Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-2-245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Delayed and rapid deglaciation of alpine valleys in the Sawatch Range, southern Rocky Mountains, USA
Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
William Caffee
Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
Avriel D. Schweinsberg
Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
Jason P. Briner
Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
Eric M. Leonard
Department of Geology, Colorado College, Colorado Springs, CO 80903, USA
Related authors
Joseph P. Tulenko, Sophie A. Goliber, Renette Jones-Ivey, Justin Quinn, Abani Patra, Kristin Poinar, Sophie Nowicki, Beata M. Csatho, and Jason P. Briner
EGUsphere, https://doi.org/10.5194/egusphere-2025-894, https://doi.org/10.5194/egusphere-2025-894, 2025
Short summary
Short summary
Ghub is an online platform that hosts tools, datasets and educational resources related to ice sheet science. These resources are provided by ice sheet researchers and allow other researchers, students, educators, and interested members of the general public to analyze, visualize and download datasets that researchers use to study past and present ice sheet behavior. We describe how users can interact with Ghub, showcase some available resources, and describe the future of the Ghub Project.
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024, https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Short summary
Cosmogenic nuclide exposure dating is an exceptional tool for reconstructing glacier histories, but reconstructions based on common target nuclides (e.g., 10Be) can be costly and time-consuming to generate. Here, we present a cost-effective proof-of-concept 21Ne exposure age chronology from Lassen Volcanic National Park, CA, USA, that broadly agrees with nearby 10Be chronologies but at lower precision.
Joseph P. Tulenko, Jason P. Briner, Nicolás E. Young, and Joerg M. Schaefer
Clim. Past, 20, 625–636, https://doi.org/10.5194/cp-20-625-2024, https://doi.org/10.5194/cp-20-625-2024, 2024
Short summary
Short summary
We take advantage of a site in Alaska – where climate records are limited and a former alpine glacier deposited a dense sequence of moraines spanning the full deglaciation – to construct a proxy summer temperature record. Building on age constraints for moraines in the valley, we reconstruct paleo-glacier surfaces and estimate the summer temperatures (relative to the Little Ice Age) for each moraine. The record suggests that the influence of North Atlantic climate forcing extended to Alaska.
Caleb K. Walcott, Jason P. Briner, Joseph P. Tulenko, and Stuart M. Evans
Clim. Past, 20, 91–106, https://doi.org/10.5194/cp-20-91-2024, https://doi.org/10.5194/cp-20-91-2024, 2024
Short summary
Short summary
Available data suggest that Alaska was not as cold as many of the high-latitude areas of the Northern Hemisphere during the Last Ice Age. These results come from isolated climate records, climate models, and data synthesis projects. We used the extents of mountain glaciers during the Last Ice Age and Little Ice Age to show precipitation gradients across Alaska and provide temperature data from across the whole state. Our findings support a relatively warm Alaska during the Last Ice Age.
Sudip Acharya, Allison A. Cluett, Amy L. Grogan, Jason P. Briner, Isla S. Castañeda, and Elizabeth K. Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3113, https://doi.org/10.5194/egusphere-2025-3113, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The study analyzed temperature-sensitive bacterial membrane lipids in Holocene Lake sediments from southwestern Greenland. Temperature maxima in five lakes occurred between 7000–5000 years ago, at a coastal site between 5000–3000 years ago, and at an inland site, far from the coast and the Greenland Ice Sheet, between 9000–7000 years ago. Local temperature variations, influenced by the ice sheet and ocean, likely caused discrepancies in the temperature time series.
Jacob T. H. Anderson, Nicolás E. Young, Allie Balter-Kennedy, Karlee K. Prince, Caleb K. Walcott-George, Brandon L. Graham, Joanna Charton, Jason P. Briner, and Joerg M. Schaefer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2780, https://doi.org/10.5194/egusphere-2025-2780, 2025
Short summary
Short summary
We investigated retreat of the Greenland Ice Sheet during the last deglaciation by dating glacial deposits exposed as the ice margin retreated. Our results from eastern and northeastern Greenland reveal ice margin retreat rates of 43 m/yr and 28 m/yr at two marine-terminating outlet glaciers. These retreat rates are consistent with late glacial and Holocene estimates across East Greenland, and are comparable to modern retreat rates observed in northeastern and northwestern Greenland.
