Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-271-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-271-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
XLUM: an open data format for exchange and long-term preservation of luminescence data
Sebastian Kreutzer
CORRESPONDING AUTHOR
Geography & Earth Sciences, Aberystwyth University, Wales, United Kingdom
Archéosciences Bordeaux, UMR 6034, CNRS – Université Bordeaux Montaigne, Pessac, France
present address: Institute of Geography, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
Steve Grehl
HUK-Coburg, Coburg, Germany
Michael Höhne
Freiberg Instruments GmbH, Freiberg, Germany
Oliver Simmank
Freiberg Instruments GmbH, Freiberg, Germany
Kay Dornich
Freiberg Instruments GmbH, Freiberg, Germany
Grzegorz Adamiec
Institute of Physics, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Gliwice, Poland
Christoph Burow
piazza blu GmbH, Cologne, Germany
Helen M. Roberts
Geography & Earth Sciences, Aberystwyth University, Wales, United Kingdom
Geoff A. T. Duller
Geography & Earth Sciences, Aberystwyth University, Wales, United Kingdom
Related authors
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-10, https://doi.org/10.5194/gchron-2024-10, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Nora Pfaffner, Annette Kadereit, Volker Karius, Thomas Kolb, Sebastian Kreutzer, and Daniela Sauer
E&G Quaternary Sci. J., 73, 1–22, https://doi.org/10.5194/egqsj-73-1-2024, https://doi.org/10.5194/egqsj-73-1-2024, 2024
Short summary
Short summary
We present results of the Baix loess–palaeosol sequence, SE France. Reconstructed intense soil formation under warm, moist conditions before and into the last ice age and less intense soil formations in warm (temporarily moist) phases during the generally cold, dry ice age were validated with laboratory and dating techniques. This is particularly relevant as Baix is located in the temperate–Mediterranean climate transition zone, a sensitive zone that is susceptible to future climate changes.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Norbert Mercier, Jean-Michel Galharret, Chantal Tribolo, Sebastian Kreutzer, and Anne Philippe
Geochronology, 4, 297–310, https://doi.org/10.5194/gchron-4-297-2022, https://doi.org/10.5194/gchron-4-297-2022, 2022
Short summary
Short summary
Dosimetric dating methods based on the analysis of luminescence signals emitted by granular minerals extracted from sedimentary deposits now play an important role in the study of the Quaternary. Here we propose a new approach in which the age of the deposit is calculated by combining the equivalent dose and dose-rate distributions. The underlying Bayesian mathematical model and its implementation via an R code are provided, together with the results obtained for a finite set of configurations.
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Dirk Mittelstraß and Sebastian Kreutzer
Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, https://doi.org/10.5194/gchron-3-299-2021, 2021
Short summary
Short summary
Our contribution enhances the infrared radiofluorescence dating technique, used to determine the last sunlight exposure of potassium feldspars in a range of about 600 to 600 000 years backwards. We recorded radiofluorescence images of fine sands and processed them with tailored open-source software to obtain ages from single grains. Finally, we tested our new method successfully on two natural sediment samples. Studies in Earth science will benefit from improved age accuracy and new insights.
Guillaume Guérin, Christelle Lahaye, Maryam Heydari, Martin Autzen, Jan-Pieter Buylaert, Pierre Guibert, Mayank Jain, Sebastian Kreutzer, Brice Lebrun, Andrew S. Murray, Kristina J. Thomsen, Petra Urbanova, and Anne Philippe
Geochronology, 3, 229–245, https://doi.org/10.5194/gchron-3-229-2021, https://doi.org/10.5194/gchron-3-229-2021, 2021
Short summary
Short summary
This paper demonstrates how to model optically stimulated luminescence (OSL) and radiocarbon ages in a Bayesian framework, using a dedicated software tool called BayLum. We show the effect of stratigraphic constraints, of modelling the covariance of ages when the same equipment is used for a series of OSL samples, and of including independent ages on a chronological inference. The improvement in chronological resolution is significant.
