Articles | Volume 3, issue 2
https://doi.org/10.5194/gchron-3-395-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-395-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite
Division of Geological and Planetary Sciences, California Institute of Technology, MC 100-23, 1200 E California Blvd, Pasadena, CA 91125,
USA
Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Luisenstr. 37, 80333 Munich, Germany
Emily H. G. Cooperdock
Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, CA 90089, USA
A. Joshua West
Department of Earth Sciences, University of Southern California, 3651 Trousdale Parkway, Los Angeles, CA 90089, USA
Dominic Hildebrandt
Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Luisenstr. 37, 80333 Munich, Germany
Kathrin Strößner
Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Luisenstr. 37, 80333 Munich, Germany
Kenneth A. Farley
Division of Geological and Planetary Sciences, California Institute of Technology, MC 100-23, 1200 E California Blvd, Pasadena, CA 91125,
USA
Related authors
Emily H. G. Cooperdock, Florian Hofmann, Ryley M. C. Tibbetts, Anahi Carrera, Aya Takase, and Aaron J. Celestian
Geochronology, 4, 501–515, https://doi.org/10.5194/gchron-4-501-2022, https://doi.org/10.5194/gchron-4-501-2022, 2022
Short summary
Short summary
Apatite and zircon are the most widely used minerals for dating rocks, but they can be difficult to identify in some crushed rock samples. Incorrect mineral identification results in wasted analytical resources and inaccurate data. We show how X-ray computed tomography can be used to efficiently and accurately distinguish apatite from zircon based on density variations, and provide non-destructive 3D grain-specific size, shape, and inclusion information for improved data quality.
Hevelyn S. Monteiro, Kenneth A. Farley, and Paulo M. Vasconcelos
Geochronology, 7, 357–368, https://doi.org/10.5194/gchron-7-357-2025, https://doi.org/10.5194/gchron-7-357-2025, 2025
Short summary
Short summary
We have built a database of (U-Th)/He ages and U and Th contents of goethites from various weathering environments. The database contains 2609 (U-Th)/He ages of goethites from 10 countries. The findings presented in this article contribute insights into the distribution of dated goethites from different environments globally and into the Earth's Cenozoic weathering history.
Jessica M. Mueller, Jeffrey D. Bond, Kenneth A. Farley, and Brent C. Ward
Geochronology, 7, 255–263, https://doi.org/10.5194/gchron-7-255-2025, https://doi.org/10.5194/gchron-7-255-2025, 2025
Short summary
Short summary
We used step heating to separate cosmogenic 3He from mantle 3He in olivine xenocrysts in which the mantle helium component is in high concentration after sample powdering. By isolating the matrix-sited cosmogenic 3He at low temperature, we were able to date four different lava flows on Volcano Mountain, the youngest eruptive center in the Fort Selkirk volcanic province in Yukon, Canada. The four flows, including the stratigraphically youngest on the mountain, erupted coevally, at 10.5 ± 1.7 ka.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Emily H. G. Cooperdock, Florian Hofmann, Ryley M. C. Tibbetts, Anahi Carrera, Aya Takase, and Aaron J. Celestian
Geochronology, 4, 501–515, https://doi.org/10.5194/gchron-4-501-2022, https://doi.org/10.5194/gchron-4-501-2022, 2022
Short summary
Short summary
Apatite and zircon are the most widely used minerals for dating rocks, but they can be difficult to identify in some crushed rock samples. Incorrect mineral identification results in wasted analytical resources and inaccurate data. We show how X-ray computed tomography can be used to efficiently and accurately distinguish apatite from zircon based on density variations, and provide non-destructive 3D grain-specific size, shape, and inclusion information for improved data quality.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Cited articles
Amidon, W. H. and Farley, K. A.: Cosmogenic 3He production rates in
apatite, zircon and pyroxene inferred from Bonneville flood erosional
surfaces, Quat. Geochronol., 6, 10–21, https://doi.org/10.1016/j.quageo.2010.03.005, 2011.
Amidon, W. H. and Farley, K. A.: Cosmogenic 3He and 21Ne dating
of biotite and hornblende, Earth Planet. Sc. Lett., 313, 86–94,
https://doi.org/10.1016/j.epsl.2011.11.005, 2012.
Amidon, W. H., Farley, K. A., Burbank, D. W., and Pratt-Sitaula, B.:
Anomalous cosmogenic 3He production and elevation scaling in the high
Himalaya, Earth Planet. Sc. Lett., 265, 287–301,
https://doi.org/10.1016/j.epsl.2007.10.022, 2008.
