dose
distribution, Radiat. Meas., 41, 1032–1039, 2006.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an
improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32,
57–73, https://doi.org/10.1016/s1350-4487(99)00253-x, 2000.
Murray, A. S., Buylaert, J. P., Henriksen, M., Svendsen, J. I., and Mangerud,
J.: Testing the reliability of quartz OSL ages beyond the Eemian, Radiat.
Meas., 43, 776–780, https://doi.org/10.1016/j.radmeas.2008.01.014, 2008.
Murray, A. S., Thomsen, K. J., Masuda, N., Buylaert, J. P., and Jain, M.:
Identifying well-bleached quartz using the different bleaching rates of
quartz and feldspar luminescence signals, Radiat. Meas., 47, 688–695,
https://doi.org/10.1016/j.radmeas.2012.05.006, 2012.
Nathan, R. P. and Mauz, B.: On the dose-rate estimate of carbonate-rich
sediments for trapped charge dating, Radiat. Meas., 43, 14–25,
https://doi.org/10.1016/j.radmeas.2007.12.012, 2008.
Olley, J. M., Pietsch, T., and Roberts, R. G.: Optical dating of Holocene
sediments from a variety of geomorphic settings using single grains of
quartz, Geomorphology, 60, 337–358,
https://doi.org/10.1016/j.geomorph.2003.09.020, 2004.
Pawley, S. M., Toms, P., Armitage, S. J., and Rose, J.: Quartz luminescence
dating of Anglian Stage (MIS 12) fluvial sediments: Comparison of SAR age
estimates to the terrace chronology of the Middle Thames valley, UK, Quat.
Geochronol., 5, 569–582, https://doi.org/10.1016/j.quageo.2009.09.013, 2010.
Peng, J., Li, B., More, J., Garbow, B., Hillstrom, K., Burkhardt, J.,
Gilbert, P., and Varadhan, R.: numOSL: Numeric Routines for Optically Stimulated
Luminescence Dating, R package version 2.6, https://CRAN.R-project.org/package=numOSL (last access: 12 November 2019), 2018.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contribution to dose rates for
luminescence and ESR dating: large depths and long-term time variations,
Radiat. Meas., 23, 497–500,
https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Preusser, F.: Luminescence dating of fluvial sediments and overbank deposits
from Gossau, Switzerland: fine grain dating, Quat. Geochronol., 18, 217–222,
https://doi.org/10.1016/s0277-3791(98)00054-7, 1999a.
Preusser, F.: Lumineszenzdatierung fluviatiler Sedimente: Fallbeispiele aus
der Schweiz und Norddeutschland, Kölner Forum für Geologie und
Paläontologie, 3/1999, edited by: Herbig, H. G., Geologisches Institut
der Universität zu Köln, 62 pp., 1999b.
Preusser, F., Müller, B. U., and Schüchter, C.: Luminescence dating of
sediments from Luthern Valley, Central Switzerland, and implications for the
chronology of the last glacial cycle, Quaternary Res., 55, 215–222,
https://doi.org/10.1006/qres.2000.2208, 2001.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.:
Quaternary glaciation history of northern Switzerland, Quat. Sci. J., 60, 282–305, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Preusser, F., Muru, M., and Rosentau, A.: Comparing different post-IR IRSL
approaches for the dating of Holocene coastal foredunes from Ruhnu Island,
Estonia, Geochronometria, 41, 342–351,
https://doi.org/10.2478/s13386-013-0169-7, 2014.
Raab, T., Leopold, M., and Völkel, J.: Character, age, and ecological
significance of Pleistocene periglacial slope deposits in Germany, Phys.
Geogr., 28, 451–473, https://doi.org/10.2747/0272-3646.28.6.451, 2007.
Rees-Jones, J.: Optical dating of young sediments using fine-grain quartz,
Anc. TL, 13, 9–14, 1995.
Schmidt, C., Bösken, J., and Kolb, T.: Is there a common alpha- efficiency
in polymineral samples measured by various infrared stimulated luminescence
protocols?, Geochronometria, 45, 160–172,
https://doi.org/10.1515/geochr-2015-0095, 2018a.