Caleb K. Walcott-George, Allie Balter-Kennedy, Jason P. Briner, Joerg M. Schaefer, and Nicolás E. Young
The Cryosphere, 19, 2067–2086, https://doi.org/10.5194/tc-19-2067-2025, https://doi.org/10.5194/tc-19-2067-2025, 2025
Short summary
Short summary
Understanding the history and drivers of Greenland Ice Sheet change is important for forecasting future ice sheet retreat. We combined geologic mapping and cosmogenic nuclide measurements to investigate how the Greenland Ice Sheet formed the landscape of Inglefield Land, northwestern Greenland. We found that Inglefield Land was covered by warm- and cold-based ice during multiple glacial cycles and that much of Inglefield Land is an ancient landscape.
Joseph P. Tulenko, Sophie A. Goliber, Renette Jones-Ivey, Justin Quinn, Abani Patra, Kristin Poinar, Sophie Nowicki, Beata M. Csatho, and Jason P. Briner
EGUsphere, https://doi.org/10.5194/egusphere-2025-894, https://doi.org/10.5194/egusphere-2025-894, 2025
Short summary
Short summary
Ghub is an online platform that hosts tools, datasets and educational resources related to ice sheet science. These resources are provided by ice sheet researchers and allow other researchers, students, educators, and interested members of the general public to analyze, visualize and download datasets that researchers use to study past and present ice sheet behavior. We describe how users can interact with Ghub, showcase some available resources, and describe the future of the Ghub Project.
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024, https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Short summary
Cosmogenic nuclide exposure dating is an exceptional tool for reconstructing glacier histories, but reconstructions based on common target nuclides (e.g., 10Be) can be costly and time-consuming to generate. Here, we present a cost-effective proof-of-concept 21Ne exposure age chronology from Lassen Volcanic National Park, CA, USA, that broadly agrees with nearby 10Be chronologies but at lower precision.
Benjamin A. Keisling, Joerg M. Schaefer, Robert M. DeConto, Jason P. Briner, Nicolás E. Young, Caleb K. Walcott, Gisela Winckler, Allie Balter-Kennedy, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2427, https://doi.org/10.5194/egusphere-2024-2427, 2024
Short summary
Short summary
Understanding how much the Greenland ice sheet melted in response to past warmth helps better predicting future sea-level change. Here we present a framework for using numerical ice-sheet model simulations to provide constraints on how much mass the ice sheet loses before different areas become ice-free. As observations from subglacial archives become more abundant, this framework can guide subglacial sampling efforts to gain the most robust information about past ice-sheet geometries.
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
Geochronology, 6, 409–427, https://doi.org/10.5194/gchron-6-409-2024, https://doi.org/10.5194/gchron-6-409-2024, 2024
Short summary
Short summary
We fill a spatial data gap in the ice sheet retreat history of the Laurentide Ice Sheet after the Last Glacial Maximum and investigate a hypothesis that the ice sheet re-advanced into western New York, USA, at ~13 ka. With radiocarbon and optically stimulated luminescence (OSL) dating, we find that ice began retreating from its maximum extent after 20 ka, but glacial ice persisted in glacial landforms until ~15–14 ka when they finally stabilized. We find no evidence of a re-advance at ~13 ka.
Joseph P. Tulenko, Jason P. Briner, Nicolás E. Young, and Joerg M. Schaefer
Clim. Past, 20, 625–636, https://doi.org/10.5194/cp-20-625-2024, https://doi.org/10.5194/cp-20-625-2024, 2024
Short summary
Short summary
We take advantage of a site in Alaska – where climate records are limited and a former alpine glacier deposited a dense sequence of moraines spanning the full deglaciation – to construct a proxy summer temperature record. Building on age constraints for moraines in the valley, we reconstruct paleo-glacier surfaces and estimate the summer temperatures (relative to the Little Ice Age) for each moraine. The record suggests that the influence of North Atlantic climate forcing extended to Alaska.
