Articles | Volume 5, issue 2
https://doi.org/10.5194/gchron-5-301-2023
https://doi.org/10.5194/gchron-5-301-2023
Research article
 | 
17 Jul 2023
Research article |  | 17 Jul 2023

Cosmogenic 10Be in pyroxene: laboratory progress, production rate systematics, and application of the 10Be–3He nuclide pair in the Antarctic Dry Valleys

Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco

Related authors

Glacial erosion and history of Inglefield Land, northwest Greenland
Caleb K. Walcott-George, Allie Balter-Kennedy, Jason P. Briner, Joerg M. Schaefer, and Nicolás E. Young
EGUsphere, https://doi.org/10.5194/egusphere-2024-2983,https://doi.org/10.5194/egusphere-2024-2983, 2024
Short summary
The Laurentide Ice Sheet in southern New England and New York during and at the end of the Last Glacial Maximum: a cosmogenic-nuclide chronology
Allie Balter-Kennedy, Joerg M. Schaefer, Greg Balco, Meredith A. Kelly, Michael R. Kaplan, Roseanne Schwartz, Bryan Oakley, Nicolás E. Young, Jean Hanley, and Arianna M. Varuolo-Clarke
Clim. Past, 20, 2167–2190, https://doi.org/10.5194/cp-20-2167-2024,https://doi.org/10.5194/cp-20-2167-2024, 2024
Short summary
An ice-sheet modelling framework for leveraging sub-ice drilling to assess sea level potential applied to Greenland
Benjamin A. Keisling, Joerg M. Schaefer, Robert M. DeConto, Jason P. Briner, Nicolás E. Young, Caleb K. Walcott, Gisela Winckler, Allie Balter-Kennedy, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2427,https://doi.org/10.5194/egusphere-2024-2427, 2024
Short summary
East Antarctic Ice Sheet Variability In The Central Transantarctic Mountains Since The Mid Miocene
Gordon Bromley, Greg Balco, Margaret Jackson, Allie Balter-Kennedy, and Holly Thomas
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-21,https://doi.org/10.5194/cp-2024-21, 2024
Revised manuscript accepted for CP
Short summary
In situ 10Be modeling and terrain analysis constrain subglacial quarrying and abrasion rates at Sermeq Kujalleq (Jakobshavn Isbræ), Greenland
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023,https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary

Related subject area

Cosmogenic nuclide dating
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024,https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Technical note: Altitude scaling of 36Cl production from Fe
Angus K. Moore and Darryl E. Granger
Geochronology, 6, 541–552, https://doi.org/10.5194/gchron-6-541-2024,https://doi.org/10.5194/gchron-6-541-2024, 2024
Short summary
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024,https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024,https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024,https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary

Cited articles

Ackert, R. P.: Antarctic glacial chronology: new constraints from surface exposure dating, Doctoral thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Woods Hole Open Access Server, https://doi.org/10.1575/1912/4123, 2000. 
Ackert, R. P. and Kurz, M. D.: Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology, Global Planet. Change, 42, 207–225, https://doi.org/10.1016/j.gloplacha.2004.02.001, 2004. 
Andrews, J. N. and Kay, R. L. F.: Natural production of tritium in permeable rocks, Nature, 298, 361–363, https://doi.org/10.1038/298361a0, 1982. 
Argento, D. C., Stone, J. O., Reedy, R. C., and O'Brien, K.: Physics-based modeling of cosmogenic nuclides part II – Key aspects of in-situ cosmogenic nuclide production, Quat Geochronol, 26, 44–55, https://doi.org/10.1016/j.quageo.2014.09.005, 2015. 
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quat. Geochronol., 39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001, 2017. 
Download
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.