Articles | Volume 3, issue 2
https://doi.org/10.5194/gchron-3-395-2021
https://doi.org/10.5194/gchron-3-395-2021
Research article
 | 
15 Jul 2021
Research article |  | 15 Jul 2021

Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite

Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley

Related authors

Technical note: Rapid phase identification of apatite and zircon grains for geochronology using X-ray micro-computed tomography
Emily H. G. Cooperdock, Florian Hofmann, Ryley M. C. Tibbetts, Anahi Carrera, Aya Takase, and Aaron J. Celestian
Geochronology, 4, 501–515, https://doi.org/10.5194/gchron-4-501-2022,https://doi.org/10.5194/gchron-4-501-2022, 2022
Short summary

Related subject area

Cosmogenic nuclide dating
Terrestrial cosmogenic nuclide bedrock depth profiles used to infer changes in Holocene glacier cover, Vintage Peak, southern Coast Mountains, British Columbia
Adam C. Hawkins, Brent M. Goehring, and Brian Menounos
Geochronology, 7, 157–172, https://doi.org/10.5194/gchron-7-157-2025,https://doi.org/10.5194/gchron-7-157-2025, 2025
Short summary
Short communication: Updated CRN Denudation collections in OCTOPUS v2.3
Alexandru T. Codilean and Henry Munack
Geochronology, 7, 113–122, https://doi.org/10.5194/gchron-7-113-2025,https://doi.org/10.5194/gchron-7-113-2025, 2025
Short summary
Technical note: 21Ne in the CoQtz-N quartz standard material
Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2025-149,https://doi.org/10.5194/egusphere-2025-149, 2025
Short summary
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024,https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Technical note: Altitude scaling of 36Cl production from Fe
Angus K. Moore and Darryl E. Granger
Geochronology, 6, 541–552, https://doi.org/10.5194/gchron-6-541-2024,https://doi.org/10.5194/gchron-6-541-2024, 2024
Short summary

Cited articles

Amidon, W. H. and Farley, K. A.: Cosmogenic 3He production rates in apatite, zircon and pyroxene inferred from Bonneville flood erosional surfaces, Quat. Geochronol., 6, 10–21, https://doi.org/10.1016/j.quageo.2010.03.005, 2011. 
Amidon, W. H. and Farley, K. A.: Cosmogenic 3He and 21Ne dating of biotite and hornblende, Earth Planet. Sc. Lett., 313, 86–94, https://doi.org/10.1016/j.epsl.2011.11.005, 2012. 
Amidon, W. H., Farley, K. A., Burbank, D. W., and Pratt-Sitaula, B.: Anomalous cosmogenic 3He production and elevation scaling in the high Himalaya, Earth Planet. Sc. Lett., 265, 287–301, https://doi.org/10.1016/j.epsl.2007.10.022, 2008. 
Amidon, W. H., Rood, D. H., and Farley, K. A.: Cosmogenic 3He and 21Ne production rates calibrated against 10Be in minerals from the Coso volcanic field, Earth Planet. Sc. Lett., 280, 194–204, https://doi.org/10.1016/j.epsl.2009.01.031, 2009. 
Andrews, J. N. and Kay, R. L. F.: Natural production of tritium in permeable rocks, Nature, 298, 361–363, https://doi.org/10.1038/298361a0, 1982. 
Download
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Share