Articles | Volume 5, issue 2
https://doi.org/10.5194/gchron-5-413-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-413-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Holocene ice retreat from Isle Royale in the Laurentian Great Lakes constrained with 10Be exposure-age dating
Eric W. Portenga
CORRESPONDING AUTHOR
Geography and Geology Department, Eastern Michigan University, Ypsilanti, MI 48197, USA
David J. Ullman
Department of Environmental Geosciences, Northland College, Ashland, WI 54806, USA
Lee B. Corbett
Rubenstein School of Natural Resources and the Environment, University of Vermont, Burlington, VT 05405, USA
Paul R. Bierman
Rubenstein School of Natural Resources and the Environment, University of Vermont, Burlington, VT 05405, USA
Marc W. Caffee
Department of Physics and Astronomy and Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
Related authors
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Bradley W. Goodfellow, Marc W. Caffee, Greg Chmiel, Ruben Fritzon, Alasdair Skelton, and Arjen P. Stroeven
Solid Earth, 15, 1343–1363, https://doi.org/10.5194/se-15-1343-2024, https://doi.org/10.5194/se-15-1343-2024, 2024
Short summary
Short summary
Reconstructions of past earthquakes are useful to assess earthquake hazard risk. We assess a limestone scarp exposed by earthquakes along the Sparta Fault, Greece, using 36Cl and rare-earth elements and yttrium (REE-Y). Our analyses indicate an increase in the average scarp slip rate from 0.8–0.9 mm yr-1 at 6.5–7.7 kyr ago to 1.1–1.2 mm yr-1 up to the devastating 464 BCE earthquake. REE-Y indicate clays in the fault scarp; their potential use in palaeoseismicity would benefit from further study.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024, https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Short summary
Investigating past glaciated regions is crucial for understanding how ice sheets responded to climate forcings and how they might respond in the future. We use two independent dating techniques to document the timing and extent of the Lago Argentino glacier lobe, a former lobe of the Patagonian Ice Sheet, during the late Quaternary. Our findings highlight feedbacks in the Earth’s system responsible for modulating glacier growth in the Southern Hemisphere prior to the global Last Glacial Maximum.
Christopher Halsted, Paul Bierman, Alexandru Codilean, Lee Corbett, and Marc Caffee
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-22, https://doi.org/10.5194/gchron-2024-22, 2024
Revised manuscript under review for GChron
Short summary
Short summary
Sediment generation on hillslopes and transport through river networks are complex processes that influence landscape evolution. In this study compiled sand from over 600 river basins and measured its (very subtle) radioactivity to unravel timelines of sediment routing around the world. With this data we empirically confirm that sediment from large lowland basins in tectonically stable regions typically experiences long periods of burial, while sediment moves rapidly through small upland basins.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Peyton M. Cavnar, Paul R. Bierman, Jeremy D. Shakun, Lee B. Corbett, Danielle LeBlanc, Gillian L. Galford, and Marc Caffee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2233, https://doi.org/10.5194/egusphere-2024-2233, 2024
Short summary
Short summary
To investigate the Laurentide Ice Sheet’s erosivity before and during the Last Glacial Maximum, we sampled sand deposited by ice in eastern Canada before final deglaciation. We also sampled modern river sand. The 26Al and 10Be measured in glacial deposited sediments suggests that ice remained during some Pleistocene warm periods and was an inefficient eroder. Similar concentrations of 26Al and 10Be in modern sand suggests that most modern river sediment is sourced from glacial deposits.
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
EGUsphere, https://doi.org/10.5194/egusphere-2024-2194, https://doi.org/10.5194/egusphere-2024-2194, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The Camp Century sub-glacial core stores information about past climates, glacial and interglacial processes in northwest Greenland. In this study, we investigated the core archive making large scale observations using CT scans and micron scale observation observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Andrew G. Jones, Shaun A. Marcott, Andrew L. Gorin, Tori M. Kennedy, Jeremy D. Shakun, Brent M. Goehring, Brian Menounos, Douglas H. Clark, Matias Romero, and Marc W. Caffee
The Cryosphere, 17, 5459–5475, https://doi.org/10.5194/tc-17-5459-2023, https://doi.org/10.5194/tc-17-5459-2023, 2023
Short summary
Short summary
Mountain glaciers today are fractions of their sizes 140 years ago, but how do these sizes compare to the past 11,000 years? We find that four glaciers in the United States and Canada have reversed a long-term trend of growth and retreated to positions last occupied thousands of years ago. Notably, each glacier occupies a unique position relative to its long-term history. We hypothesize that unequal modern retreat has caused the glaciers to be out of sync relative to their Holocene histories.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Aaron M. Barth, Elizabeth G. Ceperley, Claire Vavrus, Shaun A. Marcott, Jeremy D. Shakun, and Marc W. Caffee
Geochronology, 4, 731–743, https://doi.org/10.5194/gchron-4-731-2022, https://doi.org/10.5194/gchron-4-731-2022, 2022
Short summary
Short summary
Deposits left behind by past glacial activity provide insight into the previous size and behavior of glaciers and act as another line of evidence for past climate. Here we present new age control for glacial deposits in the mountains of Montana and Wyoming, United States. While some deposits indicate glacial activity within the last 2000 years, others are shown to be older than previously thought, thus redefining the extent of regional Holocene glaciation.
