Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-311-2022
https://doi.org/10.5194/gchron-4-311-2022
Research article
 | 
25 May 2022
Research article |  | 25 May 2022

Reconciling the apparent absence of a Last Glacial Maximum alpine glacial advance, Yukon Territory, Canada, through cosmogenic beryllium-10 and carbon-14 measurements

Brent M. Goehring, Brian Menounos, Gerald Osborn, Adam Hawkins, and Brent Ward

Related authors

Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023,https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
New 10Be exposure ages improve Holocene ice sheet thinning history near the grounding line of Pope Glacier, Antarctica
Jonathan R. Adams, Joanne S. Johnson, Stephen J. Roberts, Philippa J. Mason, Keir A. Nichols, Ryan A. Venturelli, Klaus Wilcken, Greg Balco, Brent Goehring, Brenda Hall, John Woodward, and Dylan H. Rood
The Cryosphere, 16, 4887–4905, https://doi.org/10.5194/tc-16-4887-2022,https://doi.org/10.5194/tc-16-4887-2022, 2022
Short summary
Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022,https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021,https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary
Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation
Perry Spector, John Stone, and Brent Goehring
The Cryosphere, 13, 3061–3075, https://doi.org/10.5194/tc-13-3061-2019,https://doi.org/10.5194/tc-13-3061-2019, 2019
Short summary

Related subject area

Cosmogenic nuclide dating
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024,https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024,https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024,https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024,https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Regional beryllium-10 production rate for the mid-elevation mountainous regions in central Europe, deduced from a multi-method study of moraines and lake sediments in the Black Forest
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024,https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary

Cited articles

Applegate, P. J., Urban, N. M., Laabs, B. J. C., Keller, K., and Alley, R. B.: Modeling the statistical distributions of cosmogenic exposure dates from moraines, Geosci. Model Dev., 3, 293–307, https://doi.org/10.5194/gmd-3-293-2010, 2010. 
Applegate, P. J., Urban, N. M., Keller, K., Lowell, T. V., Laabs, B. J. C., Kelly, M. A., and Alley, R. B.: Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms, Quaternary Res., 77, 293–304, https://doi.org/10.1016/j.yqres.2011.12.002, 2012. 
Balco, G.: Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010, Quaternary Sci. Rev., 30, 3–27, https://doi.org/10.1016/j.quascirev.2010.11.003, 2011. 
Balco, G., Stone, J. O. H., Sliwinski, M. G., and Todd, C.: Features of the glacial history of the Transantarctic Mountains inferred from cosmogenic 26Al, 10Be and 21Ne concentrations in bedrock surfaces, Antarct. Science, 26, 708–723, https://doi.org/10.1017/S0954102014000261, 2014. 
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quat. Geochron., 39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001, 2017. 
Download
Short summary
We explored surface exposure dating with two nuclides to date two sets of moraines from the Yukon Territory and explain the reasoning for the observed ages. Results suggest multiple processes, including preservation of nuclides from a prior exposure period, and later erosion of the moraines is required to explain the data. Our results only allow for the older moraines to date to Marine Isotope Stage 3 or 4 and the younger moraines to date to the very earliest Holocene.