Dominik Faust, Sebastian Kreutzer, Yesmine Trigui, Maximilian Pachtmann, Georg Mettig, Moncef Bouaziz, Jose Manuel Recio Espejo, Fernando Diaz del Olmo, Christoph Schmidt, Tobias Lauer, Zeljko Rezek, Alexander Fülling, and Sascha Meszner
E&G Quaternary Sci. J., 69, 55–58, https://doi.org/10.5194/egqsj-69-55-2020, https://doi.org/10.5194/egqsj-69-55-2020, 2020
Annette Kadereit, Sebastian Kreutzer, Christoph Schmidt, and Regina DeWitt
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-3, https://doi.org/10.5194/gchron-2020-3, 2020
Preprint withdrawn
Catherine C. Beck, Melissa Berke, Craig S. Feibel, Verena Foerster, Lydia Olaka, Helen M. Roberts, Christopher A. Scholz, Kat Cantner, Anders Noren, Geoffery Mibei Kiptoo, James Muirhead, and the Deep Drilling in the Turkana Basin (DDTB) project team
Sci. Dril., 33, 93–108, https://doi.org/10.5194/sd-33-93-2024, https://doi.org/10.5194/sd-33-93-2024, 2024
Short summary
Short summary
The Deep Drilling in the Turkana Basin project seeks to determine the relative impacts of tectonics and climate on eastern African ecosystems. To organize goals for coring, we hosted a workshop in Nairobi, Kenya, which focused on how a 4 Myr sedimentary core from Turkana will uniquely address research objectives related to basin evolution, past climates and environments, and modern resources. We concluded that a Pliocene to modern record is best accomplished through a two-phase drilling project.
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-10, https://doi.org/10.5194/gchron-2024-10, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Nora Pfaffner, Annette Kadereit, Volker Karius, Thomas Kolb, Sebastian Kreutzer, and Daniela Sauer
E&G Quaternary Sci. J., 73, 1–22, https://doi.org/10.5194/egqsj-73-1-2024, https://doi.org/10.5194/egqsj-73-1-2024, 2024
Short summary
Short summary
We present results of the Baix loess–palaeosol sequence, SE France. Reconstructed intense soil formation under warm, moist conditions before and into the last ice age and less intense soil formations in warm (temporarily moist) phases during the generally cold, dry ice age were validated with laboratory and dating techniques. This is particularly relevant as Baix is located in the temperate–Mediterranean climate transition zone, a sensitive zone that is susceptible to future climate changes.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Norbert Mercier, Jean-Michel Galharret, Chantal Tribolo, Sebastian Kreutzer, and Anne Philippe
Geochronology, 4, 297–310, https://doi.org/10.5194/gchron-4-297-2022, https://doi.org/10.5194/gchron-4-297-2022, 2022
Short summary
Short summary
Dosimetric dating methods based on the analysis of luminescence signals emitted by granular minerals extracted from sedimentary deposits now play an important role in the study of the Quaternary. Here we propose a new approach in which the age of the deposit is calculated by combining the equivalent dose and dose-rate distributions. The underlying Bayesian mathematical model and its implementation via an R code are provided, together with the results obtained for a finite set of configurations.
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Dirk Mittelstraß and Sebastian Kreutzer
Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, https://doi.org/10.5194/gchron-3-299-2021, 2021
Short summary
Short summary
Our contribution enhances the infrared radiofluorescence dating technique, used to determine the last sunlight exposure of potassium feldspars in a range of about 600 to 600 000 years backwards. We recorded radiofluorescence images of fine sands and processed them with tailored open-source software to obtain ages from single grains. Finally, we tested our new method successfully on two natural sediment samples. Studies in Earth science will benefit from improved age accuracy and new insights.
Guillaume Guérin, Christelle Lahaye, Maryam Heydari, Martin Autzen, Jan-Pieter Buylaert, Pierre Guibert, Mayank Jain, Sebastian Kreutzer, Brice Lebrun, Andrew S. Murray, Kristina J. Thomsen, Petra Urbanova, and Anne Philippe
Geochronology, 3, 229–245, https://doi.org/10.5194/gchron-3-229-2021, https://doi.org/10.5194/gchron-3-229-2021, 2021
Short summary
Short summary
This paper demonstrates how to model optically stimulated luminescence (OSL) and radiocarbon ages in a Bayesian framework, using a dedicated software tool called BayLum. We show the effect of stratigraphic constraints, of modelling the covariance of ages when the same equipment is used for a series of OSL samples, and of including independent ages on a chronological inference. The improvement in chronological resolution is significant.
Dominik Brill, Simon Matthias May, Nadia Mhammdi, Georgina King, Benjamin Lehmann, Christoph Burow, Dennis Wolf, Anja Zander, and Helmut Brückner
Earth Surf. Dynam., 9, 205–234, https://doi.org/10.5194/esurf-9-205-2021, https://doi.org/10.5194/esurf-9-205-2021, 2021
Short summary
Short summary
Wave-transported boulders are important records for storm and tsunami impact over geological timescales. Their use for hazard assessment requires chronological information. We investigated the potential of a new dating technique, luminescence rock surface exposure dating, for estimating transport ages of wave-emplaced boulders. Our results indicate that the new approach may provide chronological information on decadal to millennial timescales for boulders not datable by any other method so far.
Dominik Faust, Sebastian Kreutzer, Yesmine Trigui, Maximilian Pachtmann, Georg Mettig, Moncef Bouaziz, Jose Manuel Recio Espejo, Fernando Diaz del Olmo, Christoph Schmidt, Tobias Lauer, Zeljko Rezek, Alexander Fülling, and Sascha Meszner
E&G Quaternary Sci. J., 69, 55–58, https://doi.org/10.5194/egqsj-69-55-2020, https://doi.org/10.5194/egqsj-69-55-2020, 2020
Annette Kadereit, Sebastian Kreutzer, Christoph Schmidt, and Regina DeWitt
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-3, https://doi.org/10.5194/gchron-2020-3, 2020
Preprint withdrawn
Related subject area
Luminescence dating
Zircon luminescence dating revisited
Short communication: Synchrotron-based elemental mapping of single grains to investigate variable infrared-radiofluorescence emissions for luminescence dating
Insight into the dynamics of a long-runout mass movement using single-grain feldspar luminescence in the Pokhara Valley, Nepal
Technical note: Darkroom lighting for luminescence dating laboratory
Differential bleaching of quartz and feldspar luminescence signals under high-turbidity conditions
Potential impacts of chemical weathering on feldspar luminescence dating properties
Attenuation of beta radiation in granular matrices: implications for trapped-charge dating
Luminescence age calculation through Bayesian convolution of equivalent dose and dose-rate distributions: the De_Dr model
Technical note: Quantifying uranium-series disequilibrium in natural samples for dosimetric dating – Part 1: gamma spectrometry
The μDose system: determination of environmental dose rates by combined alpha and beta counting – performance tests and practical experiences
Erosion rates in a wet, temperate climate derived from rock luminescence techniques
Technical note: On the reliability of laboratory beta-source calibration for luminescence dating
Spatially resolved infrared radiofluorescence: single-grain K-feldspar dating using CCD imaging
Towards an improvement of optically stimulated luminescence (OSL) age uncertainties: modelling OSL ages with systematic errors, stratigraphic constraints and radiocarbon ages using the R package BayLum
Luminescence properties and dating of glacial to periglacial sediments from northern Switzerland
Extended-range luminescence dating of quartz and alkali feldspar from aeolian sediments in the eastern Mediterranean
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-10, https://doi.org/10.5194/gchron-2024-10, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Anna-Maartje de Boer, Wolfgang Schwanghart, Jürgen Mey, Basanta Raj Adhikari, and Tony Reimann
Geochronology, 6, 53–70, https://doi.org/10.5194/gchron-6-53-2024, https://doi.org/10.5194/gchron-6-53-2024, 2024
Short summary
Short summary
This study tested the application of single-grain feldspar luminescence for dating and reconstructing sediment dynamics of an extreme mass movement event in the Himalayan mountain range. Our analysis revealed that feldspar signals can be used to estimate the age range of the deposits if the youngest subpopulation from a sample is retrieved. The absence of clear spatial relationships with our bleaching proxies suggests that sediments were transported under extremely limited light exposure.
Marine Frouin, Taylor Grandfield, William Huebsch, and Owen Evans
Geochronology, 5, 405–412, https://doi.org/10.5194/gchron-5-405-2023, https://doi.org/10.5194/gchron-5-405-2023, 2023
Short summary
Short summary
Here, we present the lighting setting implemented in the new Luminescence Dating Research Laboratory at Stony Brook University, USA. First, we performed spectral measurements on different light sources and filters. Then, we measured the loss of dose in quartz and feldspar samples when exposed to various light sources and durations. Finally, we conclude that our lighting setting is suitable for a luminescence darkroom laboratory; it is simple, inexpensive to build, and durable.
Jürgen Mey, Wolfgang Schwanghart, Anna-Maartje de Boer, and Tony Reimann
Geochronology, 5, 377–389, https://doi.org/10.5194/gchron-5-377-2023, https://doi.org/10.5194/gchron-5-377-2023, 2023
Short summary
Short summary
This study presents the results of an outdoor flume experiment to evaluate the effect of turbidity on the bleaching of fluvially transported sediment. Our main conclusions are that even small amounts of sediment lead to a substantial change in the intensity and frequency distribution of light within the suspension and that flow turbulence is an important prerequisite for bleaching grains during transport.
Melanie Bartz, Jasquelin Peña, Stéphanie Grand, and Georgina E. King
Geochronology, 5, 51–64, https://doi.org/10.5194/gchron-5-51-2023, https://doi.org/10.5194/gchron-5-51-2023, 2023
Short summary
Short summary
Chemical weathering alters the chemical composition of mineral grains, and it follows that luminescence dating signals may also be progressively modified. We artificially weathered feldspar samples under different chemical conditions to understand the effect of feldspar partial dissolution on their luminescence properties. Only minor changes were observed on luminescence dating properties, implying that chemical alteration of feldspar surfaces may not affect luminescence dating signals.
Alastair C. Cunningham, Jan-Pieter Buylaert, and Andrew S. Murray
Geochronology, 4, 517–531, https://doi.org/10.5194/gchron-4-517-2022, https://doi.org/10.5194/gchron-4-517-2022, 2022
Short summary
Short summary
Mineral grains within sediment or rock absorb a radiation dose from the decay of radionuclides in the host matrix. For the beta dose component, the estimated dose rate must be adjusted for the attenuation of beta particles within the mineral grains. We show here that the mean dose rate to dosimeter grains in a granular matrix is dependent on the grain-size distributions of the source grains, the bulk sediment, and the grain size of the dosimeters.
Norbert Mercier, Jean-Michel Galharret, Chantal Tribolo, Sebastian Kreutzer, and Anne Philippe
Geochronology, 4, 297–310, https://doi.org/10.5194/gchron-4-297-2022, https://doi.org/10.5194/gchron-4-297-2022, 2022
Short summary
Short summary
Dosimetric dating methods based on the analysis of luminescence signals emitted by granular minerals extracted from sedimentary deposits now play an important role in the study of the Quaternary. Here we propose a new approach in which the age of the deposit is calculated by combining the equivalent dose and dose-rate distributions. The underlying Bayesian mathematical model and its implementation via an R code are provided, together with the results obtained for a finite set of configurations.
Barbara Mauz, Paul J. Nolan, and Peter G. Appleby
Geochronology, 4, 213–225, https://doi.org/10.5194/gchron-4-213-2022, https://doi.org/10.5194/gchron-4-213-2022, 2022
Short summary
Short summary
It is of critical importance to dosimetric dating techniques that the quantity of the radiation dose is estimated accurately. Here we describe gamma spectrometry in terms of instrument, measurement procedures, and data analyses required for estimating parent nuclide activities. The description includes analytical procedures required to generate data with sufficient accuracy and precision for samples in secular equilibrium. We also outline procedures required to quantify disequilibrium.
Thomas Kolb, Konrad Tudyka, Annette Kadereit, Johanna Lomax, Grzegorz Poręba, Anja Zander, Lars Zipf, and Markus Fuchs
Geochronology, 4, 1–31, https://doi.org/10.5194/gchron-4-1-2022, https://doi.org/10.5194/gchron-4-1-2022, 2022
Short summary
Short summary
The µDose system is an innovative analytical instrument developed for the cost- and time-efficient determination of environmental radionuclide concentrations required for the calculation of sedimentation ages in palaeo-environmental and geo-archaeological research. The results of our study suggest that accuracy and precision of µDose measurements are comparable to those of well-established methods and that the new approach shows the potential to become a standard tool in environmental dosimetry.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Dirk Mittelstraß and Sebastian Kreutzer
Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, https://doi.org/10.5194/gchron-3-299-2021, 2021
Short summary
Short summary
Our contribution enhances the infrared radiofluorescence dating technique, used to determine the last sunlight exposure of potassium feldspars in a range of about 600 to 600 000 years backwards. We recorded radiofluorescence images of fine sands and processed them with tailored open-source software to obtain ages from single grains. Finally, we tested our new method successfully on two natural sediment samples. Studies in Earth science will benefit from improved age accuracy and new insights.
Guillaume Guérin, Christelle Lahaye, Maryam Heydari, Martin Autzen, Jan-Pieter Buylaert, Pierre Guibert, Mayank Jain, Sebastian Kreutzer, Brice Lebrun, Andrew S. Murray, Kristina J. Thomsen, Petra Urbanova, and Anne Philippe
Geochronology, 3, 229–245, https://doi.org/10.5194/gchron-3-229-2021, https://doi.org/10.5194/gchron-3-229-2021, 2021
Short summary
Short summary
This paper demonstrates how to model optically stimulated luminescence (OSL) and radiocarbon ages in a Bayesian framework, using a dedicated software tool called BayLum. We show the effect of stratigraphic constraints, of modelling the covariance of ages when the same equipment is used for a series of OSL samples, and of including independent ages on a chronological inference. The improvement in chronological resolution is significant.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Galina Faershtein, Naomi Porat, and Ari Matmon
Geochronology, 2, 101–118, https://doi.org/10.5194/gchron-2-101-2020, https://doi.org/10.5194/gchron-2-101-2020, 2020
Short summary
Short summary
Optically stimulated luminescence dates the last exposure of quartz and feldspar minerals to sunlight. We investigated its sub-methods (TT-OSL, VSL, and pIRIR) to date middle and early Pleistocene sediments. Inspection of natural signals of samples can reveal saturated samples that produce only minimum ages. Using these sub-methods, minimum ages of up to the early Pleistocene can be obtained for eastern Mediterranean aeolian sediments of Nilotic origin.
Cited articles
Agence Nationale de la Recherche (ANR):
Modèle de Plan de gestion des données (PGD), ANR, https://anr.fr/fileadmin/documents/2019/ANR-modele-PGD.pdf (last access: 24 April 2022), 2019. a
Aitken, M. J.:
Thermoluminescence Dating, Academic Press, London, ISBN 978-0-12-046381-7, 1985. a
ALLEA:
The European Code of Conduct for Research Integrity – REVISED EDITION, ALLEA, https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/european-code-of-conduct-for-research-integrity_horizon_en.pdf (last access: 15 June 2022), 2017. a
Balco, G.:
Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating, Geochronology, 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020, 2020. a, b
Bateman, M. D.:
Handbook of luminescence dating, Whittles Publishing, Dunbeath, ISBN 978-184995-395-5, 2019. a
Bortolot, V. J.:
A new modular high capacity OSL reader system, Radiat. Meas., 32, 751–757, https://doi.org/10.1016/s1350-4487(00)00038-x, 2000. a
Bortolot, V. J. and Bluszcz, A.:
Strategies for flexibility in luminescence dating: procedure-oriented measurement and hardware modularity, Radiat. Meas., 37, 551–555, https://doi.org/10.1016/s1350-4487(03)00017-9, 2003. a, b
Bøtter-Jensen, L.:
The automated Risø TL dating reader system, International Journal of Radiation Applications and Instrumentation, Part D, Nuclear Tracks and Radiation Measurements, 14, 177–180, https://doi.org/10.1016/1359-0189(88)90060-x, 1988. a
Bøtter-Jensen, L.:
Luminescence techniques: Instrumentation and methods, Radiat. Meas., 27, 749–768, https://doi.org/10.1016/S1350-4487(97)00206-0, 1997. a
Burow, C., Zens, J., Kreutzer, S., Dietze, M., Fuchs, M. C., Fischer, M., Schmidt, C., and Brückner, H.:
Exploratory data analysis using the R package 'Luminescence' – Towards data mining in OSL applications, https://doi.org/10.13140/RG.2.2.19673.62561, 2016. a
Chamberlain, E. L. and Wallinga, J.:
Seeking enlightenment of fluvial sediment pathways by optically stimulated luminescence signal bleaching of river sediments and deltaic deposits, Earth Surf. Dynam., 7, 723–736, https://doi.org/10.5194/esurf-7-723-2019, 2019. a
Codilean, A. T., Munack, H., Cohen, T. J., Saktura, W. M., Gray, A., and Mudd, S. M.:
OCTOPUS: an open cosmogenic isotope and luminescence database, Earth Syst. Sci. Data, 10, 2123–2139, https://doi.org/10.5194/essd-10-2123-2018, 2018. a
Combès, B., Philippe, A., Lanos, P., Mercier, N., Tribolo, C., Guérin, G., Guibert, P., and Lahaye, C.:
A Bayesian central equivalent dose model for optically stimulated luminescence dating, Quat. Geochronol., 28, 62–70, https://doi.org/10.1016/j.quageo.2015.04.001, 2015. a