Adrian M. Bender, Richard O. Lease, Lee B. Corbett, Paul R. Bierman, Marc W. Caffee, James V. Jones, and Doug Kreiner
Earth Surf. Dynam., 10, 1041–1053, https://doi.org/10.5194/esurf-10-1041-2022, https://doi.org/10.5194/esurf-10-1041-2022, 2022
Short summary
Short summary
To understand landscape evolution in the mineral resource-rich Yukon River basin (Alaska and Canada), we mapped and cosmogenic isotope-dated river terraces along the Charley River. Results imply widespread Yukon River incision that drove increased Bering Sea sedimentation and carbon sequestration during global climate changes 2.6 and 1 million years ago. Such erosion may have fed back to late Cenozoic climate change by reducing atmospheric carbon as observed in many records worldwide.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Brendon J. Quirk, Elizabeth Huss, Benjamin J. C. Laabs, Eric Leonard, Joseph Licciardi, Mitchell A. Plummer, and Marc W. Caffee
Clim. Past, 18, 293–312, https://doi.org/10.5194/cp-18-293-2022, https://doi.org/10.5194/cp-18-293-2022, 2022
Short summary
Short summary
Glaciers in the northern Rocky Mountains began retreating 17 000 to 18 000 years ago, after the end of the most recent global ice volume maxima. Climate in the region during this time was likely 10 to 8.5° colder than modern with less than or equal to present amounts of precipitation. Glaciers across the Rockies began retreating at different times but eventually exhibited similar patterns of retreat, suggesting a common mechanism influencing deglaciation.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Melisa A. Diaz, Lee B. Corbett, Paul R. Bierman, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Earth Surf. Dynam., 9, 1363–1380, https://doi.org/10.5194/esurf-9-1363-2021, https://doi.org/10.5194/esurf-9-1363-2021, 2021
Short summary
Short summary
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS), and measured meteoric beryllium-10 and nitrate concentrations to understand the relationship between salts and beryllium-10. This relationship can help inform wetting history, landscape disturbance, and exposure duration.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Hannah S. Weiss, Paul R. Bierman, Yves Dubief, and Scott D. Hamshaw
The Cryosphere, 13, 3367–3382, https://doi.org/10.5194/tc-13-3367-2019, https://doi.org/10.5194/tc-13-3367-2019, 2019
Short summary
Short summary
Climate change is devastating winter tourism. High-elevation, high-latitude ski centers have turned to saving snow over the summer. We present results of two field seasons to test and optimize over-summer snow storage at a midlatitude, low-elevation nordic ski center in the northeastern USA. In 2018, we tested coverings and found success overlaying 20 cm of wet woodchips with a reflective sheet. In 2019, we employed this strategy to a large pile and stored sufficient snow to open the ski season.
David J. Ullman and Andreas Schmittner
Geosci. Model Dev., 10, 945–958, https://doi.org/10.5194/gmd-10-945-2017, https://doi.org/10.5194/gmd-10-945-2017, 2017
Short summary
Short summary
One major source of uncertainty in the prediction of climate relates to how models simulate clouds and their impact on surface temperatures. We have developed a new method for incorporating the cloud results as derived from complex climate models and applying these results to a more simplified model. The benefit with this approach is that a more simplified model is able to be run more efficiently, while still maintaining complicated cloud effects and their effect on surface temperatures.
Amanda H. Schmidt, Thomas B. Neilson, Paul R. Bierman, Dylan H. Rood, William B. Ouimet, and Veronica Sosa Gonzalez
Earth Surf. Dynam., 4, 819–830, https://doi.org/10.5194/esurf-4-819-2016, https://doi.org/10.5194/esurf-4-819-2016, 2016
Short summary
Short summary
In order to test the assumption that erosion rates derived from Be-10 are not affected by increases in erosion due to contemporary agricultural land use, we measured erosion rates in three tributaries of the Mekong River. We find that in the most heavily agricultural landscapes, the apparent long-term erosion rate correlates best with measures of modern land use, suggesting that agriculture has eroded below the mixed layer and is affecting apparent erosion rates derived from Be-10.
Michael Sigl, Tyler J. Fudge, Mai Winstrup, Jihong Cole-Dai, David Ferris, Joseph R. McConnell, Ken C. Taylor, Kees C. Welten, Thomas E. Woodruff, Florian Adolphi, Marion Bisiaux, Edward J. Brook, Christo Buizert, Marc W. Caffee, Nelia W. Dunbar, Ross Edwards, Lei Geng, Nels Iverson, Bess Koffman, Lawrence Layman, Olivia J. Maselli, Kenneth McGwire, Raimund Muscheler, Kunihiko Nishiizumi, Daniel R. Pasteris, Rachael H. Rhodes, and Todd A. Sowers
Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, https://doi.org/10.5194/cp-12-769-2016, 2016
Short summary
Short summary
Here we present a chronology (WD2014) for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide ice core, which is based on layer counting of distinctive annual cycles preserved in the elemental, chemical and electrical conductivity records. We validated the chronology by comparing it to independent high-accuracy, absolutely dated chronologies. Given its demonstrated high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere.