Amidon, W. H., Rood, D. H., and Farley, K. A.: Cosmogenic 3He and
21Ne production rates calibrated against 10Be in minerals from the
Coso volcanic field, Earth Planet. Sc. Lett., 280, 194–204,
https://doi.org/10.1016/j.epsl.2009.01.031, 2009.
Andrews, J. N. and Kay, R. L. F.: Natural production of tritium in
permeable rocks, Nature, 298, 361–363,
https://doi.org/10.1038/298361a0, 1982.
Balbas, A. M. and Farley, K. A.: Constraining in situ cosmogenic nuclide
paleo-production rates using sequential lava flows during a paleomagnetic
field strength low, Chem. Geol., 532, 119355,
https://doi.org/10.1016/j.chemgeo.2019.119355, 2020.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quat. Geochronol., 3,
174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Biersack, J. P., Fink D., Miekeley W., and Tjan K.: 1–3 MeV alpha and
triton stopping powers in LiF and Li alloys, Nucl. Instrum. Meth., B15, 96–100,
https://doi.org/10.1016/0168-583x(86)90261-2, 1986.
Blackburn, T. J., Stockli, D. F., and Walker, J. D.: Magnetite (U–Th) He
dating and its application to the geochronology of intermediate to mafic
volcanic rocks, Earth Planet. Sc. Lett., 259, 360–371, https://doi.org/10.1016/j.epsl.2007.04.044, 2007.
Blard, P. H., Braucher, R., Lavé, J., and Bourlès, D.: Cosmogenic
10Be production rate calibrated against 3He in the high Tropical
Andes (3800–4900 m, 20–22∘ S), Earth Planet. Sc. Lett. 382,
140–149, https://doi.org/10.1016/j.epsl.2013.09.010, 2013.
Bryce, J. G. and Farley, K. A.: 3He exposure dating of magnetite, in:
Goldschmidt Conference Abstracts 2002, Goldschmidt, 18–23 August 2002, Davos, Switzerland, edited by: Podosek, F. A., A108, 2002.
Buddington, A. F. and Lindsley, D. H.: Iron-titanium oxide minerals and
synthetic equivalents, J. Petrol., 5, 310–357,
https://doi.org/10.1093/petrology/5.2.310, 1964.
Cooperdock, E. H. and Stockli, D. F.: Unraveling alteration histories in
serpentinites and associated ultramafic rocks with magnetite (U–Th) He
geochronology, Geology, 44, 967–970, https://doi.org/10.1130/g38587.1, 2016.
Cooperdock, E. H. G., Stockli, D. F., Kelemen, P. B., and de Obeso, J. C.:
Timing of magnetite growth associated with peridotite-hosted carbonate veins
in the SE Samail ophiolite, Wadi Fins, Oman, J. Geophys. Res.-Sol. Ea., 125,
e2019JB018632, https://doi.org/10.1029/2019JB018632, 2020.
Cox, S. E., Miller, H., Farley, K. A., and Hofmann, F.: Anomalous trapping
of noble gases during sample crushing, American Geophysical Union 2017
Abstract V43B-0526, American Geophysical Union, New Orleans, USA, 2017.
Dunai, T. J.: Scaling factors for production rates of in situ produced
cosmogenic nuclides: a critical reevaluation, Earth Planet. Sc. Lett., 176,
157–169, https://doi.org/10.1016/s0012-821x(99)00310-6, 2000.
Dunai, T. J., Stuart, F. M., Pik, R., Burnard, P., and Gayer, E.: Production
of 3He in crustal rocks by cosmogenic thermal neutrons, Earth Planet. Sc. Lett., 258, 228–236, https://doi.org/10.1016/j.epsl.2007.03.031, 2007.
Farley, K. A.: (U–Th) He dating: Techniques, calibrations, and applications, Rev. Mineral. Geochem., 47, 819–844, https://doi.org/10.2138/rmg.2002.47.18,
2002.
Farley, K. A., Libarkin, J., Mukhopadhyay, S., and Amidon, W.: Cosmogenic
and nucleogenic 3He in apatite, titanite, and zircon, Earth Planet. Sc. Lett., 248, 451–461, https://doi.org/10.1016/j.epsl.2006.06.008, 2006.
Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin,
J-C., Pujol, S., Bauer, C., Jennings, D., Fennessy F. M., Sonka, M., Buatti,
J., Aylward, S. R., Miller, J. V., Pieper, S., and Kikinis, R.: 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network, Magn. Reson. Imaging, 30, 1323–1341, https://doi.org/10.1016/j.mri.2012.05.001, 2012.
