Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-455-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-455-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cosmogenic nuclide weathering biases: corrections and potential for denudation and weathering rate measurements
Richard F. Ott
CORRESPONDING AUTHOR
Earth Surface Geochemistry, GFZ German Centre for Geoscience Research, Potsdam, Germany
Sean F. Gallen
Department of Geosciences, Colorado State University, Fort Collins,
CO, USA
Darryl E. Granger
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, Purdue, IN, USA
Related authors
Richard Ott, Sean F. Gallen, and David Helman
Earth Surf. Dynam., 11, 247–257, https://doi.org/10.5194/esurf-11-247-2023, https://doi.org/10.5194/esurf-11-247-2023, 2023
Short summary
Short summary
We compile data on carbonate denudation, the sum of mechanical erosion and chemical weathering, from cosmogenic nuclides and use them in conjunction with weathering data to constrain the partitioning of denudation into erosion and weathering. We show how carbonate erosion and weathering respond to different climatic and tectonic conditions and find that variations in denudation partitioning can be used to explain the vastly different morphology of carbonate landscapes on Earth.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Angus Moore and Darryl E. Granger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1009, https://doi.org/10.5194/egusphere-2024-1009, 2024
Short summary
Short summary
Cosmogenic nuclide geochronology requires accurately scaling production rates with altitude. The energy spectrum of cosmic radiation changes with altitude and reactions that are sensitive to different energies may have different scaling behavior. Here, we model the altitude scaling of 36Cl production from Fe and evaluate this model against calibration data. The data are broadly consistent with the prediction of larger altitude scaling factors for 36Cl from Fe than for other reactions.
Richard Ott, Sean F. Gallen, and David Helman
Earth Surf. Dynam., 11, 247–257, https://doi.org/10.5194/esurf-11-247-2023, https://doi.org/10.5194/esurf-11-247-2023, 2023
Short summary
Short summary
We compile data on carbonate denudation, the sum of mechanical erosion and chemical weathering, from cosmogenic nuclides and use them in conjunction with weathering data to constrain the partitioning of denudation into erosion and weathering. We show how carbonate erosion and weathering respond to different climatic and tectonic conditions and find that variations in denudation partitioning can be used to explain the vastly different morphology of carbonate landscapes on Earth.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Marius L. Huber, Maarten Lupker, Sean F. Gallen, Marcus Christl, and Ananta P. Gajurel
Earth Surf. Dynam., 8, 769–787, https://doi.org/10.5194/esurf-8-769-2020, https://doi.org/10.5194/esurf-8-769-2020, 2020
Short summary
Short summary
Large boulders found in two Himalayan valleys show signs of long fluvial transport (>10 km). Paleo-discharges required to mobilize these boulders exceed typical monsoon discharges. Exposure dating shows that a cluster of these boulders was emplaced ca. 5 kyr ago. This period is coeval with a weakening of the Indian monsoon and glacier retreat in the area. We, therefore, suggest that glacier lake outburst floods are likely mechanisms that can explain these exceptional transport processes.