B. W. Goodfellow, A. P. Stroeven, D. Fabel, O. Fredin, M.-H. Derron, R. Bintanja, and M. W. Caffee
Earth Surf. Dynam., 2, 383–401, https://doi.org/10.5194/esurf-2-383-2014, https://doi.org/10.5194/esurf-2-383-2014, 2014
Related subject area
Cosmogenic nuclide dating
Technical note: Altitude scaling of 36Cl production from Fe
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand
Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Regional beryllium-10 production rate for the mid-elevation mountainous regions in central Europe, deduced from a multi-method study of moraines and lake sediments in the Black Forest
Short communication: Cosmogenic noble gas depletion in soils by wildfire heating
Technical note: Studying lithium metaborate fluxes and extraction protocols with a new, fully automated in situ cosmogenic 14C processing system at PRIME Lab
Cosmogenic 10Be in pyroxene: laboratory progress, production rate systematics, and application of the 10Be–3He nuclide pair in the Antarctic Dry Valleys
Technical note: A software framework for calculating compositionally dependent in situ 14C production rates
10Be age control of glaciation in the Beartooth Mountains, USA, from the latest Pleistocene through the Holocene
Constraining the aggradation mode of Pleistocene river deposits based on cosmogenic radionuclide depth profiling and numerical modelling
Technical note: Evaluating a geographical information system (GIS)-based approach for determining topographic shielding factors in cosmic-ray exposure dating
Combined linear-regression and Monte Carlo approach to modeling exposure age depth profiles
Cosmogenic nuclide weathering biases: corrections and potential for denudation and weathering rate measurements
Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes
Technical note: Accelerator mass spectrometry of 10Be and 26Al at low nuclide concentrations
Reconciling the apparent absence of a Last Glacial Maximum alpine glacial advance, Yukon Territory, Canada, through cosmogenic beryllium-10 and carbon-14 measurements
Cosmogenic ages indicate no MIS 2 refugia in the Alexander Archipelago, Alaska
In situ-produced cosmogenic krypton in zircon and its potential for Earth surface applications
Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica
Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis
Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite
Calibrating a long-term meteoric 10Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced 10Be depth profiles
Delayed and rapid deglaciation of alpine valleys in the Sawatch Range, southern Rocky Mountains, USA
Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating
Isolation of quartz for cosmogenic in situ 14C analysis
Chlorine-36∕beryllium-10 burial dating of alluvial fan sediments associated with the Mission Creek strand of the San Andreas Fault system, California, USA
Angus K. Moore and Darryl E. Granger
Geochronology, 6, 541–552, https://doi.org/10.5194/gchron-6-541-2024, https://doi.org/10.5194/gchron-6-541-2024, 2024
Short summary
Short summary
Cosmogenic nuclide geochronology requires accurately scaling production rates with altitude. The energy spectrum of cosmic radiation changes with altitude, and reactions that are sensitive to different energies may have different scaling behavior. Here, we model the altitude scaling of 36Cl production from Fe and evaluate this model against calibration data. The data are broadly consistent with the prediction of larger-altitude scaling factors for 36Cl from Fe than for other reactions.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024, https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Short summary
We present an improved workflow for extracting and measuring chlorine isotopes in rocks and minerals. Experiments on seven geologic samples demonstrate that our workflow provides reliable results while offering several distinct advantages over traditional methods. Most notably, our workflow reduces the amount of isotopically enriched chlorine spike used per rock sample by up to 95 %, which will allow researchers to analyze more samples using their existing laboratory supplies.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-18, https://doi.org/10.5194/gchron-2024-18, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
Cosmogenic nuclide exposure dating is an exceptional tool for reconstructing glacier histories, but reconstructions based on common target nuclides (e.g., 10Be) can be costly and time consuming to generate. Here, we present a low-cost proof-of-concept 21Ne exposure age chronology from Lassen Volcanic National Park, CA, USA that broadly agrees with nearby 10Be chronologies but at lower precision.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Nathaniel Lifton, Jim Wilson, and Allie Koester
Geochronology, 5, 361–375, https://doi.org/10.5194/gchron-5-361-2023, https://doi.org/10.5194/gchron-5-361-2023, 2023
Short summary
Short summary
We describe a new, fully automated extraction system for in situ 14C at PRIME Lab that incorporates more reliable components and designs than our original systems. We use a LiBO2 flux to dissolve a quartz sample in oxygen after removing contaminant 14C with a lower-temperature combustion step. Experiments with new Pt/Rh sample boats demonstrated reduced procedural blanks, and analyses of well-characterized intercomparison materials tested the effects of process variables on 14C yields.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Alexandria J. Koester and Nathaniel A. Lifton
Geochronology, 5, 21–33, https://doi.org/10.5194/gchron-5-21-2023, https://doi.org/10.5194/gchron-5-21-2023, 2023
Short summary
Short summary
In situ 14C’s short half-life (5.7 kyr) is unique among cosmogenic nuclides, making it sensitive to complex exposure and burial histories since 25 ka. Current extraction methods focus on quartz, but the ability to extract it from other minerals would expand applications. We developed MATLAB® scripts to calculate in situ 14C production rates from a broad range of mineral compositions. Results confirm O, Si, Al, and Mg as key targets but also find significant production from Na for the first time.
Aaron M. Barth, Elizabeth G. Ceperley, Claire Vavrus, Shaun A. Marcott, Jeremy D. Shakun, and Marc W. Caffee
Geochronology, 4, 731–743, https://doi.org/10.5194/gchron-4-731-2022, https://doi.org/10.5194/gchron-4-731-2022, 2022
Short summary
Short summary
Deposits left behind by past glacial activity provide insight into the previous size and behavior of glaciers and act as another line of evidence for past climate. Here we present new age control for glacial deposits in the mountains of Montana and Wyoming, United States. While some deposits indicate glacial activity within the last 2000 years, others are shown to be older than previously thought, thus redefining the extent of regional Holocene glaciation.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Yiran Wang and Michael E. Oskin
Geochronology, 4, 533–549, https://doi.org/10.5194/gchron-4-533-2022, https://doi.org/10.5194/gchron-4-533-2022, 2022
Short summary
Short summary
When first introduced together with the depth profile technique to determine the surface exposure age, the linear inversion approach has suffered with the drawbacks of not incorporating erosion and muons into calculation. In this paper, we increase the accuracy and applicability of the linear inversion approach by fully considering surface erosion, muogenic production, and radioactive decay, while maintaining its advantage of being straightforward to determine an exposure age.