Caleb K. Walcott, Jason P. Briner, Joseph P. Tulenko, and Stuart M. Evans
Clim. Past, 20, 91–106, https://doi.org/10.5194/cp-20-91-2024, https://doi.org/10.5194/cp-20-91-2024, 2024
Short summary
Short summary
Available data suggest that Alaska was not as cold as many of the high-latitude areas of the Northern Hemisphere during the Last Ice Age. These results come from isolated climate records, climate models, and data synthesis projects. We used the extents of mountain glaciers during the Last Ice Age and Little Ice Age to show precipitation gradients across Alaska and provide temperature data from across the whole state. Our findings support a relatively warm Alaska during the Last Ice Age.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Caleb K. Walcott, Jason P. Briner, James F. Baichtal, Alia J. Lesnek, and Joseph M. Licciardi
Geochronology, 4, 191–211, https://doi.org/10.5194/gchron-4-191-2022, https://doi.org/10.5194/gchron-4-191-2022, 2022
Short summary
Short summary
We present a record of ice retreat from the northern Alexander Archipelago, Alaska. During the last ice age (~ 26 000–19 000 years ago), these islands were covered by the Cordilleran Ice Sheet. We tested whether islands were ice-free during the last ice age for human migrants moving from Asia to the Americas. We found that these islands became ice-free between ~ 15 100 years ago and ~ 16 000 years ago, and thus these islands were not suitable for human habitation during the last ice age.
Brendon J. Quirk, Elizabeth Huss, Benjamin J. C. Laabs, Eric Leonard, Joseph Licciardi, Mitchell A. Plummer, and Marc W. Caffee
Clim. Past, 18, 293–312, https://doi.org/10.5194/cp-18-293-2022, https://doi.org/10.5194/cp-18-293-2022, 2022
Short summary
Short summary
Glaciers in the northern Rocky Mountains began retreating 17 000 to 18 000 years ago, after the end of the most recent global ice volume maxima. Climate in the region during this time was likely 10 to 8.5° colder than modern with less than or equal to present amounts of precipitation. Glaciers across the Rockies began retreating at different times but eventually exhibited similar patterns of retreat, suggesting a common mechanism influencing deglaciation.
Douglas P. Steen, Joseph S. Stoner, Jason P. Briner, and Darrell S. Kaufman
Geochronology Discuss., https://doi.org/10.5194/gchron-2021-19, https://doi.org/10.5194/gchron-2021-19, 2021
Publication in GChron not foreseen
Short summary
Short summary
Paleomagnetic data from Cascade Lake (Brooks Range, Alaska) extend the radiometric-based age model of the sedimentary sequence extending back 21 kyr. Correlated ages based on prominent features in paleomagnetic secular variations (PSV) diverge from the radiometric ages in the upper 1.6 m, by up to about 2000 years at around 4 ka. Four late Holocene cryptotephra in this section support the PSV chronology and suggest the influence of hard water or aged organic material.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Cited articles
Armour, J., Fawcett, P. J., and Geissman, J. W.: 15 ky paleoclimatic and
glacial record from northern New Mexico, Geology, 30, 723–726, 2002.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195,
2008.
Balco, G., Briner, J., Finkel, R. C., Rayburn, J. A., Ridge, J. C., and
Schaefer, J. M.: Regional beryllium-10 production rate calibration for
late-glacial northeastern North America, Quat. Geochronol., 4,
93–107, 2009.
Balco, G., Blard, P. H., Eaves, S., Heyman, J., Hidy, A., Jackson, M., Laabs, B., Lamp, J., Lesnek, A. J., Saha, S., Schimmelpfennig, I., Spector, P., and Tulenko, J. P.: ICE-D Alpine: informal cosmogenic-nuclide exposure-age database alpine, available at: http://alpine.ice-d.org/, last access: 9 August 2020.
Benson, L., Madole, R., Phillips, W., Landis, G., Thomas, T., and Kubik, P.:
The probable importance of snow and sediment shielding on cosmogenic ages of
north-central Colorado Pinedale and pre-Pinedale moraines, Quaternary
Sci. Rev., 23, 193–206, 2004.
Benson, L. V., Smoot, J. P., Lund, S. P., Mensing, S. A., Foit Jr., F., and
Rye, R. O.: Insights from a synthesis of old and new climate-proxy data from
the Pyramid and Winnemucca lake basins for the period 48 to 11.5 cal ka,
Quatern. Int., 310, 62–82, 2013.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.
F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res.
Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological
calibration of spallation production rates in the CRONUS-Earth project,
Quat. Geochronol., 31, 188–198, 2016.
