Articles | Volume 6, issue 3
https://doi.org/10.5194/gchron-6-365-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-365-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand
Pedro Doll
CORRESPONDING AUTHOR
School of Earth and Environment, University of Canterbury, Private Bag 4800, Ōtautahi / Christchurch 8041, New Zealand
Shaun Robert Eaves
Antarctic Research Centre, Victoria University of Wellington, P.O.Box 600, Te Whanganui-a-Tara / Wellington 6140, New Zealand
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, P.O. Box 600, Te Whanganui-a-Tara / Wellington 6140, New Zealand
Ben Matthew Kennedy
School of Earth and Environment, University of Canterbury, Private Bag 4800, Ōtautahi / Christchurch 8041, New Zealand
Pierre-Henri Blard
CRPG, CNRS, Université de Lorraine, 15 Rue Notre Dame des Pauvres, Vandoeuvre-les Nancy 54000, France
Alexander Robert Lee Nichols
School of Earth and Environment, University of Canterbury, Private Bag 4800, Ōtautahi / Christchurch 8041, New Zealand
Graham Sloan Leonard
GNS Science, 1 Fairway Drive, Avalon, Te Awa Kairangi ki Tai / Lower Hutt 5011, New Zealand
Dougal Bruce Townsend
GNS Science, 1 Fairway Drive, Avalon, Te Awa Kairangi ki Tai / Lower Hutt 5011, New Zealand
Jim William Cole
School of Earth and Environment, University of Canterbury, Private Bag 4800, Ōtautahi / Christchurch 8041, New Zealand
Chris Edward Conway
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
Sacha Baldwin
School of Earth and Environment, University of Canterbury, Private Bag 4800, Ōtautahi / Christchurch 8041, New Zealand
Gabriel Fénisse
CRPG, CNRS, Université de Lorraine, 15 Rue Notre Dame des Pauvres, Vandoeuvre-les Nancy 54000, France
Laurent Zimmermann
CRPG, CNRS, Université de Lorraine, 15 Rue Notre Dame des Pauvres, Vandoeuvre-les Nancy 54000, France
Bouchaïb Tibari
CRPG, CNRS, Université de Lorraine, 15 Rue Notre Dame des Pauvres, Vandoeuvre-les Nancy 54000, France
Related authors
No articles found.
Rie Hjørnegaard Malm, Kristen Rune Skalborg Hansen, Robert Evans, Lene Møller Madsen, Jesper Milán, Nicolas Rudolph Thibaut, and Ben Kennedy
EGUsphere, https://doi.org/10.5194/egusphere-2025-3899, https://doi.org/10.5194/egusphere-2025-3899, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
This GC Insights presents a virtual fieldwork module integrating 360 videos and inquiry-based learning to support geoscience education at the upper secondary level. The design enables students to engage in authentic scientific practices, including data collection, interpretation, and hypothesis formation. The paper discusses how virtual environments can facilitate an exploratory learning and foster deeper conceptual understanding, when designed carefully as a full-phase inquiry lesson.
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
Clim. Past, 21, 1359–1381, https://doi.org/10.5194/cp-21-1359-2025, https://doi.org/10.5194/cp-21-1359-2025, 2025
Short summary
Short summary
The Camp Century subglacial core stores information about past climates and glacial and interglacial processes in northwestern Greenland. In this study, we investigated the core archive, making large-scale observations using computed tomography (CT) scans and micron-scale observations observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Ben Kennedy, Kamen Engel, Jonathan Davidson, Sylvia Tapuke, Dan Hikuroa, Tim Martin, and Pinelopi Zaka
Geosci. Commun., 8, 107–124, https://doi.org/10.5194/gc-8-107-2025, https://doi.org/10.5194/gc-8-107-2025, 2025
Short summary
Short summary
We added more science communication activities and cultural content from Māori cultural experts in a course that combines online interactive virtual fieldtrip content with reflective workshops, laboratory sessions, and fieldwork, to reflect a need for these skills in the Aotearoa NZ workforce. Students mentioned science communication and cultural competence more when responding to a survey question regarding
What they learnt?, and they highlighted the importance that these skills might have for themselves.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Cécile Massiot, Ludmila Adam, Eric S. Boyd, S. Craig Cary, Daniel R. Colman, Alysia Cox, Ery Hughes, Geoff Kilgour, Matteo Lelli, Domenico Liotta, Karen G. Lloyd, Tiipene Marr, David D. McNamara, Sarah D. Milicich, Craig A. Miller, Santanu Misra, Alexander R. L. Nichols, Simona Pierdominici, Shane M. Rooyakkers, Douglas R. Schmitt, Andri Stefansson, John Stix, Matthew B. Stott, Camille Thomas, Pilar Villamor, Pujun Wang, Sadiq J. Zarrouk, and the CALDERA workshop participants
Sci. Dril., 33, 67–88, https://doi.org/10.5194/sd-33-67-2024, https://doi.org/10.5194/sd-33-67-2024, 2024
Short summary
Short summary
Volcanoes where tectonic plates drift apart pose eruption and earthquake hazards. Underground waters are difficult to track. Underground microbial life is probably plentiful but unexplored. Scientists discussed the idea of drilling two boreholes in the Okataina Volcanic Centre, New Zealand, to unravel the connections between volcano, faults, geotherms, and the biosphere, also integrating mātauranga Māori (Indigenous knowledge) to assess hazards and manage resources and microbial ecosystems.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Matthew W. Hayward, Emily M. Lane, Colin N. Whittaker, Graham S. Leonard, and William L. Power
Nat. Hazards Earth Syst. Sci., 23, 955–971, https://doi.org/10.5194/nhess-23-955-2023, https://doi.org/10.5194/nhess-23-955-2023, 2023
Short summary
Short summary
In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are simulated to investigate tsunami generation in Lake Taupō, New Zealand. A non-hydrostatic multilayer numerical scheme resolves the highly dispersive generated wavefield. Inundation, hydrographic and related hazard outputs are produced, indicating that significant inundation around the lake shore begins above 5 on the volcanic explosivity index.