Richard F. Ott, Sean F. Gallen, and Darryl E. Granger
Geochronology, 4, 455–470, https://doi.org/10.5194/gchron-4-455-2022, https://doi.org/10.5194/gchron-4-455-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are a tool to quantify denudation – the total removal of mass from near the Earth's surface. Chemical weathering can introduce biases to cosmogenic-nuclide-based denudation rates measurements. Here, we investigate the effects of weathering on cosmogenic nuclides and develop tools to correct for this influence. Our results highlight which additional measurements are required to determine accurate denudation rates in regions where weathering is not negligible.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Brent M. Goehring, Brian Menounos, Gerald Osborn, Adam Hawkins, and Brent Ward
Geochronology, 4, 311–322, https://doi.org/10.5194/gchron-4-311-2022, https://doi.org/10.5194/gchron-4-311-2022, 2022
Short summary
Short summary
We explored surface exposure dating with two nuclides to date two sets of moraines from the Yukon Territory and explain the reasoning for the observed ages. Results suggest multiple processes, including preservation of nuclides from a prior exposure period, and later erosion of the moraines is required to explain the data. Our results only allow for the older moraines to date to Marine Isotope Stage 3 or 4 and the younger moraines to date to the very earliest Holocene.
Caleb K. Walcott, Jason P. Briner, James F. Baichtal, Alia J. Lesnek, and Joseph M. Licciardi
Geochronology, 4, 191–211, https://doi.org/10.5194/gchron-4-191-2022, https://doi.org/10.5194/gchron-4-191-2022, 2022
Short summary
Short summary
We present a record of ice retreat from the northern Alexander Archipelago, Alaska. During the last ice age (~ 26 000–19 000 years ago), these islands were covered by the Cordilleran Ice Sheet. We tested whether islands were ice-free during the last ice age for human migrants moving from Asia to the Americas. We found that these islands became ice-free between ~ 15 100 years ago and ~ 16 000 years ago, and thus these islands were not suitable for human habitation during the last ice age.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Joseph P. Tulenko, William Caffee, Avriel D. Schweinsberg, Jason P. Briner, and Eric M. Leonard
Geochronology, 2, 245–255, https://doi.org/10.5194/gchron-2-245-2020, https://doi.org/10.5194/gchron-2-245-2020, 2020
Short summary
Short summary
We investigate the timing and rate of retreat for three alpine glaciers in the southern Rocky Mountains to test whether they followed the pattern of global climate change or were majorly influenced by regional forcing mechanisms. We find that the latter is most likely for these glaciers. Our conclusions are based on a new 10Be chronology of alpine glacier retreat. We quantify retreat rates for each valley using the BACON program in R, which may be of interest for the audience of Geochronology.
Greg Balco
Geochronology, 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020, https://doi.org/10.5194/gchron-2-169-2020, 2020
Short summary
Short summary
Geologic dating methods generally do not directly measure ages. Instead, interpreting a geochemical measurement as an age requires a middle layer of calculations and supporting data, and the fact that this layer continually improves is an obstacle to synoptic analysis of geochronological data. This paper describes a prototype data management and analysis system that addresses this obstacle by making the middle-layer calculations transparent and dynamic to the user.
Keir A. Nichols and Brent M. Goehring
Geochronology, 1, 43–52, https://doi.org/10.5194/gchron-1-43-2019, https://doi.org/10.5194/gchron-1-43-2019, 2019
Short summary
Short summary
We describe observations of anomalously high measurements of C-14 made from geologic material. We undertake a systematic investigation to identify the source of contamination, which we hypothesise is sourced from a commonly used method that is used prior to sample analysis. We find that the method does introduce modern carbon to samples and elevates C-14 measurements. We describe a standard procedure that effectively removes contamination from the aforementioned method.
Greg Balco, Kimberly Blisniuk, and Alan Hidy
Geochronology, 1, 1–16, https://doi.org/10.5194/gchron-1-1-2019, https://doi.org/10.5194/gchron-1-1-2019, 2019
Short summary
Short summary
This article applies a new geochemical dating method to determine the age of sedimentary deposits useful in reconstructing slip rates on a major fault system.
Cited articles
Bajc, A. F., Morgan, A. V., and Warner, B. G.: Age and paleoecological significance of an early postglacial fossil assemblage near Marathon, Ontario, Canada, Can. J. Earth Sci., 34, 687–698, https://doi.org/10.1139/e17-055, 1997.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Balco, G., Briner, J., Finkel, R. C., Rayburn, J. A., Ridge, J. C., and Schaefer, J. M.: Regional beryllium-10 production rate calibration for late-glacial northeastern North America, Quat. Geochronol., 4, 93–107, https://doi.org/10.1016/j.quageo.2008.09.001, 2009.
Black, R. F.: Quaternary geology of Wisconsin and contiguous Upper Michigan, in: Quaternary stratigraphy of North America, edited by: Mahaney, W. C., Dowden, Hutchinson & Ross, Halsted Press, Stroudsburg, Pa., New York, 1976.