Briner, J. P.: Moraine pebbles and boulders yield indistinguishable 10Be
ages: A case study from Colorado, USA, Quat. Geochronol., 4, 299–305,
https://doi.org/10.1016/j.quageo.2009.02.010, 2009.
Brugger, K. A., Ruleman, C. A., Caffee, M. W., and Mason, C. C.: Climate
during the Last Glacial Maximum in the Northern Sawatch Range, Colorado,
USA, Quaternary, 2, 36,https://doi.org/10.3390/quat2040036, 2019a.
Brugger, K. A., Laabs, B., Reimers, A., and Bensen, N.: Late Pleistocene
glaciation in the Mosquito Range, Colorado, USA: chronology and climate,
J. Quat. Sci., 34, 187–202, https://doi.org/10.1002/jqs.3090, 2019b.
Buizert, C., Gkinis, V., Severinghaus, J. P., He, F., Lecavalier, B. S.,
Kindler, P., Leuenberger, M., Carlson, A. E., Vinther, B., and
Masson-Delmotte, V.: Greenland temperature response to climate forcing
during the last deglaciation, Science, 345, 1177–1180, 2014.
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., and Williams, J. W.: Global climate evolution during the last deglaciation, P. Natl. Acad. Sci. USA, 109, E1134–E1142, https://doi.org/10.1073/pnas.1116619109, 2012.
COHMAP members: Climatic changes of the last 18,000 years: observations and
model simulations, Science, 241, 1043–1052, 1988.
Corbett, L. B., Bierman, P. R., and Rood, D. H.: An approach for optimizing
in situ cosmogenic 10Be sample preparation, Quat. Geochronol., 33,
24–34, 2016.
Dalton, A. S., Margold, M., Stokes, C. R., Tarasov, L., Dyke, A. S., Adams,
R. S., Allard, S., Arends, H. E., Atkinson, N., Attig, J. W., Barnett, P.
J., Barnett, R. L., Batterson, M., Bernatchez, P., Borns, H. W.,
Breckenridge, A., Briner, J. P., Brouard, E., Campbell, J. E., Carlson, A.
E., Clague, J. J., Curry, B. B., Daigneault, R.-A., Dubé-Loubert, H.,
Easterbrook, D. J., Franzi, D. A., Friedrich, H. G., Funder, S., Gauthier,
M. S., Gowan, A. S., Harris, K. L., Hétu, B., Hooyer, T. S., Jennings,
C. E., Johnson, M. D., Kehew, A. E., Kelley, S. E., Kerr, D., King, E. L.,
Kjeldsen, K. K., Knaeble, A. R., Lajeunesse, P., Lakeman, T. R., Lamothe,
M., Larson, P., Lavoie, M., Loope, H. M., Lowell, T. V., Lusardi, B. A.,
Manz, L., McMartin, I., Nixon, F. C., Occhietti, S., Parkhill, M. A., Piper,
D. J. W., Pronk, A. G., Richard, P. J. H., Ridge, J. C., Ross, M., Roy, M.,
Seaman, A., Shaw, J., Stea, R. R., Teller, J. T., Thompson, W. B.,
Thorleifson, L. H., Utting, D. J., Veillette, J. J., Ward, B. C., Weddle, T.
K., and Wright, H. E.: An updated radiocarbon-based ice margin chronology
for the last deglaciation of the North American Ice Sheet Complex,
Quaternary Sci. Rev., 234, 106223,
https://doi.org/10.1016/j.quascirev.2020.106223, 2020.
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer,
J. M., and Putnam, A. E.: The Last Glacial Termination, Science, 328, 1652,
https://doi.org/10.1126/science.1184119, 2010.
Dühnforth, M., and Anderson, R. S.: Reconstructing the glacial history
of green lakes valley, North Boulder Creek, Colorado Front Range, Arct.
Antarct. Alp. Res., 43, 527–542, 2011.
Gilbert, G. K.: Lake Bonneville, US government printing office, Washington, 1890.
Guido, Z. S., Ward, D. J., and Anderson, R. S.: Pacing the post–Last
Glacial Maximum demise of the Animas Valley glacier and the San Juan
Mountain ice cap, Colorado, Geology, 35, 739–742, 2007.
Hofmann, F. M., Alexanderson, H., Schoeneich, P., Mertes, J. R., Léanni,
L., and Team, A.: Post-Last Glacial Maximum glacier fluctuations in the
southern Écrins massif (westernmost Alps): insights from 10Be cosmic ray
exposure dating, Boreas, 48, 1019–1041, 2019.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Maisch, M., Sailer, R., Schaefer,
J., Kubik, P. W., and Synal, H.: The timing of glacier advances in the
northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al,
36Cl,
and 21Ne, Special Paper – Geological Society of America, 2006.
Johnson, J. S., Bentley, M. J., Smith, J. A., Finkel, R., Rood, D., Gohl,
K., Balco, G., Larter, R. D., and Schaefer, J.: Rapid thinning of Pine
Island Glacier in the early Holocene, Science, 343, 999–1001, 2014.
Jones, R. S., Mackintosh, A. N., Norton, K. P., Golledge, N. R., Fogwill, C.
J., Kubik, P. W., Christl, M., and Greenwood, S. L.: Rapid Holocene thinning
of an East Antarctic outlet glacier driven by marine ice sheet instability,
Nat. Commun., 6, 8910, https://doi.org/10.1038/ncomms9910, 2015.
Koester, A. J., Shakun, J. D., Bierman, P. R., Davis, P. T., Corbett, L. B.,
Braun, D., and Zimmerman, S. R.: Rapid thinning of the Laurentide Ice Sheet
in coastal Maine, USA, during late Heinrich Stadial 1, Quaternary Sci.
Rev., 163, 180–192, 2017.
Laabs, B. J. C., Refsnider, K. A., Munroe, J. S., Mickelson, D. M.,
Applegate, P. J., Singer, B. S., and Caffee, M. W.: Latest Pleistocene
glacial chronology of the Uinta Mountains: support for moisture-driven
asynchrony of the last deglaciation, Quaternary Sci. Rev., 28,
1171–1187, https://doi.org/10.1016/j.quascirev.2008.12.012, 2009.
Laabs, B. J. C., Licciardi, J. M., Leonard, E. M., Munroe, J. S., and
Marchetti, D. W.: Updated cosmogenic chronologies of Pleistocene mountain
glaciation in the western United States and associated paleoclimate
inferences, Quaternary Sci. Rev., 242, 106427,
https://doi.org/10.1016/j.quascirev.2020.106427, 2020.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439,
1991.
Leonard, E. M., Laabs, B. J. C., Plummer, M. A., Kroner, R. K., Brugger, K.
A., Spiess, V. M., Refsnider, K. A., Xia, Y., and Caffee, M. W.: Late
Pleistocene glaciation and deglaciation in the Crestone Peaks area, Colorado
Sangre de Cristo Mountains, USA – chronology and paleoclimate, Quaternary
Sci. Rev., 158, 127–144,
https://doi.org/10.1016/j.quascirev.2016.11.024, 2017a.
Leonard, E. M., Laabs, B., Schweinsberg, A., Russell, C. M., Briner, J. P.,
and Young, N.: Deglaciation of the Colorado Rocky Mountains following the
Last Glacial Maximum, Cuadern. Investig., 43,
497–526, 2017b.
Lesnek, A. J., Briner, J. P., Young, N. E., and Cuzzone, J. K.: Maximum
Southwest Greenland Ice Sheet Recession in the Early Holocene, Geophys.
Res. Lett., 47, e2019GL083164, https://doi.org/10.1029/2019gl083164, 2020.
Liakka, J. and Lofverstrom, M.: Arctic warming induced by the Laurentide Ice Sheet topography, Clim. Past, 14, 887–900, https://doi.org/10.5194/cp-14-887-2018, 2018.
Licciardi, J. M. and Pierce, K. L.: History and dynamics of the Greater
Yellowstone Glacial System during the last two glaciations, Quaternary
Sci. Rev., 200, 1–33, 2018.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sc. Lett., 386, 149–160, 2014.
Lifton, N., Caffee, M., Finkel, R., Marrero, S., Nishiizumi, K., Phillips,
F. M., Goehring, B., Gosse, J., Stone, J., and Schaefer, J.: In situ
cosmogenic nuclide production rate calibration for the CRONUS-Earth project
from Lake Bonneville, Utah, shoreline features, Quat. Geochronol.,
26, 56–69, 2015.
Löfverström, M., Caballero, R., Nilsson, J., and Kleman, J.: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle, Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, 2014.
Lora, J. M. and Ibarra, D. E.: The North American hydrologic cycle through
the last deglaciation, Quaternary Sci. Rev., 226, 105991, https://doi.org/10.1016/j.quascirev.2019.105991, 2019.
Lora, J. M., Mitchell, J. L., and Tripati, A. E.: Abrupt reorganization of
North Pacific and western North American climate during the last
deglaciation, Geophys. Res. Lett., 43, 11796–711804, 2016.
Marcott, S. A., Clark, P. U., Shakun, J. D., Brook, E. J., Davis, P. T., and
Caffee, M. W.: 10Be age constraints on latest Pleistocene and Holocene
cirque glaciation across the western United States, npj Climate and
Atmospheric Science, 2, 1–7, 2019.
Munroe, J. S. and Laabs, B. J. C.: Temporal correspondence between pluvial
lake highstands in the southwestern US and Heinrich Event 1, J.
Quaternary Sci., 28, 49–58, https://doi.org/10.1002/jqs.2586, 2013.
Munroe, J. S. and Laabs, B. J. C.: Combining radiocarbon and cosmogenic
ages to constrain the timing of the last glacial-interglacial transition in
the Uinta Mountains, Utah, USA, Geology, 45, 171–174, https://doi.org/10.1130/g38156.1,
2017.
NGRIP members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C.,
and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl.
Instrum. Meth. B, 258, 403–413, 2007.
Oerlemans, J.: Extracting a Climate Signal from 169 Glacier Records,
Science, 308, 675–677, https://doi.org/10.1126/science.1107046, 2005.
Orme, A. R.: Pleistocene pluvial lakes of the American West: a short history
of research, Geological Society, London, Special Publications, 301, 51–78,
2008.
Oster, J. L., Ibarra, D. E., Winnick, M. J., and Maher, K.: Steering of
westerly storms over western North America at the Last Glacial Maximum,
Nat. Geosci., 8, 201–205, https://doi.org/10.1038/ngeo2365, 2015.
Oviatt, C. G.: Chronology of Lake Bonneville, 30,000 to 10,000 yr B.P,
Quaternary Sci. Rev., 110, 166–171,
https://doi.org/10.1016/j.quascirev.2014.12.016, 2015.
Palacios, D., Stokes, C. R., Phillips, F. M., Clague, J. J.,
Alcalá-Reygosa, J., Andres, N., Angel, I., Blard, P.-H., Briner, J. P.,
and Hall, B. L.: The deglaciation of the Americas during the Last Glacial
Termination, Earth-Sci. Rev., 203, 103–113, https://doi.org/10.1016/j.earscirev.2020.103113, 2020.
Pierce, K. L.: Pleistocene glaciations of the Rocky Mountains, Developments
in Quaternary Sciences, 1, 63–76, 2003.
Porter, S. C., Pierce, K. L., and Hamilton, T. D.: Late Wisconsin Mountain
Glaciation in the Western United States, in: Late-Quaternary environments of
the United States, edited by: Wright, H. E. and Porter, S. C., University
of Minnesota Press, Minnesota, 71–111, 1983.
Putnam, A. E., Schaefer, J. M., Denton, G. H., Barrell, D. J., Birkel, S.
D., Andersen, B. G., Kaplan, M. R., Finkel, R. C., Schwartz, R., and
Doughty, A. M.: The last glacial maximum at 44 ∘S documented by a
10Be moraine chronology at Lake Ohau, Southern Alps of New Zealand,
Quaternary Sci. Rev., 62, 114–141, 2013.
Quirk, B. J., Moore, J. R., Laabs, B. J., Caffee, M. W., and Plummer, M. A.:
Termination II, Last Glacial Maximum, and Lateglacial chronologies and
paleoclimate from Big Cottonwood Canyon, Wasatch Mountains, Utah, Bulletin,
130, 1889–1902, 2018.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., and
Fischer, H.: A stratigraphic framework for abrupt climatic changes during
the Last Glacial period based on three synchronized Greenland ice-core
records: refining and extending the INTIMATE event stratigraphy, Quaternary
Sci. Rev., 106, 14–28, 2014.
Reheis, M. C., Adams, K. D., Oviatt, C. G., and Bacon, S. N.: Pluvial lakes
in the Great Basin of the western United States – a view from the outcrop,
Quaternary Sci. Rev., 97, 33–57,
https://doi.org/10.1016/j.quascirev.2014.04.012, 2014.
Roe, G. H., Baker, M. B., and Herla, F.: Centennial glacier retreat as
categorical evidence of regional climate change, Nat. Geosci., 10,
95–99, 2017.
Russell, I. C.: Geological history of Lake Lahontan: a Quaternary lake of
northwestern Nevada, US Government Printing Office, 1885.
Schaefer, J. M., Denton, G. H., Barrell, D. J., Ivy-Ochs, S., Kubik, P. W.,
Andersen, B. G., Phillips, F. M., Lowell, T. V., and Schlüchter, C.:
Near-synchronous interhemispheric termination of the last glacial maximum in
mid-latitudes, Science, 312, 1510–1513, 2006.
Schweinsberg, A. D., Briner, J. P., Licciardi, J. M., Shroba, R. R., and
Leonard, E. M.: Cosmogenic 10Be exposure dating of Bull Lake and Pinedale
moraine sequences in the upper Arkansas River valley, Colorado Rocky
Mountains, USA, Quaternary Res., 97, 125–139, https://doi.org/10.1017/qua.2020.21, 2020.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–54, 2012.
Shakun, J. D., Clark, P. U., He, F., Lifton, N. A., Liu, Z., and
Otto-Bliesner, B. L.: Regional and global forcing of glacier retreat during
the last deglaciation, Nat. Commun., 6, 8059, https://doi.org/10.1038/ncomms9059, 2015.
Shroba, R. R., Kellogg, K. S., and Bandt, T. R.: Geologic map of the Granite
7.5'quadrangle, Lake and Chaffee Counties, Colorado: US Geological Survey
Scientific Investigations Map 3294, 31, 1 sheet, scale 1:24 000, 2014.
Small, D., Smedley, R. K., Chiverrell, R. C., Scourse, J. D., Cofaigh, C.
Ó., Duller, G. A. T., McCarron, S., Burke, M. J., Evans, D. J. A.,
Fabel, D., Gheorghiu, D. M., Thomas, G. S. P., Xu, S., and Clark, C. D.:
Trough geometry was a greater influence than climate-ocean forcing in
regulating retreat of the marine-based Irish-Sea Ice Stream, GSA Bulletin,
130, 1981–1999, https://doi.org/10.1130/b31852.1, 2018.
Stone, J. O.: Air pressure and cosmogenic isotope production, J.
Geophys. Res.-Sol. Ea., 105, 23753–23759, 2000.
Tulenko, J. P., Lofverstrom, M., and Briner, J. P.: Ice sheet influence on
atmospheric circulation explains the patterns of Pleistocene alpine glacier
records in North America, Earth Planet. Sc. Lett., 534, 116115, https://doi.org/10.1016/j.epsl.2020.116115,
2020.
Ward, D. J., Anderson, R. S., Guido, Z. S., and Briner, J. P.: Numerical
modeling of cosmogenic deglaciation records, Front Range and San Juan
mountains, Colorado, J. Geophys. Res.-Earth, 114, F01026, https://doi.org/10.1029/2008JF001057,
2009.
Young, N. E., Briner, J. P., Leonard, E. M., Licciardi, J. M., and Lee, K.:
Assessing climatic and nonclimatic forcing of Pinedale glaciation and
deglaciation in the western United States, Geology, 39, 171–174, 2011.
Young, N. E., Briner, J. P., Schaefer, J., Zimmerman, S., and Finkel, R. C.:
Early Younger Dryas glacier culmination in southern Alaska: Implications for
North Atlantic climate change during the last deglaciation, Geology, 47,
550–554, 2019.
Short summary
We investigate the timing and rate of retreat for three alpine glaciers in the southern Rocky Mountains to test whether they followed the pattern of global climate change or were majorly influenced by regional forcing mechanisms. We find that the latter is most likely for these glaciers. Our conclusions are based on a new 10Be chronology of alpine glacier retreat. We quantify retreat rates for each valley using the BACON program in R, which may be of interest for the audience of Geochronology.
We investigate the timing and rate of retreat for three alpine glaciers in the southern Rocky...