Agathe Defourny, Pierre-Henri Blard, Laurent Zimmermann, Patrick Jobé, Arnaud Collignon, Frédéric Nguyen, and Alain Dassargues
Hydrol. Earth Syst. Sci., 26, 2637–2648, https://doi.org/10.5194/hess-26-2637-2022, https://doi.org/10.5194/hess-26-2637-2022, 2022
Short summary
Short summary
The Belgian city of Spa is known worldwide for its ferruginous and naturally sparkling groundwater springs that gave their name to the bathing tradition commonly called
spa. However, the origin of the dissolved CO2 they contain was still a matter of debate. Thanks to new analysis on groundwater samples, particularly carbon and helium isotopes together with dissolved gases, this study has demonstrated that the volcanic origin of the CO2 is presumably from the neighboring Eifel volcanic fields.
Richard N. Holdaway, Ben Kennedy, Brendan M Duffy, Jiandong Xu, and Clive Oppenheimer
Geochronology Discuss., https://doi.org/10.5194/gchron-2021-13, https://doi.org/10.5194/gchron-2021-13, 2021
Revised manuscript not accepted
Short summary
Short summary
Prehistoric volcanic eruptions are often dated by wiggle matching series of radiocarbon ages on tree rings to standard calibration curves, ignoring potential contamination by 'old' carbon given off by the volcano. We modeled the effects of low amounts of contamination on wiggle match dates for the 10th century Changbaishan eruption and found evidence of contamination in all. We propose a new protocol to identify the presence of contamination, and provide more secure dates for major eruptions.
Jackie E. Kendrick, Lauren N. Schaefer, Jenny Schauroth, Andrew F. Bell, Oliver D. Lamb, Anthony Lamur, Takahiro Miwa, Rebecca Coats, Yan Lavallée, and Ben M. Kennedy
Solid Earth, 12, 633–664, https://doi.org/10.5194/se-12-633-2021, https://doi.org/10.5194/se-12-633-2021, 2021
Short summary
Short summary
The last lava dome eruption of Mount Unzen (Japan) ended in 1995, but ongoing instability means much of the area remains an exclusion zone. The rocks in the lava dome impact its stability; heterogeneity (contrasting properties) and anisotropy (orientation-specific properties) can channel fluids and localise deformation, enhancing the risk of lava dome collapse. We recommend using measured material properties to interpret geophysical signals and to model volcanic systems.
Cited articles
Ackert, R. P., Singer, B. S., Guillou, H., Kaplan, M. R., and Kurz, M. D.: Long-term cosmogenic 3He production rates from and K-Ar dated Patagonian lava flows at 47° S, Earth Planet. Sc. Lett., 210, 119–136, https://doi.org/10.1016/S0012-821X(03)00134-1, 2003. a
Alcalá-Reygosa, J., Palacios, D., Schimmelpfennig, I., Vázquez-Selem, L., García-Sancho, L., Franco-Ramos, O., Villanueva, J., Zamorano, J. J., Aumaître, G., Bourlès, D., and Keddadouche, K.: Dating late Holocene lava flows in Pico de Orizaba (Mexico) by means of in situ-produced cosmogenic 36Cl, lichenometry and dendrochronology, Quat. Geochronol., 47, 93–106, https://doi.org/10.1016/j.quageo.2018.05.011, 2018. a
Anderson, S. W., Krinsley, D. H., and Fink, J. H.: Criteria for recognition of constructional silicic lava flow surfaces, Earth Surf. Proc. Land., 19, 531–541, https://doi.org/10.1002/esp.3290190606, 1994. a
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008. a, b, c
Barrell, D. J.: Quaternary Glaciers of New Zealand, in: Developments in Quaternary Sciences, 15 edn., chap. 75, Elsevier, 1047–1064, https://doi.org/10.1016/B978-0-444-53447-7.00075-1, 2011. a, b
Barrell, D. J. A., Almond, P. C., Vandergoes, M. J., Lowe, D. J., and Newnham, R. M.: A composite pollen-based stratotype for inter-regional evaluation of climatic events in New Zealand over the past 30,000 years (NZ-INTIMATE project), Quaternary Sci. Rev., 74, 4–20, https://doi.org/10.1016/j.quascirev.2013.04.002, 2013. a
Blard, P.-H. and Farley, K. A.: The influence of radiogenic 4He on cosmogenic 3He determinations in volcanic olivine and pyroxene, Earth Planet. Sc. Lett., 276, 20–29, https://doi.org/10.1016/j.epsl.2008.09.003, 2008. a
Blard, P. H., Pik, R., Lavé, J., Bourlès, D., Burnard, P. G., Yokochi, R., Marty, B., and Trusdell, F.: Cosmogenic 3He production rates revisited from evidences of grain size dependent release of matrix-sited helium, Earth Planet. Sc. Lett., 247, 222–234, https://doi.org/10.1016/j.epsl.2006.05.012, 2006. a, b
Blard, P. H., Lavé, J., Pik, R., Wagnon, P., and Bourlès, D.: Persistence of full glacial conditions in the central Pacific until 15,000 years ago, Nature, 449, 591–594, https://doi.org/10.1038/nature06142, 2007. a