Breckenridge, A., Johnson, T. C., Beske-Diehl, S., and Mothersill, J. S.: The timing of regional Lateglacial events and post-glacial sedimentation rates from Lake Superior, Quaternary Sci. Rev., 23, 2355–2367, https://doi.org/10.1016/j.quascirev.2004.04.007, 2004.
Breckenridge, A.: The Lake Superior varve stratigraphy and implications for eastern Lake Agassiz outflow from 10,700 to 8900 cal ybp (9.5–8.0 14C ka), Palaeogeogr. Palaeocl., 246, 45–61, https://doi.org/10.1016/j.palaeo.2006.10.026, 2007.
Breckenridge, A.: An analysis of the late glacial lake levels within the western Lake Superior basin based on digital elevation models, Quaternary Res., 80, 383–395, https://doi.org/10.1016/j.yqres.2013.09.001, 2013.
Breckenridge, A. and Johnson, T. C.: Paleohydrology of the upper Laurentian Great Lakes from the late glacial to early Holocene, Quat. Res., 71, 397–408, https://doi.org/10.1016/j.yqres.2009.01.003, 2009.
Breckenridge, A., Lowell, T. V., Peteet, D., Wattrus, N., Moretto, M., Norris, N., and Dennison, A.: A new glacial varve chronology along the southern Laurentide Ice Sheet that spans the Younger Dryas–Holocene boundary, Geology, 49, 283–288, https://doi.org/10.1130/G47995.1, 2021.
Briner, J. P., Goehring, B. M., Mangerud, J., and Svendsen, J. I.: The deep accumulation of 10Be at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in peripheral ice shee landscapes, Geophys. Res. Lett., 43, 9121–9129, https://doi.org/10.1002/2016GL070100, 2016.
Broecker, W. S.: Was the Younger Dryas Triggered by a Flood?, Science, 312, 1146–1148, https://doi.org/10.1126/science.1123253, 2006.
Broecker, W. S., Kennett, J. P., Flower, B. P., Teller, J. T., Trumbore, S., Bonani, G., and Wolfli, W.: Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode, Nature, 341, 318–321, https://doi.org/10.1038/341318a0, 1989.
Carlson, A. E.: What Caused the Younger Dryas Cold Event?, Geology, 38, 383–384, https://doi.org/10.1130/focus042010.1, 2010.
Carlson, A. E., Clark, P. U., Haley, B. A., Klinkhammer, G. P., Simmons, K., Brook, E. J., and Meissner, K. J.: Geochemical proxies of North American freshwater routing during the Younger Dryas cold event, P. Natl. Acad. Sci. USA, 104, 6556–6561, https://doi.org/10.1073/pnas.0611313104, 2007.
Ceperley, E. G., Marcott, S. A., Rawling, J. E., Zoet, L. K., and Zimmerman, S. R. H.: The role of permafrost on the morphology of an MIS 3 moraine from the southern Laurentide Ice Sheet, Geology, 47, 440–444, https://doi.org/10.1130/G45874.1, 2019.
Clark, P. U. and Mix, A. C.: Ice sheets and sea level of the Last Glacial Maximum, Quaternary Sci. Rev., 21, 1–7, https://doi.org/10.1016/S0277-3791(01)00118-4, 2002.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
Clayton, L. and Moran, S. R.: Chronology of late wisconsinan glaciation in middle North America, Quaternary Sci. Rev., 1, 55–82, https://doi.org/10.1016/0277-3791(82)90019-1, 1982.
Colgan, P. M., Bierman, P. R., Mickelson, D. M., and Caffee, M.: Variation in glacial erosion near the southern margin of the Laurentide Ice Sheet, south-central Wisconsin, USA: Implications for cosmogenic dating of glacial terrains, Geol. Soc. Am. Bull., 114, 1581–1591, https://doi.org/10.1130/0016-7606(2002)114<1581:VIGENT>2.0.CO;2, 2002.
Colman, S. M., Breckenridge, A., Zoet, L. K., Wattrus, N. J., and Johnson, T. C.: Moraines and late-glacial stratigraphy in central Lake Superior, Quaternary Res., 98, 19–35, https://doi.org/10.1017/qua.2020.36, 2020.
Corbett, L. B., Bierman, P. R., and Rood, D. H.: An approach for optimizing in situ cosmogenic 10Be sample preparation, Quat. Geochronol., 33, 24–34, https://doi.org/10.1016/j.quageo.2016.02.001, 2016.
Dalton, A. S., Margold, M., Stokes, C. R., Tarasov, L., Dyke, A. S., Adams, R. S., Allard, S., Arends, H. E., Atkinson, N., Attig, J. W., Barnett, P. J., Barnett, R. L., Batterson, M., Bernatchez, P., Borns, H. W., Breckenridge, A., Briner, J. P., Brouard, E., Campbell, J. E., Carlson, A. E., Clague, J. J., Curry, B. B., Daigneault, R.-A., Dubé-Loubert, H., Easterbrook, D. J., Franzi, D. A., Friedrich, H. G., Funder, S., Gauthier, M. S., Gowan, A. S., Harris, K. L., Hétu, B., Hooyer, T. S., Jennings, C. E., Johnson, M. D., Kehew, A. E., Kelley, S. E., Kerr, D., King, E. L., Kjeldsen, K. K., Knaeble, A. R., Lajeunesse, P., Lakeman, T. R., Lamothe, M., Larson, P., Lavoie, M., Loope, H. M., Lowell, T. V., Lusardi, B. A., Manz, L., McMartin, I., Nixon, F. C., Occhietti, S., Parkhill, M. A., Piper, D. J. W., Pronk, A. G., Richard, P. J. H., Ridge, J. C., Ross, M., Roy, M., Seaman, A., Shaw, J., Stea, R. R., Teller, J. T., Thompson, W. B., Thorleifson, L. H., Utting, D. J., Veillette, J. J., Ward, B. C., Weddle, T. K., and Wright, H. E.: An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex, Quaternary Sci. Rev., 234, 106223, https://doi.org/10.1016/j.quascirev.2020.106223, 2020.
