Articles | Volume 2, issue 2
Geochronology, 2, 411–423, 2020
https://doi.org/10.5194/gchron-2-411-2020
Geochronology, 2, 411–423, 2020
https://doi.org/10.5194/gchron-2-411-2020
Research article
16 Dec 2020
Research article | 16 Dec 2020

Calibrating a long-term meteoric 10Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced 10Be depth profiles

Travis Clow et al.

Related authors

Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021,https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Tectonically and climatically driven mountain-hopping erosion in central Guatemala from detrital 10Be and river profile analysis
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021,https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary
Deciphering the evolution of the Bleis Marscha rock glacier (Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021,https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021,https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Silicon uptake and isotope fractionation dynamics by crop species
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020,https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary

Related subject area

Cosmogenic nuclide dating
Combined linear-regression and Monte Carlo approach to modeling exposure age depth profiles
Yiran Wang and Michael E. Oskin
Geochronology, 4, 533–549, https://doi.org/10.5194/gchron-4-533-2022,https://doi.org/10.5194/gchron-4-533-2022, 2022
Short summary
Technical note: Evaluating a geographical information system (GIS)- based approach for determining topographic shielding factors in cosmic-ray exposure dating
Felix Martin Hofmann
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-18,https://doi.org/10.5194/gchron-2022-18, 2022
Revised manuscript accepted for GChron
Short summary
Cosmogenic nuclide weathering biases: corrections and potential for denudation and weathering rate measurements
Richard F. Ott, Sean F. Gallen, and Darryl E. Granger
Geochronology, 4, 455–470, https://doi.org/10.5194/gchron-4-455-2022,https://doi.org/10.5194/gchron-4-455-2022, 2022
Short summary
Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022,https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Technical Note: A software framework for calculating compositionally dependent in situ 14C production rates
Alexandria J. Koester and Nathaniel A. Lifton
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-16,https://doi.org/10.5194/gchron-2022-16, 2022
Revised manuscript accepted for GChron
Short summary

Cited articles

Bacon, A. R., Richter, D. D., Bierman, P. R., and Rood, D. H.: Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve, Geology, 40, 847–850, https://doi.org/10.1130/G33449.1, 2012 
Barg, E., Lal, D., Pavich, M. J., Caffee, M. W., and Southon, J. R.: Beryllium geochemistry in soils; evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models, Chem. Geol., 140, 237–258, https://doi.org/10.1016/S0009-2541(97)00051-X, 1997. 
Blum, J. D. and Erel, Y.: Rb/Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering, Geochim. Cosmochim. Ac., 61, 3193–3204, https://doi.org/10.1016/S0016-7037(97)00148-8, 1997. 
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quat. Geochronol., 31, 188–198, https://doi.org/10.1016/j.quageo.2015.01.009, 2016. 
Boschi, V. and Willenbring, J. K.: The role of pH, organic matter composition and mineralogy on the sorption behavior of beryllium, Environ. Chem., 13, 711–722, https://doi.org/10.1071/EN15107, 2016a. 
Download
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.