Blard, P.-H., Braucher, R., Lavé, J., and Bourlès, D.: Cosmogenic 10Be production rate calibrated against 3He in the high Tropical Andes (3800–4900 m , 20–22° S), Earth Planet. Sc. Lett., 382, 140–149, https://doi.org/10.1016/j.epsl.2013.09.010, 2013. a
Blard, P.-H., Balco, G., Burnard, P. G., Farley, K. A., Fenton, C. R., Friedrich, R., Jull, A. J., Niedermann, S., Pik, R., Schaefer, J. M., Scott, E. M., Shuster, D. L., Stuart, F. M., Stute, M., Tibari, B., Winckler, G., and Zimmermann, L.: An inter-laboratory comparison of cosmogenic 3He and radiogenic 4He in the CRONUS-P pyroxene standard, Quat. Geochronol., 26, 11–19, https://doi.org/10.1016/j.quageo.2014.08.004, 2015. a, b
Bromley, G. R., Winckler, G., Schaefer, J. M., Kaplan, M. R., Licht, K. J., and Hall, B. L.: Pyroxene separation by HF leaching and its impact on helium surface-exposure dating, Quat. Geochronol., 23, 1–8, https://doi.org/10.1016/j.quageo.2014.04.003, 2014. a, b, c
Buchanan-Banks, J. M., Lockwood, J. P., and Rubin, M.: Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa volcano, Hilo 7 Quadrangle, island of Hawaii, Radiocarbon, 31, 179–186, 1989. a
Calvert, A. T. and Lanphere, M. A.: Argon geochronology of Kilauea's early submarine history, J. Volcanol. Geoth. Res., 151, 1–18, https://doi.org/10.1016/j.jvolgeores.2005.07.023, 2006. a
Calvert, A. T., Fierstein, J., and Hildreth, W.: Eruptive history of Middle Sister, Oregon Cascades, USA-Product of a late Pleistocene eruptive episode, Geosphere, 14, 2118–2139, https://doi.org/10.1130/GES01638.1, 2018. a, b
Carignan, J., Hild, P., Mevelle, G., Morel, J., and Yeghicheyan, D.: Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH, Geostandard. Newslett., 25, 187–198, https://doi.org/10.1111/j.1751-908x.2001.tb00595.x, 2001. a
Cerling, T. E. and Craig, H.: Geomorphology and in-situ cosmogenic isotopes, Annu. Rev. Earth Pl. Sc., 273–317, 1994. a
Clay, P. L., Busemann, H., Sherlock, S. C., Barry, T. L., Kelley, S. P., and McGarvie, D. W.: ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland, Chem. Geol., 403, 99–110, https://doi.org/10.1016/j.chemgeo.2015.02.041, 2015. a
Coble, M. A., Grove, M., and Calvert, A. T.: Calibration of Nu-Instruments Noblesse multicollector mass spectrometers for argon isotopic measurements using a newly developed reference gas, Chem. Geol., 290, 75–87, https://doi.org/10.1016/j.chemgeo.2011.09.003, 2011. a
Cole, J. W. and Lewis, K. B.: Evolution of the Taupo-Hikurangi subduction system, Tectonophysics, 72, 1–21, https://doi.org/10.1016/0040-1951(81)90084-6, 1981. a
Connor, C., Bebbington, M., and Marzocchi, W.: Probabilistic Volcanic Hazard Assessment, Elsevier Inc., second edn., ISBN 9780123859389, https://doi.org/10.1016/b978-0-12-385938-9.00051-1, 2015. a
Conway, C. E.: Studies on the Glaciovolcanic and Magmatic Evolution of Ruapehu Volcano, New Zealand, PhD thesis, Victoria University of Wellington, https://researcharchive.vuw.ac.nz/handle/10063/5152 (last access: 25 May 2024), 2016. a
Conway, C. E., Townsend, D. B., Leonard, G. S., Wilson, C. J., Calvert, A. T., and Gamble, J. A.: Lava-ice interaction on a large composite volcano: a case study from Ruapehu, New Zealand, B. Volcanol., 77, 21, https://doi.org/10.1007/s00445-015-0906-2, 2015. a, b, c
Conway, C. E., Leonard, G. S., Townsend, D. B., Calvert, A. T., Wilson, C. J., Gamble, J. A., Eaves, S. R., Pure, L. R., Leonard, G. S., Townsend, D. B., Wilson, C. J., Calvert, A. T., Cole, R. P., Conway, C. E., Gamble, J. A., and Smith, T. B.: A high-resolution lava chronology and edifice construction history for Ruapehu volcano, New Zealand, J. Volcanol. Geoth. Res., 327, 152–179, https://doi.org/10.1016/j.jvolgeores.2016.07.006, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae
Delunel, R., Blard, P.-H., Martin, L. C., Nomade, S., and Schlunegger, F.: Long term low latitude and high elevation cosmogenic 3He production rate inferred from a 107 ka-old lava flow in northern Chile; 22° S–3400 m a.s.l., Geochim. Cosmochim. Ac., 184, 71–87, https://doi.org/10.1016/j.gca.2016.04.023, 2016. a
Donoghue, S. L.: Late quaternary volcanic stratigraphy of the southeastern sector of the Mount Ruapehu ring plain New Zealand, PhD thesis, Massey University, https://mro.massey.ac.nz/items/516a0d80-eda3-4a7e-a495-2e13fcb7821c (last access: 25 May 2024), 1991. a
Donoghue, S. L. and Neall, V. E.: Late Quaternary constructional history of the southeastern Ruapehu ring plain, New Zealand, New Zeal. J. Geol. Geop., 44, 439–466, https://doi.org/10.1080/00288306.2001.9514949, 2001. a