Fosdick, J. C. and Blisniuk, K.: Sedimentary signals of recent faulting
along an old strand of the San Andreas Fault, USA, Sci. Rep., 8, 1–10,
2018.
Gärtner, A., Merchel, S., Niedermann, S., Braucher, R., ASTER Team,
Steier, P., Rugel, G., Scharf, A., Le Bras, L., and Linnemann, U.: Nature
Does the Averaging – In-Situ Produced 10Be, 21Ne, and 26Al in
a Very Young River Terrace, Geosciences, 10, 237,
https://doi.org/10.3390/geosciences10060237, 2020.
Gayer, E., Pik, R., Lavé, J., France-Lanord, C., Bourles, D., and
Marty, B.: Cosmogenic 3He in Himalayan garnets indicating an altitude
dependence of the 3He 10Be production ratio, Earth Planet. Sc. Lett., 229, 91–104, https://doi.org/10.1016/j.epsl.2004.10.009, 2004.
Goehring, B. M., Kurz, M. D., Balco, G., Schaefer, J. M., Licciardi, J., and
Lifton, N.: A reevaluation of in situ cosmogenic 3He production rates,
Quat. Geochronol., 5, 410–418, https://doi.org/10.1016/j.quageo.2010.03.001,
2010.
Gold, P. O., Behr, W. M., Rood, D., Sharp, W. D., Rockwell, T. K.,
Kendrick, K., and Salin, A.: Holocene geologic slip rate for the Banning
strand of the southern San Andreas Fault, southern California, J. Geophys. Res.-Sol. Ea., 120, 5639–5663, https://doi.org/10.1002/2015jb012004, 2015.
Granger, D. E., Lifton, N. A., and Willenbring, J. K.: A cosmic trip: 25 years
of cosmogenic nuclides in geology, Geol. Soc. Am. Bull., 125, 1379–1402,
https://doi.org/10.1130/b30774.1, 2013a.
Granger, D. E., Rogers, H. E., Riebe, C. S., and Lifton, N. A.: Production
Rate of Cosmogenic 10Be in Magnetite, American Geophysical Union Fall
Meeting, 9–13 December 2013, San Francisco, CA, USA, Abstract EP53A-0736, 2013b.
Gunn, B. M.: Differentiation in Ferrar dolerites, Antarctica, New Zeal.
J. Geol. Geop., 5, 820–863, https://doi.org/10.1080/00288306.1962.10417641, 1962.
Guzmics, T., Mitchell, R. H., Szabó, C., Berkesi, M., Milke, R., and
Abart, R.: Carbonatite melt inclusions in coexisting magnetite, apatite and
monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and
petrogenesis, Contrib. Mineral. Petr., 161, 177–196,
https://doi.org/10.1007/s00410-010-0525-z, 2011.
Halpern, I.: Three fragment fission, Ann. Rev. Nucl. Sci., 21, 245–294,
https://doi.org/10.1146/annurev.ns.21.120171.001333, 1971.
Hofmann, F.: Iron-oxide geochronology to constrain the formation of soils
and paleosols, Doctoral dissertation, California Institute of Technology,
Pasadena, CA, USA, available at: https://resolver.caltech.edu/CaltechTHESIS:05312019-131059095 (last access: 20 March 2021),
2019.
Hofmann, F., Reichenbacher, B., and Farley, K. A.: Evidence for > 5 Ma paleo-exposure of an Eocene–Miocene paleosol of the Bohnerz Formation,
Switzerland, Earth Planet. Sc. Lett. 465, 168–175,
https://doi.org/10.1016/j.epsl.2017.02.042, 2017.
Hofmann, F., Cooperdock, E. H., West, A. J., Hildebrandt, D., Strößner, K., Farley, K. A.: Elemental analyses and cosmogenic 3He measurements of bulk soil and detrital minerals from a soil near Whitewater, California, USA, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112019, 2021a.
Hofmann, F., Cooperdock, E. H., West, A. J., Hildebrandt, D., Strößner, K., Farley, K. A.: Detrital magnetite grains scanned to detect inclusions for cosmogenic 3He exposure dating, Digital Rocks Portal [data set], https://doi.org/10.17612/hehj-w597, 2021b.