Copernicus Publications:
Copernicus Press Release, Copernicus Publications provides full-text XML, Copernicus Publications, https://copernicus.org/news_and_press/2014-11-03_full-text-xml.html (last access: 30 May 2022), 2014. a
Copernicus Publications: Copernicus Press Release, 2018-11-05_Enabling-FAIR-Data-Commitment-Statement, Copernicus Publications, https://www.copernicus.org/news_and_press/2018-11-05_enabling-fair-data-commitment-statement.html (last access: 15 April 2022), 2018. a
Deutsche Forschungs Gemeinschaft (DFG):
Guidelines for Safeguarding Good Research Practice: Code of conduct (v1.1), DFG, https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp_en.pdf (last access: 24 April 2022), 2022. a
DTU Nutech – Center for Nuclear Technologies:
The Sequence Editor, DTU Nutech, https://www.fysik.dtu.dk/english/research/radphys/research/radiation-instruments/tl_osl_reader/manuals (last access: 26 November 2022), 2016. a
Duller, G. A. T.:
The Analyst software package for luminescence data: overview and recent improvements, Ancient TL, 33, 35–42, http://ancienttl.org/ATL_33-1_2015/ATL_33-1_Duller_p35-42.pdf (last access: 15 May 2023), 2015. a
European Commission:
Data Guidelines | Open Research Europe, European Commission, https://open-research-europe.ec.europa.eu/for-authors/data-guidelines (last access: 10 June 2021), 2021. a
European Organization For Nuclear Research and OpenAIRE, Zenodo, https://doi.org/10.25495/7GXK-RD71, 2013. a
FORCE11:
The FAIR Data Principles – FORCE11, https://force11.org/info/the-fair-data-principles/ (last access: 16 April 2022), 2014. a
Guérin, G. and Lefèvre, J.-C.:
A low cost TL–OSL reader dedicated to high temperature studies, Measurement, 49, 26–33, https://doi.org/10.1016/j.measurement.2013.11.035, 2014. a
Guérin, G. and Visocekas, R.:
Volcanic feldspars anomalous fading: Evidence for two different mechanisms, Radiat. Meas., 81, 218–223, https://doi.org/10.1016/j.radmeas.2015.08.009, 2015. a
Hütt, G., Jaek, I., and Tchonka, J.:
Optical dating: K-Feldspars optical response stimulation spectra, Quaternary Sci. Rev., 7, 381–385, https://doi.org/10.1016/0277-3791(88)90033-9, 1988. a
Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W.:
Optical dating of sediments, Nature, 313, 105–107, https://doi.org/10.1038/313105a0, 1985. a
Kreutzer, S. and Burow, C.:
xlum: read, write, and convert XLUM data, Zenodo [code], https://doi.org/10.5281/zenodo.7362364, 2022. a, b
Kreutzer, S., Burow, C., Dietze, M., Fuchs, M. C., Fischer, M., and Schmidt, C.:
Software in the context of luminescence dating: status, concepts and suggestions exemplified by the R package “Luminescence”, Ancient TL, 35, 1–11, http://ancienttl.org/ATL_35-2_2017/ATL_35-2_Kreutzer_p1-11.pdf (last access: 15 May 2023), 2017. a, b
Kreutzer, S., Burow, C., Dietze, M., Fuchs, M. C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Smedley, R. K., Christophe, C., Zink, A., Durcan, J., King, G. E., Philippe, A., Guérin, G., Riedesel, S., Autzen, M., Guibert, P., Mittelstrass, D., Gray, H. J., and Galharret, J.-M.:
Luminescence: Comprehensive luminescence dating data analysis, CRAN, https://doi.org/10.5281/zenodo.6345291, 2022a. a
Kreutzer, S., Grehl, S., and Höhne, M.:
XLUM data format specification: v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.7362438, 2022b. a, b
Kröninger, K., Mentzel, F., Theinert, R., and Walbersloh, J.:
A machine learning approach to glow curve analysis, Radiat. Meas., 125, 34–39, https://doi.org/10.1016/j.radmeas.2019.02.015, 2019. a
Lancaster, N., Wolfe, S., Thomas, D., Bristow, C., Bubenzer, O., Burrough, S., Duller, G., Halfen, A., Hesse, P., Roskin, J., Singhvi, A., Tsoar, H., Tripaldi, A., Yang, X., and Zárate, M.:
The INQUA dunes atlas chronologic database, Quatern. Int., 410, 3–10, https://doi.org/10.1016/j.quaint.2015.10.044, 2015. a
Liang, P. and Forman, S. L.:
LDAC: An Excel-based program for luminescence equivalent dose and burial age calculations, Ancient TL, 37, 21–40, 2019. a
Markey, B. G., Bøtter-Jensen, L., and Duller, G. A. T.:
A new flexible system for measuring thermally and optically stimulated luminescence, Radiat. Meas., 27, 83–89, https://doi.org/10.1016/s1350-4487(96)00126-6, 1997. a
Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., Tang, W. H., Römpp, A., Neumann, S., Pizarro, A. D., Montecchi-Palazzi, L., Tasman, N., Coleman, M., Reisinger, F., Souda, P., Hermjakob, H., Binz, P.-A., and Deutsch, E. W.:
mzML—a Community Standard for Mass Spectrometry Data, Mol. Cell. Proteomics, 10, R110.000133, https://doi.org/10.1074/mcp.R110.000133, 2011. a
Mercier, N., Kreutzer, S., Christophe, C., Guérin, G., Guibert, P., Lahaye, C., Lanos, P., Philippe, A., and Tribolo, C.:
Bayesian statistics in luminescence dating: The “baSAR”-model and its implementation in the R package “Luminescence”, Ancient TL, 34, 14–21, http://ancienttl.org/ATL_34-2_2016/ATL_34-2_Mercier_p14-21.pdf (last access: 15 May 2023), 2016. a
Mills, J. A., Teplitsky, C., Arroyo, B., Charmantier, A., Becker, P. H., Birkhead, T. R., Bize, P., Blumstein, D. T., Bonenfant, C., Boutin, S., Bushuev, A., Cam, E., Cockburn, A., Côté, S. D., Coulson, J. C., Daunt, F., Dingemanse, N. J., Doligez, B., Drummond, H., Espie, R. H. M., Festa-Bianchet, M., Frentiu, F., Fitzpatrick, J. W., Furness, R. W., Garant, D., Gauthier, G., Grant, P. R., Griesser, M., Gustafsson, L., Hansson, B., Harris, M. P., Jiguet, F., Kjellander, P., Korpimäki, E., Krebs, C. J., Lens, L., Linnell, J. D. C., Low, M., McAdam, A., Margalida, A., Merilä, J., Møller, A. P., Nakagawa, S., Nilsson, J.-Å., Nisbet, I. C. T., van Noordwijk, A. J., Oro, D., Pärt, T., Pelletier, F., Potti, J., Pujol, B., Réale, D., Rockwell, R. F., Ropert-Coudert, Y., Roulin, A., Sedinger, J. S., Swenson, J. E., Thébaud, C., Visser, M. E., Wanless, S., Westneat, D. F., Wilson, A. J., and Zedrosser, A.:
Archiving primary data: Solutions for long-term studies, Trends Ecol. Evol., 30, 581–589, https://doi.org/10.1016/j.tree.2015.07.006, 2015. a
Mittelstraß, D. and Kreutzer, S.:
Spatially resolved infrared radiofluorescence: single-grain K-feldspar dating using CCD imaging, Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, 2021. a, b
Mundupuzhakal, J., Adhyaru, P., Chauhan, N., Vaghela, H., Shah, M., Chakrabarty, B., and Acharya, Y.:
FPGA based TL OSL system with EMCCD for luminescence studies, J. Instrum., 9, P04001, https://doi.org/10.1088/1748-0221/9/04/P04001, 2014. a
Murray, A., Arnold, L. J., Buylaert, J.-P., Guérin, G., Qin, J., Singhvi, A. K., Smedley, R., and Thomsen, K. J.:
Optically stimulated luminescence dating using quartz, Nature Reviews Methods Primers, 1, 72, https://doi.org/10.1038/s43586-021-00068-5, 2021. a
Murray, A. S. and Wintle, A. G.:
Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32, 57–73, https://doi.org/10.1016/s1350-4487(99)00253-x, 2000. a
Nolan, D. and Lang, D. T.:
XML and web technologies for data sciences with R, Springer, https://doi.org/10.1007/978-1-4614-7900-0, 2013. a
Noy, N. and Noy, A.:
Let go of your data, Nat. Mater., 19, 128–128, https://doi.org/10.1038/s41563-019-0539-5, 2020. a, b
Patrizio, A.:
XML is toast, long live JSON, https://www.cio.com/article/238300/xml-is-toast-long-live-json.html (last access: 30 May 2022), 2016. a
Peng, J., Dong, Z., Han, F., Long, H., and Liu, X.:
R package numOSL: numeric routines for optically stimulated luminescence dating, Ancient TL, 31, 41–48, http://ancienttl.org/ATL_31-2_2013/ATL_31-2_Peng_p41-48.pdf (last access: 15 May 2023), 2013. a
Perkel, J. M.:
Challenge to scientists: does your ten-year-old code still run?, Nature, 584, 656–658, https://doi.org/10.1038/d41586-020-02462-7, 2020. a
Philippe, A., Guérin, G., and Kreutzer, S.:
BayLum – an R package for Bayesian analysis of OSL ages: an introduction, Quat. Geochronol., 49, 16–24, https://doi.org/10.1016/j.quageo.2018.05.009, 2019. a
Python Software Foundation:
Python Language Reference, Python Software Foundation, https://www.python.org (last access: 1 July 2022), 2022. a
Rhodes, E. J.: Optically stimulated luminescence dating of sediments over the past 200,000 years, Annu. Rev. Earth Planet.
Sc., 39, 461–488, https://doi.org/10.1146/annurev-earth-040610-133425, 2011. a
Richter, D., Richter, A., and Dornich, K.:
lexsyg — a new system for luminescence research, Geochronometria, 40, 220–228, https://doi.org/10.2478/s13386-013-0110-0, 2013. a
Richter, D., Richter, A., and Dornich, K.:
Lexsyg smart — a luminescence detection system for dosimetry, material research and dating application, Geochronometria, 42, 202–209, https://doi.org/10.1515/geochr-2015-0022, 2015. a
Röst, H. L., Schmitt, U., Aebersold, R., and Malmström, L.:
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry, PLOS ONE, 10, e0125 108, https://doi.org/10.1371/journal.pone.0125108, 2015. a
Roberts, R. G., Jacobs, Z., Li, B., Jankowski, N. R., Cunningham, A. C., and Rosenfeld, A. B.:
Optical dating in archaeology: thirty years in retrospect and grand challenges for the future, J. Archaeol. Sci., 56, 41–60, https://doi.org/10.1016/j.jas.2015.02.028, 2015. a
Sanderson, D. C. W. and Murphy, S.:
Using simple portable OSL measurements and laboratory characterisation to help understand complex and heterogeneous sediment sequences for luminescence dating, Quat. Geochronol., 5, 299–305, https://doi.org/10.1016/j.quageo.2009.02.001, 2010. a
Sawakuchi, A. O., Jain, M., Mineli, T. D., Nogueira Jr, L., D. J. B., Häggi, C., Sawakuchi, H. O., Pupim, F. N., Grohmann, C. H., Chiessi, C. M., Zabel, M., Mulitza, S., Mazoca, C. E. M., and Cunha, D. F.:
Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin, Earth Planet Sc. Lett., 492, 152–162, https://doi.org/10.1016/j.epsl.2018.04.006, 2018. a
The Unicode Consortium:
Unicode Technical Site, Unicode Consortium, https://www.unicode.org/main.html (last access: 23 May 2022), 2022. a
Thorley, M. and Callaghan, S.:
NERC data policy – guidance notes (v2.2), Tech. rep., https://www.ukri.org/wp-content/uploads/2023/03/NERC-07032023-Guidance-notes-for-the-NERC-Data-Policy-final-22022023.pdf (last access: 15 May 2023), 2019. a
Tsukamoto, S., Nagashima, K., Murray, A. S., and Tada, R.:
Variations in OSL components from quartz from Japan sea sediments and the possibility of reconstructing provenance, Quatern. Int., 234, 182–189, https://doi.org/10.1016/j.quaint.2010.09.003, 2011.
a
Wickham, H., Hester, J., and Ooms, J.:
xml2: Parse XML, https://CRAN.R-project.org/package=xml2 (last access: 15 May 2023), 2021. a
Wiley Author Service:
Open Data | Wiley, https://authorservices.wiley.com/open-research/open-data/index.html (last access: 16 April 2022), 2022. a
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. a, b
Yukihara, E. G. and McKeever, S. W. S.:
Optically stimulated luminescence – fundamentals and application, John Wiley & Sons Ltd, West Sussex, United Kingdom, https://doi.org/10.1002/9780470977064, 2011. a
Yukihara, E. G., McKeever, S. W. S., and Akselrod, M. S.:
State of art: Optically stimulated luminescence dosimetry – Frontiers of future research, Radiat. Meas., 71, 15–24, https://doi.org/10.1016/j.radmeas.2014.03.023, 2014. a
Short summary
The concept of open data has become the modern science meme. Funding bodies and publishers support open data. However, the open data mandate frequently encounters technical obstacles, such as a lack of a suitable data format for data sharing and long-term data preservation. Such issues are often community-specific and demand community-tailored solutions. We propose a new human-readable data format for data exchange and long-term preservation of luminescence data called XLUM.
The concept of open data has become the modern science meme. Funding bodies and publishers...