Donoghue, S. L., Neall, V. E., and Palmer, A. S.: Stratigraphy and chronology of late quaternary andesitic tephra deposits, Tongariro Volcanic Centre, New Zealand, J. Roy. Soc. New Zeal., 25, 115–206, https://doi.org/10.1080/03014223.1995.9517487, 1995. a
Donoghue, S. L., Stewart, R. B., Neall, V. E., Lecointre, J., Price, R., Palmer, A. S., McClelland, E., and Hobson, K.: The Taurewa Eruptive Episode: Evidence for climactic eruptions at Ruapehu volcano, New Zealand, B. Volcanol., 61, 223–240, https://doi.org/10.1007/s004450050273, 1999. a, b, c
Donoghue, S. L., Vallance, J. W., Smith, I. E., and Stewart, R. B.: Using geochemistry as a tool for correlating proximal andesitic tephra: case studies from Mt Rainier (USA) and MT Ruapehu (New Zealand), J. Quaternary Sci., 22, 395–410, https://doi.org/10.1002/jqs.1065, 2007. a
Dostal, J., Dupuy, C., Carron, J. P., Le Guen de Kerneizon, M., and Maury, R. C.: Partition coefficients of trace elements: Application to volcanic rocks of St. Vincent, West Indies, Geochim. Cosmochim. Ac., 47, 525–533, https://doi.org/10.1016/0016-7037(83)90275-2, 1983. a
Dunn, T. and Sen, C.: Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study, Geochim. Cosmochim. Ac., 58, 717–733, https://doi.org/10.1016/0016-7037(94)90501-0, 1994. a, b
Eaves, S. R. and Brook, M. S.: Glaciers and glaciation of North Island, New Zealand, New Zeal. J. Geol. Geop., 64, 1–20, https://doi.org/10.1080/00288306.2020.1811354, 2021. a
Eaves, S. R., Winckler, G., Schaefer, J. J. M., Vandergoes, M. J., Alloway, B. V., Mackintosh, A. N., Townsend, D. B., Ryan, M. T., and Li, X.: A test of the cosmogenic 3He production rate in the south-west Pacific (39° S), J. Quaternary Sci., 30, 79–87, https://doi.org/10.1002/jqs.2760, 2015. a, b, c, d, e, f
Eaves, S. R., Mackintosh, A. N., Anderson, B. M., Doughty, A. M., Townsend, D. B., Conway, C. E., Winckler, G., Schaefer, J. M., Leonard, G. S., and Calvert, A. T.: The Last Glacial Maximum in the central North Island, New Zealand: palaeoclimate inferences from glacier modelling, Clim. Past, 12, 943–960, https://doi.org/10.5194/cp-12-943-2016, 2016a. a
Eaves, S. R., Mackintosh, A. N., Winckler, G., Schaefer, J. M., Alloway, B. V., and Townsend, D. B.: A cosmogenic 3He chronology of late Quaternary glacier fluctuations in North Island, New Zealand (39° S), Quaternary Sci. Rev., 132, 40–56, https://doi.org/10.1016/j.quascirev.2015.11.004, 2016b. a
Eaves, S. R., Winckler, G., Mackintosh, A. N., Schaefer, J. M., Townsend, D. B., Doughty, A. M., Jones, R. S., and Leonard, G. S.: Late-glacial and Holocene glacier fluctuations in North Island, New Zealand, Quaternary Sci. Rev., 223, 105914, https://doi.org/10.1016/j.quascirev.2019.105914, 2019. a, b, c
Espanon, V. R., Honda, M., and Chivas, A. R.: Cosmogenic 3He and 21Ne surface exposure dating of young basalts from Southern Mendoza, Argentina, Quat. Geochronol., 19, 76–86, https://doi.org/10.1016/j.quageo.2013.09.002, 2014. a, b, c
Fenton, C. R. and Niedermann, S.: Surface exposure dating of young basalts (1-200ka) in the San Francisco volcanic field (Arizona, USA) using cosmogenic 3He and 21Ne, Quat. Geochronol., 19, 87–105, https://doi.org/10.1016/j.quageo.2012.10.003, 2014. a
Fenton, C. R., Webb, R. H., Pearthree, P. A., Cerling, T. E., and Poreda, R. J.: Displacement rates on the Toroweap and Hurricane faults: Implications for Quaternary downcutting in the Grand Canyon, Arizona, Geology, 29, 1035–1038, https://doi.org/10.1130/0091-7613(2001)029<1035:DROTTA>2.0.CO;2, 2001. a
Fenton, C. R., Niedermann, S., Goethals, M. M., Schneider, B., and Wijbrans, J.: Evaluation of cosmogenic 3He and 21Ne production rates in olivine and pyroxene from two Pleistocene basalt flows, western Grand Canyon, AZ, USA, Quat. Geochronol., 4, 475–492, https://doi.org/10.1016/j.quageo.2009.08.002, 2009. a
Ferrier, K. L., Taylor Perron, J., Mukhopadhyay, S., Rosener, M., Stock, J. D., Huppert, K. L., and Slosberg, M.: Covariation of climate and long-term erosion rates across a steep rainfall gradient on the Hawaiian island of Kaua'i, Bull. Geol. Soc. Am., 125, 1146–1163, https://doi.org/10.1130/B30726.1, 2013. a
Fierstein, J., Hildreth, W., and Calvert, A. T.: Eruptive history of South Sister, Oregon Cascades, J. Volcanol. Geoth. Res., 207, 145–179, https://doi.org/10.1016/j.jvolgeores.2011.06.003, 2011. a
Fleck, R. J., Hagstrum, J. T., Calvert, A. T., Evarts, R. C., and Conrey, R. M.: geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA, Geosphere, 1283–1314, https://doi.org/10.1130/GES00985.1, 2014. a
Foeken, J. P., Day, S., and Stuart, F. M.: Cosmogenic 3He exposure dating of the Quaternary basalts from Fogo, Cape Verdes: Implications for rift zone and magmatic reorganisation, Quat. Geochronol., 4, 37–49, https://doi.org/10.1016/j.quageo.2008.07.002, 2009. a, b, c, d
Gabrielsen, H., Procter, J., Rainforth, H., Black, T., Harmsworth, G., and Pardo, N.: Reflections from an Indigenous Community on Volcanic Event Management, Communications and Resilience, in: Observing the Volcano World. Advances in Volcanology, edited by: Fearnley, C. J., Bird, D. K., Haynes, K., McGuire, W. J., and Jolly, G., Springer, Cham. 463–479, https://doi.org/10.1007/11157_2016_44, 2018. a
Gallahan, W. E. and Nielsen, R. L.: The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere, Geochim. Cosmochim. Ac., 56, 2387–2404, https://doi.org/10.1016/0016-7037(92)90196-P, 1992. a
Gamble, J. A., Price, R. C., Smith, I. E., McIntosh, W. C., and Dunbar, N. W.: geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 120, 271–287, https://doi.org/10.1016/S0377-0273(02)00407-9, 2003. a, b
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides: Theory and application, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001. a, b
Greve, A., Turner, G. M., Conway, C. E., Townsend, D. B., Gamble, J. A., and Leonard, G. S.: Palaeomagnetic refinement of the eruption ages of Holocene lava flows, and implications for the eruptive history of the Tongariro Volcanic Centre, New Zealand, Geophys. J. Int., 207, 702–718, https://doi.org/10.1093/gji/ggw296, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Harpel, C. J., Kyle, P. R., Esser, R. P., McIntosh, W. C., and Caldwell, D. A.: dating of the eruptive history of Mount Erebus, Antarctica: Summit flows, tephra, and caldera collapse, B. Volcanol., 66, 687–702, https://doi.org/10.1007/s00445-004-0349-7, 2004. a, b, c
Harris, A. J. L.: Basaltic Lava Flow Hazard, in: Volcanic Hazards, Risks and Disasters, edited by: Shroder, J. F. and Papale, P., chap. 2, 17–46, Elsevier, https://doi.org/10.1016/C2011-0-07012-6, 2015. a
Hilton, D. R., Fischer, T. P., and Marry, B.: Noble gases and volatile recycling at subduction zones, Rev. Mineral. Geochem., 47, 319–370, https://doi.org/10.2138/rmg.2002.47.9, 2002. a
Houghton, B. F., Wilson, C. J., McWilliams, M. O., Lanphere, M. A., Weaver, S. D., Briggs, R. M., and Pringle, M. S.: Chronology and dynamics of a large silicic magmatic system: central Taupo Volcanic Zone, New Zealand, Geology, 23, 13–16, https://doi.org/10.1130/0091-7613(1995)023<0013:CADOAL>2.3.CO;2, 1995. a
Jenkins, S. F., Day, S. J., Faria, B. V., and Fonseca, J. F.: Damage from lava flows: insights from the 2014–2015 eruption of Fogo, Cape Verde, Journal of Applied Volcanology, 6, 6, https://doi.org/10.1186/s13617-017-0057-6, 2017. a
Keys, H. and Green, P. M.: Mitigation of volcanic risks at Mt Ruapehu, New Zealand, Proceedings of the Moutain Risks international conference, Firenze, Italy, 24–26 November, 485–490, https://www.researchgate.net/profile/Harry-Keys/publication/281606085_Mitigation_of_volcanic_risks_at_Mt_Ruapehu_New_Zealand/links/581f8fa608aeccc08af3abd6/Mitigation-of-volcanic-risks-at-Mt-Ruapehu-New-Zealand.pdf (last access: 25 May 2024), 2010. a
Klein, J., Giegengack, R., Middleton, R., Sharma, P., Underwood, J. R., and Weeks, R. A.: Revealing Histories of Exposure Using in Situ Produced 26Al and 10Be in Libyian Desert Glass, Radiocarbon, 28, 547–555, 1986. a
Kurz, M. D.: Cosmogenic helium in a terrestrial igneous rock, Nature, 320, 435–439, https://doi.org/10.1038/320435a0, 1986a. a, b, c
Kurz, M. D.: In situ production of terrestrial cosmogenic helium and some applications to geochronology, Geochim. Cosmochim. Ac., 50, 2855–2862, https://doi.org/10.1016/0016-7037(86)90232-2, 1986b. a
Lal, D.: An important source of 4He (and 3He) in diamonds, Earth Planet. Sc. Lett., 96, 1–7, https://doi.org/10.1016/0012-821X(89)90118-0, 1989. a
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991. a, b
Lanphere, M. A.: Comparison of conventional K-Ar and dating of young mafic volcanic rocks, Quaternary Res., 53, 294–301, https://doi.org/10.1006/qres.1999.2122, 2000. a
Le Maitre, R. W.: Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences, Subcomission of the Systematics of Igneous Rocks, Cambridge University Press, https://doi.org/10.1017/CBO9780511535581, 2002. a, b
Leonard, G. S., Cole, R. P. R., Christenson, B. W., Conway, C. E., Cronin, S. J., Gamble, J. A., Hurst, T., Kennedy, B. M., Miller, C. A., Procter, J. N., Pure, L. R., Townsend, D. B., White, J. D., and Wilson, C. J.: Ruapehu and Tongariro stratovolcanoes: a review of current understanding, New Zeal. J. Geol. Geop., 64, 389–420, https://doi.org/10.1080/00288306.2021.1909080, 2021. a, b
Leya, I., Lange, H. J., Neumann, S., Wieler, R., and Michel, R.: The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles, Meteorit. Planet. Sci., 35, 259–286, https://doi.org/10.1111/j.1945-5100.2000.tb01775.x, 2000. a
Licciardi, J. M., Kurz, M. D., and Curtice, J. M.: Cosmogenic 3He production rates from Holocene lava flows in Iceland, Earth Planet. Sc. Lett., 246, 251–264, https://doi.org/10.1016/j.epsl.2006.03.016, 2006. a
Licciardi, J. M., Kurz, M. D., and Curtice, J. M.: Glacial and volcanic history of Icelandic table mountains from cosmogenic 3He exposure ages, Quaternary Sci. Rev., 26, 1529–1546, https://doi.org/10.1016/j.quascirev.2007.02.016, 2007. a, b, c
Lifton, N.: Implications of two Holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling, Earth Planet. Sc. Lett., 433, 257–268, https://doi.org/10.1016/j.epsl.2015.11.006, 2016. a, b
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014. a
Lippolt, H. J. and Weigel, E.: 4He diffusion in 40Ar-retentive minerals, Geochim. Cosmochim. Ac., 52, 1449–1458, https://doi.org/10.1016/0016-7037(88)90215-3, 1988. a
Lockwood, J. P. and Lipman, P. W.: Recovery of datable charcoal beneath young lavas: Lessons from Hawaii, Bulletin Volcanologique, 43, 609–615, https://doi.org/10.1007/BF02597697, 1980. a
Luhr, J. F. and Carmichael, I. S. E.: The Colima Volcanic complex, Mexico, Contrib. Mineral. Petr., 71, 343–372, https://doi.org/10.1007/bf00374707, 1980. a
Lupton, J. and Evans, L.: Changes in the atmospheric helium isotope ratio over the past 40 years, Geophys. Res. Lett., 40, 6271–6275, https://doi.org/10.1002/2013GL057681, 2013. a
Marchetti, D. W., Hynek, S. A., and Cerling, T. E.: Cosmogenic 3He exposure ages of basalt flows in the northwestern Payún Matru volcanic field, Mendoza Province, Argentina, Quat. Geochronol., 19, 67–75, https://doi.org/10.1016/j.quageo.2012.10.004, 2014. a, b, c
Martin, L. C., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49, https://doi.org/10.1016/j.quageo.2016.11.006, 2017. a
Matsuda, J., Matsumoto, T., Sumino, H., Nagao, K., Yamamoto, J., Miura, Y., Kaneoka, I., Takahata, N., and Sano, Y.: The ratio of new internal He Standard of Japan (HESJ), Geochem. J., 36, 191–195, https://doi.org/10.2343/geochemj.36.191, 2002. a
Mc Arthur, J. L. and Shepherd, M. J.: Late Quaternary glaciation of Mt. Ruapehu, North Island, New Zealand, J. Roy. Soc. New Zeal., 20, 287–296, https://doi.org/10.1080/03036758.1990.10416823, 1990. a
Medynski, S., Pik, R., Burnard, P., Vye-Brown, C., France, L., Schimmelpfennig, I., Whaler, K., Johnson, N., Benedetti, L., Ayelew, D., and Yirgu, G.: Stability of rift axis magma reservoirs: Spatial and temporal evolution of magma supply in the Dabbahu rift segment (Afar, Ethiopia) over the past 30 kyr, Earth Planet. Sc. Lett., 409, 278–289, https://doi.org/10.1016/j.epsl.2014.11.002, 2015. a, b
Mishra, A. K., Placzek, C., Wurster, C., and Whitehead, P. W.: New radiocarbon age constraints for the 120 km-long Toomba flow, north Queensland, Australia, Aust. J. Earth Sci., 66, 71–79, https://doi.org/10.1080/08120099.2019.1523227, 2019. a
Moore, R. B. and Rubin, M.: Radiocarbon dates for lava flows and pyroclastic deposits on Sao Miguel, Azores, Radiocarbon, 33, 151–164, https://doi.org/10.1017/S0033822200013278, 1991. a
Morimoto, N., Fabries, J., Ferguson, A., Ginzburg, I., Ross, M., Seifert, F., Zussman, J., Aoki, K., and Gottardi, G.: Nomenclature of pyroxenes Subcommittee on Pyroxenes Commission on New Minerals and Mineral Names International Mineralogical Association, Am. Mineral., 73, 1123–1133, 1988. a
Muscheler, R., Beer, J., Kubik, P. W., and Synal, H. A.: Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C, Quaternary Sci. Rev., 24, 1849–1860, https://doi.org/10.1016/j.quascirev.2005.01.012, 2005. a, b
Nairn, I. A., Kobayashi, T., and Nakagawa, M.: The ∼ 10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand: Part 1. Eruptive processes during regional extension, J. Volcanol. Geoth. Res., 86, 19–44, https://doi.org/10.1016/S0377-0273(98)00085-7, 1998. a
Nicholls, I. A. and Harris, K. L.: Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids, Geochim. Cosmochim. Ac., 44, 287–308, https://doi.org/10.1016/0016-7037(80)90138-6, 1980. a
Niedermann, S.: Cosmic-ray-produced noble gases in terrestrial rocks: Dating tools for surface processes, Rev. Mineral. Geochem., 47, 731–784, https://doi.org/10.2138/rmg.2002.47.16, 2002. a
Nishiizumi, K.: Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks, J. Geophys. Res., 94, 17907–17915, https://doi.org/10.1029/jb094ib12p17907, 1989. a, b
Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D., and Middleton, R.: Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history, Earth Planet. Sc. Lett., 104, 440–454, https://doi.org/10.1016/0012-821X(91)90221-3, 1991. a
Palmer, B. A. and Neall, V. E.: The Murimotu Formation – 9500 year old deposits of a debris avalanche and associated lahars, Mount Ruapehu, North Island, New Zealand, New Zeal. J. Geol. Geop., 32, 477–486, https://doi.org/10.1080/00288306.1989.10427555, 1989. a
Pardo, N.: Andesitic Plinian Eruptions at Mt. Ruapehu (New Zealand): From Lithofacies to Eruption Dynamics, PhD thesis, Massey University, https://mro.massey.ac.nz/items/c2f61b33-2579-410f-b493-eeab08691375 (last access: 25 May 2024), 2012. a
Pardo, N., Cronin, S., Palmer, A., Procter, J., and Smith, I.: Andesitic Plinian eruptions at Mt. Ruapehu: Quantifying the uppermost limits of eruptive parameters, B. Volcanol., 74, 1161–1185, https://doi.org/10.1007/s00445-012-0588-y, 2012a. a, b
Pardo, N., Cronin, S. J., Palmer, A. S., and Németh, K.: Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: Lithostratigraphic tools to understand subplinian-plinian eruptions at andesitic volcanoes, B. Volcanol., 74, 617–640, https://doi.org/10.1007/s00445-011-0555-z, 2012b. a, b
Patterson, D. B., Honda, M., and McDougall, I.: Noble gases in mafic phenocrysts and xenoliths from New Zealand, Geochim. Cosmochim. Ac., 58, 4411–4427, https://doi.org/10.1016/0016-7037(94)90344-1, 1994. a, b, c
Preece, K., Mark, D. F., Barclay, J., Cohen, B. E., Chamberlain, K. J., Jowitt, C., Vye-Brown, C., Brown, R. J., and Hamilton, S.: Bridging the gap: dating of volcanic eruptions from the “Age of Discovery”, Geology, 46, 1035–1038, https://doi.org/10.1130/G45415.1, 2018. a, b
Price, R. C., Gamble, J. A., Smith, I. E., Maas, R., Waight, T., Stewart, R. B., and Woodhead, J.: The anatomy of an andesite volcano: A time-stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu Volcano, New Zealand, J. Petrol., 53, 2139–2189, https://doi.org/10.1093/petrology/egs050, 2012. a, b, c, d, e, f
Puchol, N., Blard, P.-H., Pik, R., Tibari, B., and Lavé, J.: Variability of magmatic and cosmogenic 3He in Ethiopian river sands of detrital pyroxenes: Impact on denudation rate determinations, Chem. Geol., 448, 13–25, https://doi.org/10.1016/j.chemgeo.2016.10.033, 2017. a, b, c
Pure, L. R., Leonard, G. S., Townsend, D. B., Wilson, C. J., Calvert, A. T., Cole, R. P., Conway, C. E., Gamble, J. A., and Smith, T. B.: A high resolution lava chronology and edifice construction history for Tongariro volcano, New Zealand, J. Volcanol. Geoth. Res., 403, 106993, https://doi.org/10.1016/j.jvolgeores.2020.106993, 2020. a, b
Ramos, F. C., Heizler, M. T., Buettner, J. E., Gill, J. B., Wei, H. Q., Dimond, C. A., and Scott, S. R.: U-series and ages of Holocene volcanic rocks at Changbaishan volcano, China, Geology, 44, 511–514, https://doi.org/10.1130/G37837.1, 2016. a
Rhodes, E.: The Draining of an Andesitic Valley-Confined Lava Flow, Mt Ruapehu, Honours thesis, University of Canterbury, 2012. a
Schaefer, J. M., Winckler, G., Blard, P.-H., Balco, G., Shuster, D. L., Friedrich, R., Jull, A. J. T., Wieler, R., and Schluechter, C.: Performance of CRONUS-P – A pyroxene reference material for helium isotope analysis, Quat. Geochronol., 31, 237–239, https://doi.org/10.1016/j.quageo.2014.07.006, 2016. a
Schimmelpfennig, I., Williams, A., Pik, R., Burnard, P., Niedermann, S., Finkel, R., Schneider, B., and Benedetti, L.: Inter-comparison of cosmogenic in-situ 3He, 21Ne and 36Cl at low latitude along an altitude transect on the SE slope of Kilimanjaro volcano (3° S, Tanzania), Quat. Geochronol., 6, 425–436, https://doi.org/10.1016/j.quageo.2011.05.002, 2011. a
Sherrod, D. R., Hagstrum, J. T., Mcgeehin, J. P., Champion, D. E., and Trusdell, F. A.: Distribution , 14C chronology , and paleomagnetism of latest Pleistocene and Holocene lava flows at Haleakala Island of Maui , Hawai′i: A revision of lava flow hazard zones, J. Geophys. Res., 111, B05205, https://doi.org/10.1029/2005JB003876, 2006. a, b
Shuster, D. L., Farley, K. A., Sisterson, J. M., and Burnett, D. S.: Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He, Earth Planet. Sc. Lett., 217, 19–32, https://doi.org/10.1016/S0012-821X(03)00594-6, 2004. a
Smith, J. A., Finkel, R. C., Farber, D. L., Rodbell, D. T., and Seltzer, G. O.: Moraine preservation and boulder erosion in the tropical Andes: Interpreting old surface exposure ages in glaciated valleys, J. Quaternary Sci., 20, 735–758, https://doi.org/10.1002/jqs.981, 2005. a
Stipp, J.: The Geochronology and Petrogenesis of the Cenozoic Volcanics of the North Island, New Zealand, PhD thesis, Australian National University, https://www.proquest.com/docview/2617247792?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations & Theses (last access: 9 July 2023), 1968. a
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res.,, 105, 753–759, https://doi.org/10.1029/2000JB900181, 2000. a, b
Tanaka, H., Kawamura, K., Nagao, K., and Houghton, B. F.: K-Ar ages and paleosecular variation of direction and intensity from quaternary lava sequences in the Ruapehu Volcano, New Zealand, Earth Planets Space, 49, 587–599, https://doi.org/10.5636/jgg.49.587, 1997. a
Topping, W. W.: Some aspects of quaternary history of Tongariro Volcanic Centre, PhD thesis, Victoria University of Wellington, https://openaccess.wgtn.ac.nz/articles/thesis/Some_Aspects_of_Quaternary_History_of_Tongariro_Volcanic_Centre/19252133/1 (last access: 9 July 2023) 1974. a
Topping, W. W. and Kohn, B. P.: Rhyolitic tephra marker beds in the Tongariro area, North Island, New Zealand, New Zeal. J. Geol. Geop., 16, 375–395, https://doi.org/10.1080/00288306.1973.10431367, 1973. a, b
Tremblay, M. M., Shuster, D. L., and Balco, G.: Diffusion kinetics of 3He and 21Ne in quartz and implications for cosmogenic noble gas paleothermometry, Geochim. Cosmochim. Ac., 142, 186–204, https://doi.org/10.1016/j.gca.2014.08.010, 2014. a
Trusdell, F. A.: Lava flow hazards and risk assessment on Mauna Loa Volcano, Hawaii, Geoph. Monog. Series, 92, 327–336, https://doi.org/10.1029/GM092p0327, 1995. a, b
Tsang, S. and Lindsay, J.: Lava flow crises in inhabited areas part I: Lessons learned and research gaps related to effusive, basaltic eruptions, Journal of Applied Volcanology, 9, 9, https://doi.org/10.1186/s13617-020-00096-y, 2020. a
Turner, G. M. and Corkill, R. M.: NZPSV11k.2023 and NZPSV1k.2023: Holocene palaeomagnetic secular variation master records for New Zealand, Phys. Earth Planet. In., 344, 107093, https://doi.org/10.1016/j.pepi.2023.107093, 2023. a
Turner, G. M., Howarth, J. D., de Gelder, G. I., and Fitzsimons, S. J.: A new high-resolution record of Holocene geomagnetic secular variation from New Zealand, Earth Planet. Sc. Lett., 430, 296–307, https://doi.org/10.1016/j.epsl.2015.08.021, 2015. a, b
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A., Jenne, R., McNally, A. P., Mahfouf, J. F., Morcrette, J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005. a
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018. a
Villemant, B.: Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment, Contrib. Mineral. Petr., 98, 169–183, https://doi.org/10.1007/BF00402110, 1988. a
Wijbrans, J., Schneider, B., Kuiper, K., Calvari, S., Branca, S., De Beni, E., Norini, G., Corsaro, R. A., and Miraglia, L.: geochronology of Holocene basalts; examples from Stromboli, Italy, Quat. Geochronol., 6, 223–232, https://doi.org/10.1016/j.quageo.2010.10.003, 2011. a, b
Wilson, C. J., Gravley, D. M., Leonard, G. S., and Rowland, J. V.: Volcanism in the central Taupo Volcanic Zone, New Zealand: tempo, styles and controls, in: Studies in Volcanology: The Legacy of George Walker, edited by: Thordarson, T., Special Publications of IAVCEI 2, 225–247, https://doi.org/10.1144/IAVCEl002.12, 2009. a
Wilson, G., Wilson, T. M., Deligne, N. I., and Cole, J. W.: Volcanic hazard impacts to critical infrastructure: A review, J. Volcanol. Geoth. Res., 286, 148–182, https://doi.org/10.1016/j.jvolgeores.2014.08.030, 2014. a
Wright, H. M., Vazquez, J. A., Champion, D. E., Calvert, A. T., Mangan, M. T., Stelten, M., Cooper, K. M., Herzig, C., and Jr, A. S.: Episodic Holocene eruption of the Salton Buttes rhyolites, California, from paleomagnetic, U-Th, and dating Heather, Geochem., Geophy. Geosy., 16, 1198–1210, https://doi.org/10.1002/2015GC005714, 2015. a
Zimmermann, L., Avice, G., Blard, P.-H., Marty, B., Füri, E., and Burnard, P. G.: A new all-metal induction furnace for noble gas extraction, Chem. Geol., 480, 86–92, https://doi.org/10.1016/j.chemgeo.2017.09.018, 2018. a
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at...