Davis, W. R., Collins, M. A., Rooney, T. O., Brown, E. L., Stein, C. A., Stein, S., and Moucha, R.: Geochemical, petrographic, and stratigraphic analyses of the Portage Lake Volcanics of the Keweenawan CFBP: implications for the evolution of main stage volcanism in continental flood basalt provinces, Geol. Soc. Lond. Spec. Publ., 518, 67–100, https://doi.org/10.1144/SP518-2020-221, 2022.
Dell, C. I.: A special mechanism for varve formation in a glacial lake, J. Sediment. Res., 43, 838–840, 1973.
Dell, C. I.: Sediment Distribution and Bottom Topography of Southeastern Lake Superior, J. Great Lakes Res., 2, 164–176, https://doi.org/10.1016/S0380-1330(76)72283-4, 1976.
Drexler, C. W.: Outlet Channels for the Post-Duluth Lakes in the Upper Peninsula of Michigan, Ph.D., University of Michigan, Ann Arbor, MI, 407 pp., 1981.
Drexler, C. W., Farrand, W. R., and Hughes, J. D.: Correlation of glacial lakes in the Superior basin with eastward discharge events from Lake Agassiz, in: Glacial Lake Agassiz, Vol. 26, Geological Association of Canada, 309–329, 1983.
Dyke, A. S.: An outline of North American deglaciation with emphasis on central and northern Canada, in: Developments in Quaternary Sciences, Vol. 2, Elsevier, 373–424, https://doi.org/10.1016/S1571-0866(04)80209-4, 2004.
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Quaternary glaciations – extent and chronology: a closer look, Elsevier, Amsterdam, Boston, 1108 pp., ISBN 978-0-444-53447-7, ISSN 1571-0866, 2011.
Elling, R., Stein, S., Stein, C., and Gefeke, K.: Three Major Failed Rifts in Central North America: Similarities and Differences, GSA Today, 32, 4–11, https://doi.org/10.1130/GSATG518A.1, 2022.
Farrand, W. R.: The Quaternary history of Lake Superior, in: Proceedings of the 12th Conference of Great Lakes Research, 181–197, 1969.
Farrand, W. R. and Drexler, C. W.: Late Wisconsinan and Holocene history of the Lake Superior basin, Quaternary Evolution of the Great Lakes, 30, 17–32, 1985.
Fisher, T. G.: Megaflooding associated with glacial Lake Agassiz, Earth-Sci. Rev., 201, 102974, https://doi.org/10.1016/j.earscirev.2019.102974, 2020.
Fisher, T. G. and Breckenridge, A.: Relative lake level reconstructions for glacial Lake Agassiz spanning the Herman to Campbell levels, Quaternary Sci. Rev., 294, 107760, https://doi.org/10.1016/j.quascirev.2022.107760, 2022.
Fisher, T. G. and Whitman, R. L.: Deglacial and Lake Level Fluctuation History Recorded in Cores, Beaver Lake, Upper Peninsula, Michigan, J. Great Lakes Res., 25, 263–274, https://doi.org/10.1016/S0380-1330(99)70735-5, 1999.
Fisher, T. G., Dziekan, M. R., McDonald, J., Lepper, K., Loope, H. M., McCarthy, F. M. G., and Curry, B. B.: Minimum limiting deglacial ages for the out-of-phase Saginaw Lobe of the Laurentide Ice Sheet using optically stimulated luminescence (OSL) and radiocarbon methods, Quaternary Res., 97, 71–87, https://doi.org/10.1017/qua.2020.12, 2020.
Flakne, R.: The Holocene vegetation history of Isle Royale National Park, Michigan, U.S.A., Can. J. Forest Res., 33, 1144–1166, https://doi.org/10.1139/x03-063, 2003.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Halfman, J. D. and Johnson, T. C.: Enhanced Atmospheric Circulation over North America During the Early Holocene: Evidence from Lake Superior, Science, 224, 61–63, https://doi.org/10.1126/science.224.4644.61, 1984.
Hanson, B. and Hooke, R. LeB.: Glacier calving: a numerical model of forces in the calving-speed/water-depth relation, J. Glaciol., 46, 188–196, https://doi.org/10.3189/172756500781832792, 2000.
Hobbs, H. C. and Breckenridge, A.: Ice advances and retreats, inlets and outlets, sediments and strandlines of the western Lake Superior basin, in: Archean to Anthropocene: Field Guides to the Geology of the Mid-Continent of North America, Geological Society of America, 299–315, https://doi.org/10.1130/2011.0024(14), 2011.
Huber, N. K.: Glacial and post glacial geological history of Isle Royale National Park, Michigan, https://doi.org/10.3133/pp754A, 1973.
Hughes, J. D.: Physiography of a six quadrangle area in the Keweenaw Peninsula north of Portage Lake, Ph.D., Northwestern University, Evanston, IL, 255 pp., 1963.