Related subject area
Cosmogenic nuclide dating
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand
Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz
Regional beryllium-10 production rate for the mid-elevation mountainous regions in central Europe, deduced from a multi-method study of moraines and lake sediments in the Black Forest
Technical Note: Altitude scaling of 36Cl production from Fe
Short communication: Cosmogenic noble gas depletion in soils by wildfire heating
Early Holocene ice retreat from Isle Royale in the Laurentian Great Lakes constrained with 10Be exposure-age dating
Technical note: Studying lithium metaborate fluxes and extraction protocols with a new, fully automated in situ cosmogenic 14C processing system at PRIME Lab
Cosmogenic 10Be in pyroxene: laboratory progress, production rate systematics, and application of the 10Be–3He nuclide pair in the Antarctic Dry Valleys
Technical note: A software framework for calculating compositionally dependent in situ 14C production rates
10Be age control of glaciation in the Beartooth Mountains, USA, from the latest Pleistocene through the Holocene
Constraining the aggradation mode of Pleistocene river deposits based on cosmogenic radionuclide depth profiling and numerical modelling
Technical note: Evaluating a geographical information system (GIS)-based approach for determining topographic shielding factors in cosmic-ray exposure dating
Combined linear-regression and Monte Carlo approach to modeling exposure age depth profiles
Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes
Technical note: Accelerator mass spectrometry of 10Be and 26Al at low nuclide concentrations
Reconciling the apparent absence of a Last Glacial Maximum alpine glacial advance, Yukon Territory, Canada, through cosmogenic beryllium-10 and carbon-14 measurements
Cosmogenic ages indicate no MIS 2 refugia in the Alexander Archipelago, Alaska
In situ-produced cosmogenic krypton in zircon and its potential for Earth surface applications
Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica
Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis
Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite
Calibrating a long-term meteoric 10Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced 10Be depth profiles
Delayed and rapid deglaciation of alpine valleys in the Sawatch Range, southern Rocky Mountains, USA
Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating
Isolation of quartz for cosmogenic in situ 14C analysis
Chlorine-36∕beryllium-10 burial dating of alluvial fan sediments associated with the Mission Creek strand of the San Andreas Fault system, California, USA
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024, https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Short summary
We present an improved workflow for extracting and measuring chlorine isotopes in rocks and minerals. Experiments on seven geologic samples demonstrate that our workflow provides reliable results while offering several distinct advantages over traditional methods. Most notably, our workflow reduces the amount of isotopically enriched chlorine spike used per rock sample by up to 95 %, which will allow researchers to analyze more samples using their existing laboratory supplies.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Angus Moore and Darryl E. Granger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1009, https://doi.org/10.5194/egusphere-2024-1009, 2024
Short summary
Short summary
Cosmogenic nuclide geochronology requires accurately scaling production rates with altitude. The energy spectrum of cosmic radiation changes with altitude and reactions that are sensitive to different energies may have different scaling behavior. Here, we model the altitude scaling of 36Cl production from Fe and evaluate this model against calibration data. The data are broadly consistent with the prediction of larger altitude scaling factors for 36Cl from Fe than for other reactions.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Eric W. Portenga, David J. Ullman, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee
Geochronology, 5, 413–431, https://doi.org/10.5194/gchron-5-413-2023, https://doi.org/10.5194/gchron-5-413-2023, 2023
Short summary
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
Nathaniel Lifton, Jim Wilson, and Allie Koester
Geochronology, 5, 361–375, https://doi.org/10.5194/gchron-5-361-2023, https://doi.org/10.5194/gchron-5-361-2023, 2023
Short summary
Short summary
We describe a new, fully automated extraction system for in situ 14C at PRIME Lab that incorporates more reliable components and designs than our original systems. We use a LiBO2 flux to dissolve a quartz sample in oxygen after removing contaminant 14C with a lower-temperature combustion step. Experiments with new Pt/Rh sample boats demonstrated reduced procedural blanks, and analyses of well-characterized intercomparison materials tested the effects of process variables on 14C yields.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Alexandria J. Koester and Nathaniel A. Lifton
Geochronology, 5, 21–33, https://doi.org/10.5194/gchron-5-21-2023, https://doi.org/10.5194/gchron-5-21-2023, 2023
Short summary
Short summary
In situ 14C’s short half-life (5.7 kyr) is unique among cosmogenic nuclides, making it sensitive to complex exposure and burial histories since 25 ka. Current extraction methods focus on quartz, but the ability to extract it from other minerals would expand applications. We developed MATLAB® scripts to calculate in situ 14C production rates from a broad range of mineral compositions. Results confirm O, Si, Al, and Mg as key targets but also find significant production from Na for the first time.
Aaron M. Barth, Elizabeth G. Ceperley, Claire Vavrus, Shaun A. Marcott, Jeremy D. Shakun, and Marc W. Caffee
Geochronology, 4, 731–743, https://doi.org/10.5194/gchron-4-731-2022, https://doi.org/10.5194/gchron-4-731-2022, 2022
Short summary
Short summary
Deposits left behind by past glacial activity provide insight into the previous size and behavior of glaciers and act as another line of evidence for past climate. Here we present new age control for glacial deposits in the mountains of Montana and Wyoming, United States. While some deposits indicate glacial activity within the last 2000 years, others are shown to be older than previously thought, thus redefining the extent of regional Holocene glaciation.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Yiran Wang and Michael E. Oskin
Geochronology, 4, 533–549, https://doi.org/10.5194/gchron-4-533-2022, https://doi.org/10.5194/gchron-4-533-2022, 2022
Short summary
Short summary
When first introduced together with the depth profile technique to determine the surface exposure age, the linear inversion approach has suffered with the drawbacks of not incorporating erosion and muons into calculation. In this paper, we increase the accuracy and applicability of the linear inversion approach by fully considering surface erosion, muogenic production, and radioactive decay, while maintaining its advantage of being straightforward to determine an exposure age.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Brent M. Goehring, Brian Menounos, Gerald Osborn, Adam Hawkins, and Brent Ward
Geochronology, 4, 311–322, https://doi.org/10.5194/gchron-4-311-2022, https://doi.org/10.5194/gchron-4-311-2022, 2022
Short summary
Short summary
We explored surface exposure dating with two nuclides to date two sets of moraines from the Yukon Territory and explain the reasoning for the observed ages. Results suggest multiple processes, including preservation of nuclides from a prior exposure period, and later erosion of the moraines is required to explain the data. Our results only allow for the older moraines to date to Marine Isotope Stage 3 or 4 and the younger moraines to date to the very earliest Holocene.
Caleb K. Walcott, Jason P. Briner, James F. Baichtal, Alia J. Lesnek, and Joseph M. Licciardi
Geochronology, 4, 191–211, https://doi.org/10.5194/gchron-4-191-2022, https://doi.org/10.5194/gchron-4-191-2022, 2022
Short summary
Short summary
We present a record of ice retreat from the northern Alexander Archipelago, Alaska. During the last ice age (~ 26 000–19 000 years ago), these islands were covered by the Cordilleran Ice Sheet. We tested whether islands were ice-free during the last ice age for human migrants moving from Asia to the Americas. We found that these islands became ice-free between ~ 15 100 years ago and ~ 16 000 years ago, and thus these islands were not suitable for human habitation during the last ice age.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Joseph P. Tulenko, William Caffee, Avriel D. Schweinsberg, Jason P. Briner, and Eric M. Leonard
Geochronology, 2, 245–255, https://doi.org/10.5194/gchron-2-245-2020, https://doi.org/10.5194/gchron-2-245-2020, 2020
Short summary
Short summary
We investigate the timing and rate of retreat for three alpine glaciers in the southern Rocky Mountains to test whether they followed the pattern of global climate change or were majorly influenced by regional forcing mechanisms. We find that the latter is most likely for these glaciers. Our conclusions are based on a new 10Be chronology of alpine glacier retreat. We quantify retreat rates for each valley using the BACON program in R, which may be of interest for the audience of Geochronology.
Greg Balco
Geochronology, 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020, https://doi.org/10.5194/gchron-2-169-2020, 2020
Short summary
Short summary
Geologic dating methods generally do not directly measure ages. Instead, interpreting a geochemical measurement as an age requires a middle layer of calculations and supporting data, and the fact that this layer continually improves is an obstacle to synoptic analysis of geochronological data. This paper describes a prototype data management and analysis system that addresses this obstacle by making the middle-layer calculations transparent and dynamic to the user.
Keir A. Nichols and Brent M. Goehring
Geochronology, 1, 43–52, https://doi.org/10.5194/gchron-1-43-2019, https://doi.org/10.5194/gchron-1-43-2019, 2019
Short summary
Short summary
We describe observations of anomalously high measurements of C-14 made from geologic material. We undertake a systematic investigation to identify the source of contamination, which we hypothesise is sourced from a commonly used method that is used prior to sample analysis. We find that the method does introduce modern carbon to samples and elevates C-14 measurements. We describe a standard procedure that effectively removes contamination from the aforementioned method.
Greg Balco, Kimberly Blisniuk, and Alan Hidy
Geochronology, 1, 1–16, https://doi.org/10.5194/gchron-1-1-2019, https://doi.org/10.5194/gchron-1-1-2019, 2019
Short summary
Short summary
This article applies a new geochemical dating method to determine the age of sedimentary deposits useful in reconstructing slip rates on a major fault system.
Cited articles
Aguilar, G., Carretier, S., Regard, V., Vassallo, R., Riquelme, R., and Martinod, J.: Grain size-dependent 10Be concentrations in alluvial stream sediment of the Huasco Valley, a semi-arid Andes region, Quat. Geochronol., 19, 163–172, https://doi.org/10.1016/j.quageo.2013.01.011, 2014.
Avni, S., Joseph-Hai, N., Haviv, I., Matmon, A., Benedetti, L., and Team, A.:
Patterns and rates of 103–105 yr denudation in carbonate terrains under
subhumid to subalpine climatic gradient, Mount Hermon, Israel, GSA Bull.,
131, 899–912, https://doi.org/10.1130/B31973.1, 2018.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quat. Geochronol., 39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001, 2017.
Belmont, P., Pazzaglia, F. J., and Gosse, J. C.: Cosmogenic 10Be as a tracer for hillslope and channel sediment dynamics in the Clearwater River, western Washington State, Earth Planet. Sci. Lett., 264, 123–135,
https://doi.org/10.1016/j.epsl.2007.09.013, 2007.
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D. L.: Production
of cosmogenic radionuclides at great depth, Earth Planet. Sci. Lett.,
309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Braucher, R., Bourlès, D., Merchel, S., Vidal Romani, J.,
Fernadez-Mosquera, D., Marti, K., Léanni, L., Chauvet, F., Arnold, M.,
Aumaître, G., and Keddadouche, K.: Determination of muon attenuation
lengths in depth profiles from in situ produced cosmogenic nuclides,
Nucl. Instrum. Meth. B, 294, 484–490, 2013.
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F.:
Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico, Earth Planet. Sci. Lett., 129, 193–202, https://doi.org/10.1016/0012-821X(94)00249-X, 1995.
Campbell, M. K., Bierman, P. R., Schmidt, A. H., Sibello Hernández, R., García-Moya, A., Corbett, L. B., Hidy, A., Cartas Águila, H., Guillén Arruebarrena, A., Balco, G., Dethier, D., and Caffee, M.: Cosmogenic nuclide and solute flux data from central Cuba emphasize the importance of both physical and chemical denudation in highly weathered landscapes, Geochronology Discuss. [preprint], https://doi.org/10.5194/gchron-2021-31, in review, 2021.
Carretier, S. and Regard, V.: Is it possible to quantify pebble abrasion and
velocity in rivers using terrestrial cosmogenic nuclides?, J. Geophys. Res.,
116, F04003, https://doi.org/10.1029/2011JF001968, 2011.
Carretier, S., Regard, V., and Soual, C.: Theoretical cosmogenic nuclide
concentration in river bed load clasts: Does it depend on clast size?, Quat.
Geochronol., 4, 108–123, https://doi.org/10.1016/j.quageo.2008.11.004, 2009.
Darwin, C.: On the Origin of Species, 1st edn., Murray, London, UK, https://doi.org/10.4324/9780203509104, 1859.
Dixon, J. L., Heimsath, A. M., and Amundson, R.: The critical role of climate
and saprolite weathering in landscape evolution, Earth Surf. Proc.
Land., 34, 1507–1521, https://doi.org/10.1002/esp.1836, 2009.
Dürr, H. H., Meybeck, M., and Dürr, S. H.: Lithologic composition of
the Earth's continental surfaces derived from a new digital map emphasizing
riverine material transfer, Global Biogeochem. Cy., 19, GB4S10,
https://doi.org/10.1029/2005GB002515, 2005.
Erlanger, E. D., Rugenstein, J. K. C., Bufe, A., Picotti, V., and Willett, S.
D.: Controls on Physical and Chemical Denudation in a Mixed
Carbonate-Siliciclastic Orogen, J. Geophys. Res.-Earth, 126,
e2021JF006064, https://doi.org/10.1029/2021JF006064, 2021.
Gabet, E. J. and Mudd, S. M.: A theoretical model coupling chemical
weathering rates with denudation rates, Geology, 37, 151–154,
https://doi.org/10.1130/G25270A.1, 2009.
Godard, V., Ollivier, V., Bellier, O., Miramont, C., Shabanian, E., Fleury,
J., Benedetti, L., and Guillou, V.: Weathering-limited hillslope evolution in
carbonate landscapes, Earth Planet. Sci. Lett., 446, 10–20,
https://doi.org/10.1016/j.epsl.2016.04.017, 2016.
Granger, D. E. and Smith, A. L.: Dating buried sediments using radioactive
decay and muogenic production of 26Al and 10Be, Nucl. Instrum. Meth. B, 172, 822–826, https://doi.org/10.1016/s0168-583x(00)00087-2, 2000.
Gunn, J.: Limestone solution rates and processes in the Waitomo District,
New Zealand, Earth Surf. Proc. Land., 6, 427–445,
https://doi.org/10.1002/esp.3290060504, 1981.
Johnston, V. E.: The distribution and systematics of 36Cl in meteoric
waters and cave materials with an assessment of its use as a solar proxy in
speleothems, University College Dublin, Dublin, Ireland, 2010.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sci. Lett., 104, 424–439,
https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lukens, C. E., Riebe, C. S., Sklar, L. S., and Shuster, D. L.: Grain size
bias in cosmogenic nuclide studies of stream sediment in steep terrain, J.
Geophys. Res. Earth Surf., 121, 978–999, https://doi.org/10.1002/2016JF003859, 2016.
Lupker, M., Lavé, J., France-Lanord, C., Christl, M., Bourlès, D., Carcaillet, J., Maden, C., Wieler, R., Rahman, M., Bezbaruah, D., and Xiaohan, L.: 10Be systematics in the Tsangpo-Brahmaputra catchment: the cosmogenic nuclide legacy of the eastern Himalayan syntaxis, Earth Surf. Dynam., 5, 429–449, https://doi.org/10.5194/esurf-5-429-2017, 2017.
Marrero, S. M., Phillips, F. M., Borchers, B., Lifton, N., Aumer, R., and
Balco, G.: Cosmogenic nuclide systematics and the CRONUScalc program, Quat.
Geochronol., 31, 160–187, https://doi.org/10.1016/j.quageo.2015.09.005, 2016.
Matsushi, Y., Sasa, K., Takahashi, T., Sueki, K., Nagashima, Y., and
Matsukura, Y.: Denudation rates of carbonate pinnacles in Japanese karst
areas, Nucl. Instrum. Meth. B, 268, 1205–1208, https://doi.org/10.1016/j.nimb.2009.10.134, 2010.
McLennan, S. M.: Weathering and Global Denudation, J. Geol., 101,
295–303, https://doi.org/10.1086/648222, 1993.
Ott, R. F.: How Lithology Impacts Global Topography, Vegetation, and Animal
Biodiversity: A Global-Scale Analysis of Mountainous Regions, Geophys. Res.
Lett., 47, e2020GL088649, https://doi.org/10.1029/2020GL088649, 2020.
Ott, R. F.: WeCode – Weathering Corrections for denudation rates V. 1.0, GFZ
Data Serv. [code], https://doi.org/10.5880/GFZ.4.6.2022.001, 2022.
Ott, R. F., Gallen, S. F., Caves-Rugenstein, J. K., Ivy-Ochs, S., Helman,
D., Fassoulas, C., Vockenhuber, C., Christl, M., and Willett, S. D.: Chemical
versus mechanical denudation in meta-clastic and carbonate bedrock
catchments on Crete, Greece, and mechanisms for steep and high carbonate
topography, J. Geophys. Res.-Earth, 124, 2943–2961, https://doi.org/10.1029/2019JF005142, 2019.
Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface
with 10Be, GSA Today, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
Puchol, N., Lavé, J. Ô., Lupker, M., Blard, P. H., Gallo, F., and
France-Lanord, C.: Grain-size dependent concentration of cosmogenic 10Be and erosion dynamics in a landslide-dominated Himalayan watershed,
Geomorphology, 224, 55–68, https://doi.org/10.1016/j.geomorph.2014.06.019, 2014.
Riebe, C. S. and Granger, D. E.: Quantifying effects of deep and
near-surface chemical erosion on cosmogenic nuclides in soils, saprolite,
and sediment, Earth Surf. Proc. Land., 38, 523–533,
https://doi.org/10.1002/esp.3339, 2013.
Riebe, C. S., Kirchner, J. W., and Granger, D. E.: Quantifying quart
enrichment and its consequences for cosmogenic measurements of erosion rates
from alluvial sediment and regolith, Geomorphology, 40, 15–19,
https://doi.org/10.1016/S0169-555X(01)00031-9, 2001.
Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Long-term rates of chemical
weathering and physical erosion from cosmogenic nuclides and geochemical
mass balance, Geochim. Cosmochim. Acta, 67, 4411–4427,
https://doi.org/10.1016/S0016-7037(03)00382-X, 2003.
Ryb, U., Matmon, A., Erel, Y., Haviv, I., Katz, A., Starinsky, A., Angert,
A., and Team, A.: Controls on denudation rates in tectonically stable
Mediterranean carbonate terrain, GSA Bull., 126, 553–568,
https://doi.org/10.1130/B30886.1, 2014a.
Ryb, U., Matmon, A., Erel, Y., Haviv, I., Benedetti, L., and Hidy, A. J.:
Styles and rates of long-term denudation in carbonate terrains under a
Mediterranean to hyper-arid climatic gradient, Earth Planet. Sci. Lett.,
406, 142–152, https://doi.org/10.1016/j.epsl.2014.09.008, 2014b.
Simms, M. J.: Tortoises and hares: dissolution, erosion and isostasy in
landscape evolution, Earth Surf. Proc. Land., 29, 477–494,
https://doi.org/10.1002/esp.1047, 2004.
Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S.,
Lukens, C. L., and Merces, V.: The problem of predicting the size
distribution of sediment supplied by hillslopes to rivers, Geomorphology,
277, 31–49, https://doi.org/10.1016/j.geomorph.2016.05.005, 2017.
Small, E. E., Anderson, R. S., and Hancock, G. S.: Estimates of the rate of
regolith production using 10Be and 26Al from an alpine hillslope,
Geomorphology, 27, 131–150, https://doi.org/10.1016/S0169-555X(98)00094-4, 1999.
Stone, J., Allan, G. L., Fifield, L. K., Evans, J. M., and Chivas, A. R.:
Limestone erosion measurements with cosmogenic chlorine-36 in calcite –
preliminary results from Australia, Nucl. Instrum. Meth. B,
92, 311–316, https://doi.org/10.1016/0168-583X(94)96025-9, 1994.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Thomas, F., Godard, V., Bellier, O., Shabanian, E., Ollivier, V., Benedetti,
L., Rizza, M., Espurt, N., Guillou, V., Hollender, F., and Molliex, S.:
Morphological controls on the dynamics of carbonate landscapes under a
mediterranean climate, Terra Nov., 29, 173–182, https://doi.org/10.1111/ter.12260,
2017.
Thomas, F., Godard, V., Bellier, O., Benedetti, L., Ollivier, V., Rizza, M.,
Guillou, V., Hollender, F., Aumaître, G., Bourlès, D. L., and
Keddadouche, K.: Limited influence of climatic gradients on the denudation
of a Mediterranean carbonate landscape, Geomorphology, 316, 44–58,
https://doi.org/10.1016/j.geomorph.2018.04.014, 2018.
von Blanckenburg, F.: The control mechanisms of erosion and weathering at
basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sci.
Lett., 237, 462–479, https://doi.org/10.1016/j.epsl.2005.06.030, 2005.
Worthington, S. R. H. and Smart, C. C.: Groundwater in karst: conceptual
models, in Encyclopedia of Caves and Karst Science, edited by: Gunn, J., Fitzroy Dearborn, 399–401, ISBN 9781579583996, 2004.
Xu, S., Liu, C., Freeman, S., Lang, Y., Schnabel, C., Tu, C., Wilcken, K., and Zhao, Z.: In-situ cosmogenic 36Cl denudation rates of carbonates in
Guizhou karst area, Chinese Sci. Bull., 58, 2473–2479,
https://doi.org/10.1007/s11434-013-5756-8, 2013.
Short summary
Cosmogenic nuclides are a tool to quantify denudation – the total removal of mass from near the Earth's surface. Chemical weathering can introduce biases to cosmogenic-nuclide-based denudation rates measurements. Here, we investigate the effects of weathering on cosmogenic nuclides and develop tools to correct for this influence. Our results highlight which additional measurements are required to determine accurate denudation rates in regions where weathering is not negligible.
Cosmogenic nuclides are a tool to quantify denudation – the total removal of mass from near the...