Huerta, B.: Structure and Geomorphology of West Whitewater Hill, a
Compressive Stepover between the Banning and Garnet Hill Strands of the San
Andreas Fault, Whitewater, CA, California State University, Northridge, available at:
http://scholarworks.csun.edu/bitstream/handle/10211.3/193801/Huerta-Brittany-thesis-2017.pdf (last access: 20 March 2021),
2017.
Kendrick, K. J., Matti, J. C., and Mahan, S. A.: Late Quaternary slip
history of the Mill Creek strand of the San Andreas fault in San Gorgonio
Pass, southern California: The role of a subsidiary left-lateral fault in
strand switching, Geol. Soc. Am. Bull., 127, 825–849,
https://doi.org/10.1130/b31101.1, 2015.
Ketcham, R. A. and Carlson, W. D.: Acquisition, optimization and
interpretation of X-ray computed tomographic imagery: applications to the
geosciences, Comput. Geosci., 27, 381–400,
https://doi.org/10.1016/s0098-3004(00)00116-3, 2001.
Kober, F., Ivy-Ochs, S., Leya, I., Baur, H., Magna, T., Wieler, R., and
Kubik, P. W.: In situ cosmogenic 10Be and 21Ne in sanidine and in
situ cosmogenic 3He in Fe-Ti-oxide minerals, Earth Planet. Sc. Lett., 236,
404–418, https://doi.org/10.1016/j.epsl.2005.05.020, 2005.
Kurz, M. D.: Cosmogenic helium in a terrestrial igneous rock, Nature, 320,
435–439, https://doi.org/10.1038/320435a0, 1986.
Lal, D.: Production of 3He in terrestrial rocks, Chem. Geol., 66, 89–98,
https://doi.org/10.1016/0168-9622(87)90031-5, 1987.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439,
https://doi.org/10.1016/0012-821x(91)90220-c, 1991.
Larsen, I. J., Farley, K. A., and Lamb, M. P.: Cosmogenic 3He
production rate in ilmenite and the redistribution of spallation 3He in
fine-grained minerals, Geochim. Cosmochim. Ac., 265, 19–31,
https://doi.org/10.1016/j.gca.2019.08.025, 2019.
Leya, I., Begemann, F., Weber, H. W., Wieler, R., and Michel, R.:
Simulation of the interaction of galactic cosmic ray protons with
meteoroids: On the production of 3H and light noble gas isotopes in
isotropically irradiated thick gabbro and iron targets, Meteorit.
Planet. Sci., 39, 367–386,
https://doi.org/10.1111/j.1945-5100.2004.tb00099.x, 2004.
Martin, L. C. P., Blard, P. H., Balco, G., Lavé, J., Delunel, R.,
Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate
calibration database: A fully parameterizable and updated online tool to
compute cosmic-ray exposure ages, Quat. Geochron., 38, 25–49,
https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Masarik, J. and Reedy, R. C.: Monte Carlo simulation of in-situ-produced
cosmogenic nuclides, Radiocarbon, 38, 163–164, 1996.
Matsumura, H., Caffee, M. W., Nagao, K., and Nishiizumi, K.: Initial Test Determination of Cosmogenic Nuclides in Magnetite, American Geophysical Fall Meeting, 15–19 December 2014, San Francisco, CA, USA, Abstract EP53A-3641, 2014.
Moore, A.: Cosmogenic Beryllium-10 And Chlorine-36 In
Magnetite, MS thesis, Purdue University, West Lafayette, IN, USA, 2017.
Moore, A. K. and Granger, D. E.: Calibration of the production rate of
cosmogenic 36Cl from Fe, Quat. Geochronol., 51, 87–98,
https://doi.org/10.1016/j.quageo.2019.02.002, 2019a.
Moore, A. K. and Granger, D. E.: Watershed-averaged denudation rates from
cosmogenic 36Cl in detrital magnetite, Earth Planet. Sc. Lett., 527,
115761, https://doi.org/10.1016/j.epsl.2019.115761, 2019b.
Nadoll, P., Mauk, J. L., Hayes, T. S., Koenig, A. E., and Box, S. E.:
Geochemistry of magnetite from hydrothermal ore deposits and host rocks of
the Mesoproterozoic Belt Supergroup, United States, Econ. Geol., 107,
1275–1292, https://doi.org/10.2113/econgeo.107.6.1275, 2012.
Nadoll, P., Angerer, T., Mauk, J. L., French, D., and Walshe, J.: The
chemistry of hydrothermal magnetite: a review, Ore. Geol. Rev., 61, 1–32,
https://doi.org/10.1016/j.oregeorev.2013.12.013, 2014.
Nesterenok, A. V. and Yakubovich, O. V.: Production of 3He in rocks by
reactions induced by particles of the nuclear-active and muon components of
cosmic rays: Geological and petrological implications, Petrology, 24, 21–34,
https://doi.org/10.1134/S0869591116010057, 2016.
Owen, L. A., Clemmens, S. J., Finkel, R. C., and Gray, H.: Late Quaternary
alluvial fans at the eastern end of the San Bernardino Mountains, Southern
California, Quaternary Sci. Rev., 87, 114–134,
https://doi.org/10.1016/j.quascirev.2014.01.003, 2014.
Phillips, F. M. and Plummer, M. A.: CHLOE; a program for interpreting
in-situ cosmogenic nuclide data for surface exposure dating and erosion
studies, Radiocarbon, 38, 98–99, 1996.
Phillips, F. M., Stone, W. D., and Fabryka-Martin, J. T.: An improved
approach to calculating low-energy cosmic-ray neutron fluxes near the
land/atmosphere interface, Chem. Geol., 175, 689–701,
https://doi.org/10.1016/S0009-2541(00)00329-6, 2001.
Protin, M., Blard, P. H., Marrocchi, Y., and Mathon, F.: Irreversible
adsorption of atmospheric helium on olivine: A lobster pot analogy, Geochim.
Cosmochim. Ac., 179, 76–88, https://doi.org/10.1016/j.gca.2016.01.032, 2016.
Reiners, P. W.: Zircon (U–Th) He thermochronometry, Rev. Mineral. Geochem., 58, 151–179, https://doi.org/10.2138/rmg.2005.58.6, 2005.
Rogers, H. E., Riebe, C. S., and Granger D. E.: Cosmogenic 10Be in
quartz and magnetite: Using the same nuclide in multiple minerals to
quantify differential weathering, American Geophysical Union Fall Meeting, 9–13 December 2013, San Francisco, CA, USA, Abstract H51B-1188, 2013.
Schäfer, J. M., Ivy-Ochs, S., Wieler, R., Leya, I., Baur, H., Denton, G.
H., and Schlüchter, C.: Cosmogenic noble gas studies in the oldest
landscape on earth: surface exposure ages of the Dry Valleys, Antarctica,
Earth Planet. Sc. Lett., 167, 215–226,
https://doi.org/10.1016/S0012-821X(99)00029-1, 1999.
Schwartz, S., Gautheron, C., Ketcham, R. A., Brunet, F., Corre, M.,
Agranier, A., Pinna-Jamme, R., Haurine, F., Monvoin, F., and Riel, N.:
Unraveling the exhumation history of high-pressure ophiolites using
magnetite (U-Th-Sm)/He thermochronometry, Earth Planet. Sc. Lett., 543, 116359,
https://doi.org/10.1016/j.epsl.2020.116359, 2020.
Shuster, D. L., Flowers, R. M., and Farley, K. A.: The influence of natural
radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sc. Lett., 249, 148–161, https://doi.org/10.1016/j.epsl.2006.07.028, 2006.
Spotila, J. A., Farley, K. A., Yule, J. D., and Reiners, P. W.: Near-field
transpressive deformation along the San Andreas fault zone in southern
California, based on exhumation constrained by (U–Th) He dating, J. Geophys. Res.-Sol. Ea., 106, 30909–30922, https://doi.org/10.1029/2001jb000348, 2001.
Trull, T. W., Kurz, M. D., and Jenkins, W. J.: Diffusion of cosmogenic
3He in olivine and quartz: implications for surface exposure dating, Earth Planet. Sc. Lett., 103, 241–256,
https://doi.org/10.1016/0012-821x(91)90164-d, 1991.
Vandenberghe, D., De Corte, F., Buylaert, J. P., and Kučera, J.: On the
internal radioactivity in quartz, Radiat. Meas., 43, 771–775,
https://doi.org/10.1016/j.radmeas.2008.01.016, 2008.
Vorobiev, A. A., Grachev, V. T., Komar, A. P., Kondurov, I. A., Nikitin, A.
M., and Seliverstov, D. M.: Yield of light nuclei formed in the fission of
U235 by thermal neutrons, Sov. Atom. Energy, 27, 713–717,
https://doi.org/10.1007/bf01816909, 1969.
Ziegler, J. F., Ziegler, M. D., and Biersack, J. P.: SRIM–The stopping and
range of ions in matter (2010), Nucl. Instrum. Meth. B, 268,
1818–1823, https://doi.org/10.1016/j.nimb.2010.02.091, 2010.
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital...