Articles | Volume 7, issue 3
https://doi.org/10.5194/gchron-7-229-2025
https://doi.org/10.5194/gchron-7-229-2025
Research article
 | 
16 Jul 2025
Research article |  | 16 Jul 2025

Environmental gamma dose rate measurements using cadmium zinc telluride (CZT) detectors

Sebastian Kreutzer, Loïc Martin, Didier Miallier, and Norbert Mercier

Related authors

A progressively elevated temperature (PET) IRSL SAR procedure – first experiments and results
Annette Kadereit, Mariana Sontag-González, Sebastian Kreutzer, Marco Colombo, Christoph Schmidt, and Paul R. Hanson
EGUsphere, https://doi.org/10.5194/egusphere-2025-5978,https://doi.org/10.5194/egusphere-2025-5978, 2025
Short summary
Zircon luminescence dating revisited
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology, 6, 665–682, https://doi.org/10.5194/gchron-6-665-2024,https://doi.org/10.5194/gchron-6-665-2024, 2024
Short summary
Short communication: Synchrotron-based elemental mapping of single grains to investigate variable infrared-radiofluorescence emissions for luminescence dating
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024,https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Reconstructing the Eemian to Middle Pleniglacial pedosedimentary evolution of the Baix loess–palaeosol sequence (Rhône Rift Valley, southern France) – basic chronostratigraphic framework and palaeosol characterisation
Nora Pfaffner, Annette Kadereit, Volker Karius, Thomas Kolb, Sebastian Kreutzer, and Daniela Sauer
E&G Quaternary Sci. J., 73, 1–22, https://doi.org/10.5194/egqsj-73-1-2024,https://doi.org/10.5194/egqsj-73-1-2024, 2024
Short summary
Last Glacial loess in Europe: luminescence database and chronology of deposition
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023,https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary

Cited articles

Adamiec, G. and Aitken, M. J.: Dose-rate conversion factors: update, Ancient TL, 16, 37–50, https://doi.org/10.26034/la.atl.1998.292, 1998. a
Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell'Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Cadenas, J. J. G., González, I., Abril, G. G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F. W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., de Freitas, P. M., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M. G., Ranjard, F., Rybin, A., Sadilov, S., Salvo, E. D., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Tehrani, E. S., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J. P., Wenaus, T., Williams, D. C., Wright, D., Yamada, T., Yoshida, H., and Zschiesche, D.: GEANT4—a simulation toolkit, Nucl. Instrum. Meth. A, 506, 250–303, https://doi.org/10.1016/s0168-9002(03)01368-8, 2003. a, b
Aitken, M. J.: Thermoluminescence dating, Studies in archaeological science, Academic Press, London, ISBN 978-0-12-046381-7, 1985. a, b, c
Alam, M. D., Nasim, S. S., and Hasan, S.: Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring, Prog. Nucl. Energ., 140, 103918, https://doi.org/10.1016/j.pnucene.2021.103918, 2021. a, b, c
Alexiev, D., Mo, L., Prokopovich, D. A., Smith, M. L., and Matuchova, M.: Comparison of LaBr3:Ce and LaCl3:Ce With NaI(Tl) and Cadmium Zinc Telluride (CZT) Detectors, IEEE T. Nucl. Sci., 55, 1174–1177, https://doi.org/10.1109/TNS.2008.922837, 2008. a
Download
Short summary
Accurate readings on the environmental gamma dose rate are important. Portable gamma-ray detectors, such as those that are NaI- or LaBr3-based, are easy to handle and affordable. Limited information on alternatives, like CZT (cadmium zinc telluride) detectors, is available. We tested CZT detectors and found them suitable for in-field deployment. We used simulations and field tests to evaluate the optimal energy threshold for direct dose rate readings, making the CZT system a reliable alternative.
Share