Hughes, J. D. and Merry, W. J.: Marquette buried forest 9,850 years old, American Association for the Advancement of Science Annual Meeting, 1978.
Hyodo, A. and Longstaffe, F. J.: The chronostratigraphy of Holocene sediments from four Lake Superior sub-basins, Can. J. Earth Sci., 48, 1581–1599, https://doi.org/10.1139/e11-060, 2011.
IAGLR: Large Lakes of the World, https://iaglr.org/lakes/ (last access: 8 November 2023), 2012.
Johnson, T. C.: Late-Glacial and Postglacial Sedimentation in Lake Superior Based on Seismic-Reflection Profiles, Quaternary Res., 13, 380–391, https://doi.org/10.1016/0033-5894(80)90064-2, 1980.
Johnson, T. C. and Fields, J.: Paleomagnetic dating of postglacial sediment, offshore Lake Superior, Minnesota–Wisconsin, U.S.A., Chem. Geol., 44, 253–265, https://doi.org/10.1016/0009-2541(84)90076-7, 1984.
Jones, R. S., Small, D., Cahill, N., Bentley, M. J., and Whitehouse, P. L.: iceTEA: Tools for plotting and analysing cosmogenic-nuclide surface-exposure data from former ice margins, Quat. Geochronol., 51, 72–86, https://doi.org/10.1016/j.quageo.2019.01.001, 2019.
Kelly, M. A., Fisher, T. G., Lowell, T. V., Barnett, P. J., and Schwartz, R.: 10Be ages of flood deposits west of Lake Nipigon, Ontario: evidence for eastward meltwater drainage during the early Holocene Epoch, Can. J. Earth Sci., 53, 321–330, https://doi.org/10.1139/cjes-2015-0135, 2016.
Kemp, A. L. W., Dell, C. I., and Harper, N. S.: Sedimentation Rates and a Sediment Budget for Lake Superior, J. Great Lakes Res., 4, 276–287, https://doi.org/10.1016/S0380-1330(78)72198-2, 1978.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Landmesser, C. W., Johnson, T. C., and Wold, R. J.: Seismic Reflection Study of Recessional Moraines beneath Lake Superior and Their Relationship to Regional Deglaciation, Quaternary Res., 17, 173–190, https://doi.org/10.1016/0033-5894(82)90057-6, 1982.
Leydet, D. J., Carlson, A. E., Teller, J. T., Breckenridge, A., Barth, A. M., Ullman, D. J., Sinclair, G., Milne, G. A., Cuzzone, J. K., and Caffee, M. W.: Opening of glacial Lake Agassiz's eastern outlets by the start of the Younger Dryas cold period, Geology, 46, 155–158, https://doi.org/10.1130/G39501.1, 2018.
Li, Y.: Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: a GIS model for discrete sample sites, J. Mt. Sci., 15, 939–947, https://doi.org/10.1007/s11629-018-4895-4, 2018.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Loope, H.: Deglacial chronology and glacial stratigraphy of the western Thunder Bay lowland, northwest Ontario, Canada, M.S. thesis, University of Toledo, Toledo, OH, 91 pp., 2006.
Lowell, T. V., Larson, G. J., Hughes, J. D., and Denton, G. H.: Age verification of the Lake Gribben forest bed and the Younger Dryas Advance of the Laurentide Ice Sheet, Can. J. Earth Sci., 36, 383–393, https://doi.org/10.1139/e98-095, 1999.
Lowell, T., Waterson, N., Fisher, T., Loope, H., Glover, K., Comer, G., Hajdas, I., Denton, G., Schaefer, J., Rinterknecht, V., Broecker, W., and Teller, J.: Testing the Lake Agassiz meltwater trigger for the Younger Dryas, EOS T. Am. Ggeophys. Un., 86, 365, https://doi.org/10.1029/2005EO400001, 2005.
Lowell, T. V., Fisher, T. G., Hajdas, I., Glover, K., Loope, H., and Henry, T.: Radiocarbon deglaciation chronology of the Thunder Bay, Ontario area and implications for ice sheet retreat patterns, Quaternary Sci. Rev., 28, 1597–1607, https://doi.org/10.1016/j.quascirev.2009.02.025, 2009.
Lowell, T. V., Kelly, M. A., Howley, J. A., Fisher, T. G., Barnett, P. J., Schwart, R., Zimmerman, S. R. H., Norris, N., and Malone, A. G. O.: Near-constant retreat rate of a terrestrial margin of the Laurentide Ice Sheet during the last deglaciation, Geology, 49, 1511–1515, https://doi.org/10.1130/G49081.1, 2021.
Maher, L. J.: Palynological Studies in the Western Arm of Lake Superior, Quaternary Res., 7, 14–44, https://doi.org/10.1016/0033-5894(77)90012-6, 1977.
Mothersill, J. S.: The paleomagnetic record of the late Quaternary sediments of Thunder Bay, Can. J. Earth Sci., 16, 1016–1023, https://doi.org/10.1139/e79-089, 1979.
Mothersill, J. S.: Batchawana Bay, Lake Superior: late Quaternary sedimentary fill and paleomagnetic record, Can. J. Earth Sci., 22, 39–52, https://doi.org/10.1139/e85-004, 1985.
Mothersill, J. S.: Paleomagnetic dating of late glacial and postglacial sediments in Lake Superior, Can. J. Earth Sci., 25, 1791–1799, https://doi.org/10.1139/e88-169, 1988.
Mothersill, J. S. and Fung, P. C.: The Stratigraphy, Mineralogy, and Trace Element Concentrations of the Quaternary Sediments of the Northern Lake Superior Basin, Can. J. Earth Sci., 9, 1735–1755, https://doi.org/10.1139/e72-153, 1972.
Nishiizumi, K., Winterer, E. L., Kohl, C. P., Klein, J., Middleton, R., Lal, D., and Arnold, J. R.: Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks, J. Geophys. Res., 94, 17907, https://doi.org/10.1029/JB094iB12p17907, 1989.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl. Instrum. Meth. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007.
NOAA Great Lakes Environmental Research Lab: Bathymetry of Lake Superior, NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/products/great-lakes-bathymetry (last access: 8 June 2023), 1999.
NPS (National Park Service), Geologic Map of Isle Royale National Park, United States National Park Service Geologic Resources Division, https://www.nps.gov/isro/learn/management/management-policy-documents.htm (last access: 8 November 2023), 2008.
O'Beirne, M. D.: Anthropogenic climate change has driven Lake Superior productivity beyond the range of Holocene variability, Ph.D. thesis, University of Minnesota, 142 pp., 2013.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model: Global Glacial Isostatic Adjustment, J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Peterson, R. O.: Wolf Ecology and Prey Relationships on Isle Royale, National Park Service Scientific Monograph Series, 11, p. 228, https://www.nps.gov/parkhistory/online_books/science/11/index.htm (last access: 8 November 2023), 1977.
Peterson, W. L.: Surficial geologic map of the Iron River 1 degree by 2 degrees Quadrangle, Michigan and Wisconsin, U.S. Geological Survey, https://doi.org/10.3133/i1360C, 1985.
Putkonen, J. and Swanson, T.: Accuracy of cosmogenic ages for moraines, Quat. Res., 59, 255–261, https://doi.org/10.1016/S0033-5894(03)00006-1, 2003.
Raymond, R. E., Kapp, R. O., and Janke, R. A.: Postglacial and recent sediments of inland lakes of Isle Royale National Park, Michigan, Michigan Academician, 7, 453–465, 1975.
Rinterknecht, V. R., Clark, P. U., Raisbeck, G. M., Yiou, F., Bitinas, A., Brook, E. J., Marks, L., Zelčs, V., Lunkka, J.-P., Pavlovskaya, I. E., Piotrowski, J. A., and Raukas, A.: The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet, Science, 311, 1449–1452, https://doi.org/10.1126/science.1120702, 2006.
Saarnisto, M.: The Deglaciation History of the Lake Superior Region and its Climatic Implications, Quaternary Res., 4, 316–339, https://doi.org/10.1016/0033-5894(74)90019-2, 1974.
Schaetzl, R. J., Lepper, K., Thomas, S. E., Grove, L., Treiber, E., Farmer, A., Fillmore, A., Lee, J., Dickerson, B., and Alme, K.: Kame deltas provide evidence for a new glacial lake and suggest early glacial retreat from central Lower Michigan, USA, Geomorphology, 280, 167–178, https://doi.org/10.1016/j.geomorph.2016.11.013, 2017.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res., 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Stuiver, M. and Reimer, P. J.: Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program, Radiocarbon, 35, 215–230, https://doi.org/10.1017/S0033822200013904, 1993.
Teller, J. T.: Volume and Routing of Late-Glacial Runoff from the Southern Laurentide Ice Sheet, Quaternary Res., 34, 12–23, https://doi.org/10.1016/0033-5894(90)90069-W, 1990.
Teller, J. T. and Mahnic, P.: History of sedimentation in the northwestern Lake Superior basin and its relation to Lake Agassiz overflow, Can. J. Earth Sci., 25, 1660–1673, https://doi.org/10.1139/e88-157, 1988.
Teller, J. T. and Thorleifson, L. H.: The Lake Agassiz-Lake Superior connection, Geological Association of Canada Special Paper, 26, 261–290, 1983.
Teller, J. T., Thorleifson, L. H., Dredge, L. A., Hobbs, H. C., and Schreiner, B. T.: Maximum extent and major features of Lake Agassiz, Geological Association of Canada Special Paper, 26, 43–45, 1983.
Teller, J. T., Leverington, D. W., and Mann, J. D.: Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation, Quaternary Sci. Rev., 21, 879–887, https://doi.org/10.1016/S0277-3791(01)00145-7, 2002.
Teller, J. T., Boyd, M., Yang, Z., Kor, P. S. G., and Mokhtari Fard, A.: Alternative routing of Lake Agassiz overflow during the Younger Dryas: new dates, paleotopography, and a re-evaluation, Quaternary Sci. Rev., 24, 1890–1905, https://doi.org/10.1016/j.quascirev.2005.01.008, 2005.
Thomas, R. L. and Dell, C. I.: Sediments of Lake Superior, J. Great Lakes Res., 4, 264–275, https://doi.org/10.1016/S0380-1330(78)72197-0, 1978.
Ullman, D. J., Carlson, A. E., LeGrande, A. N., Anslow, F. S., Moore, A. K., Caffee, M., Syverson, K. M., and Licciardi, J. M.: Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation, Geology, 43, 23–26, https://doi.org/10.1130/G36179.1, 2015.
Yu, S.-Y., Colman, S. M., Lowell, T. V., Milne, G. A., Fisher, T. G., Breckenridge, A., Boyd, M., and Teller, J. T.: Freshwater Outburst from Lake Superior as a Trigger for the Cold Event 9300 Years Ago, Science, 328, 1262–1266, https://doi.org/10.1126/science.1187860, 2010.
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North...