Schmidt, C., Friedrich, J., Adamiec, G., Chruścińska, A., Fasoli,
M., Kreutzer, S., Martini, M., Panzeri, L., Polymeris, G. S.,
Przegiętka, K., Valla, P. G., King, G. E., and Sanderson, D. C.: How
reproducible are kinetic parameter constraints of quartz luminescence? An
interlaboratory comparison for the 110 ∘C TL peak, Radiat. Meas.,
110, 14–24, https://doi.org/10.1016/j.radmeas.2018.01.002, 2018b.
Spencer, J. Q. and Owen, L. A.: Optically stimulated luminescence dating of
Late Quaternary glaciogenic sediments in the upper Hunza valley: validating
the timing of glaciation and assessing dating methods, Quat. Scie. Rev., 23,
175–191, https://doi.org/10.1016/s0277-3791(03)00220-8, 2004.
Spooner, N. A.: On the optical dating signal of quartz, Radiat. Meas., 23, 593–600, https://doi.org/10.1016/1350-4487(94)90105-8, 1994.
Steffen, D., Preusser, F., and Schlunegger, F.: OSL quartz age underestimation
due to unstable signal components, Quat. Geochronol., 4, 353–362,
https://doi.org/10.1016/j.quageo.2009.05.015, 2009.
Swisstopo: swissALTI3D, Bundesamt für Landestopographie, swisstopo, available at: https://shop.swisstopo.admin.ch/en/products/height_models/alti3D (last access: 31 August 2018), 2013.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory
fading rates of various luminescence signals from feldspar-rich sediment
extracts, Radiat. Meas., 43, 1474–1486,
https://doi.org/10.1016/j.radmeas.2008.06.002, 2008.
Thiel, C., Buyleart, J-P., Murray, A. S., Terhost, B., Hofer, I., Tsukamoto,
S., and Frechen, M.: Luminescence dating of the Stratzing loess profile
(Austria) – Testing the potential of an elevated temperature post-IR IRSL
protocol, Quatern. Int., 234, 23–31, https://https://doi.org/10.1016/j.quaint.2010.05.018, 2011.
Timar, A., Vandenberghe, D. A., Panaiotu, E. C., Panaiotu, C. G., Necula,
C., Cosma, C., and van den Haute, P.: Optical dating of Romanian loess using
fine-grained quartz, Quat. Geochronol., 5, 143–148,
https://doi.org/10.1016/j.quageo.2009.03.003, 2010.
Timar-Gabor, A., Vandenberghe, D. A., Vasiliniuc, S., Panaoitu, E. E.,
Dimofte, D., and Cosma, C.: Optical dating of Romanian loess: A comparison
between silt-sized and sand-sized quartz, Quatern. Int., 240, 62–70,
https://doi.org/10.1016/j.quaint.2010.10.007, 2011.
Trauerstein, M., Lowick, S. E., Preusser, F., and Veit, H.: Testing the
suitability of dim sedimentary quartz from northern Switzerland for OSL
burial dose estimation, Geochronomoetria, 44, 66–76,
https://doi.org/10.1515/geochr-2015-0058, 2017.
Wallinga, J., Murray, A. S., and Duller, G. A.: Underestimation of equivalent
dose in single-aliquot optical dating of feldspar caused by preheating,
Radiat. Meas., 32, 691–695, https://doi.org/10.1016/s1350-4487(00)00127-x,
2000.
Wintle, A. G.: Anomalous Fading of Thermoluminescence in Mineral Samples,
Nature, 245, 143–144, https://doi.org/10.1038/245143a0, 1973.
Wintle, A. G.: Luminescence dating: where it has been and where it is going,
Boreas, 37, 471–482, https://doi.org/10.1111/j.1502-3885.2008.00059.x, 2008.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated
luminescence characteristics and their relevance in single-aliquot
regeneration dating protocols, Radiat. Meas. 41, 369–391,
https://doi.org/10.1016/j.radmeas.2005.11.001, 2006.
Zhang, J. and Li., S.-H.: Review of the Post-IR IRSL Dating Protocols of
K-Feldspar, Methods and Protocols, 3, 7, 1–20,
https://doi.org/10.3390/mps3010007, 2020.
Zimmermann, D. W.: Thermoluminescent dating using fine grains from pottery,
Archaeometry, 13, 29–52, https://doi.org/10.1111/j.1475-4754.1971.tb00028.x,
1971.
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed....