Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ-produced cosmogenic krypton in zircon and its potential for Earth surface applications
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Steven Andrew Binnie
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Axel Gerdes
Institute for Geosciences, Goethe University Frankfurt,
Altenhöferallee 1, 60438 Frankfurt am Main, Germany
Related authors
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Jesse B. Walters, Joshua M. Garber, Aratz Beranoaguirre, Leo J. Millonig, Axel Gerdes, Tobias Grützner, and Horst R. Marschall
Geochronology, 7, 309–333, https://doi.org/10.5194/gchron-7-309-2025, https://doi.org/10.5194/gchron-7-309-2025, 2025
Short summary
Short summary
Garnet U–Pb dating is useful for dating geologic events. However, contamination by U-rich minerals included in garnet is a risk. Inclusions are often spotted by high-U spikes or large errors in the age. We dated garnets in metamorphic rocks and calculated ages 10–15 Myr older than expected, reflecting contamination by the mineral zircon. We provide recommendations for identifying contamination and suggest that the bulk dating of zircon inclusions in garnet may also provide valuable information.
Volker Wennrich, Julia Diederich-Leicher, Bárbara Nataly Blanco-Arrué, Christoph Büttner, Stefan Buske, Eduardo Campos Sepulveda, Tibor Dunai, Jacob Feller, Emma Galego, Ascelina Hasberg, Niklas Leicher, Damián Alejandro López, Jorge Maldonado, Alicia Medialdea, Lukas Ninnemann, Russell Perryman, Juan Cristóbal Ríos-Contesse, Benedikt Ritter, Stephanie Scheidt, Barbara Vargas-Machuca, Pritam Yogeshwar, and Martin Melles
Sci. Dril., 34, 1–20, https://doi.org/10.5194/sd-34-1-2025, https://doi.org/10.5194/sd-34-1-2025, 2025
Short summary
Short summary
We present the results of comprehensive pre-site surveys and deep drillings in two clay pans in the central Atacama Desert of northern Chile, one of the driest deserts on Earth. The results of the site surveys as well as lithological and downhole-logging data of the deep-drilling operations highlight the potential of the sediment records from the PAG (Playa Adamito Grande) and Paranal clay pans to provide unprecedented information on the Neogene precipitation history of the hyperarid core of the Atacama Desert.
Aline Zinelabedin, Joel Mohren, Maria Wierzbicka-Wieczorek, Tibor Janos Dunai, Stefan Heinze, and Benedikt Ritter
Earth Surf. Dynam., 13, 257–276, https://doi.org/10.5194/esurf-13-257-2025, https://doi.org/10.5194/esurf-13-257-2025, 2025
Short summary
Short summary
In order to interpret the formation processes of subsurface salt wedges and polygonal patterned grounds from the northern Atacama Desert, we present a multi-methodological approach. Due to the high salt content of the wedges, we suggest that their formation is dominated by subsurface salt dynamics requiring moisture. We assume that the climatic conditions during the wedge growth were slightly wetter than today, offering the potential to use the wedges as palaeoclimate archives.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
Benedikt Ritter, Richard Albert, Aleksandr Rakipov, Frederik M. Van der Wateren, Tibor J. Dunai, and Axel Gerdes
Geochronology, 5, 433–450, https://doi.org/10.5194/gchron-5-433-2023, https://doi.org/10.5194/gchron-5-433-2023, 2023
Short summary
Short summary
Chronological information on the evolution of the Namib Desert is scarce. We used U–Pb dating of silcretes formed by pressure solution during calcrete formation to track paleoclimate variability since the Late Miocene. Calcrete formation took place during the Pliocene with an abrupt cessation at 2.9 Ma. The end took place due to deep canyon incision which we dated using TCN exposure dating. With our data we correct and contribute to the Neogene history of the Namib Desert and its evolution.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Cited articles
Arblaster, J. W.: Thermodynamic Properties of Tantalum, J. Phase
Equilib. Diff., 39, 255–272, https://doi.org/10.1007/s11669-018-0627-2, 2018.
Aregbe, Y., Valkiers, S., Mayer, K., and DeBievre, P.: Comparative isotopic
measurements on xenon and krypton, Int. J. Mass
Spectrom., 153, L1–L5, https://doi.org/10.1016/0168-1176(96)04368-6,
1996.
Australian Vermiculite Industries: Mine
Closure Plan Mud Tank Operation MIN 165, available at: https://geoscience.nt.gov.au/gemis/ntgsjspui/bitstream/1/80230/3/MLS165_2014_AS_03_APPENDIX2_MCP.pdf (last access: 16 January 2022), 2013.
Baglin, C. M.: Nuclear Data Sheets for A = 81, Nucl. Data Sheets, 109,
2257–2437, https://doi.org/10.1016/j.nds.2008.09.001, 2008.
Balco, G.: Glacier Change and Paleoclimate Applications of
Cosmogenic-Nuclide Exposure Dating, Annu. Rev. Earth Pl.
Sc., 48, 21–48, https://doi.org/10.1146/annurev-earth-081619-052609, 2020.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements, Quat. Geochronol., 3,
174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., and Fisher, N. I.:
Igneous zircon: trace element composition as an indicator of source rock
type, Contrib. Mineral. Petr., 143, 602–622,
https://doi.org/10.1007/s00410-002-0364-7, 2002.
Binnie, S. A., Dunai, T. J., Voronina, E., Goral, T., Heinze, S., and
Dewald, A.: Separation of Be and Al for AMS using single-step column
chromatography, Nucl. Instrum. Meth. B, 361, 397–401, https://doi.org/10.1016/j.nimb.2015.03.069, 2015.
Binnie, S. A., Dewald, A., Heinze, S., Voronina, E., Hein, A., Wittmann, H.,
von Blanckenburg, F., Hetzel, R., Christl, M., Schaller, M., Leanni, L.,
Hippe, K., Vockenhuber, C., Ivy-Ochs, S., Maden, C., Fulop, R. H., Fink, D.,
Wilcken, K. M., Fujioka, T., Fabel, D., Freeman, S., Xu, S., Fifield, L. K.,
Akcar, N., Spiegel, C., Dunai, T. J., Aumaitre, G., Bourles, D. L.,
Keddadouche, K., and Team, A.: Preliminary results of CoQtz-N: A quartz
reference material for terrestrial in situ cosmogenic 10Be and 26Al
measurements, Nucl. Instrum. Meth. B, 456, 203–212,
https://doi.org/10.1016/j.nimb.2019.04.073, 2019.
Bohn, U. and Gollub, G.: The use and application of the map of the natural
vegetation of Europe with particular refernce to Germany, Biol.
Environ., 106B, 199–213, 2006.
Broadley, M. W., Barry, P. H., Bekaert, D. V., Byrne, D. J., Caracausi, A.,
Ballentine, C. J., and Marty, B.: Identification of chondritic krypton and
xenon in Yellowstone gases and the timing of terrestrial volatile accretion,
P. Natl. Acad. Sci. USA, 117, 13997–14004, https://doi.org/10.1073/pnas.2003907117, 2020.
Buizert, C., Baggenstos, D., Jiang, W., Purtschert, R., Petrenko, V. V., Lu,
Z. T., Muller, P., Kuhl, T., Lee, J., Severinghaus, J. P., and Brook, E. J.:
Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier,
Antarctica, P. Natl. Acad. Sci. USA, 111, 6876–6881, https://doi.org/10.1073/pnas.1320329111, 2014.
Burgess, R., Cartigny, P., Harrison, D., Hobson, E., and Harris, J.:
Volatile composition of microinclusions in diamonds from the Panda
kimberlite, Canada: Implications for chemical and isotopic heterogeneity in
the mantle, Geochim. Cosmochim. Ac., 73, 1779–1794,
https://doi.org/10.1016/j.gca.2008.12.025, 2009.
Burke, K., and Gunnell, Y.: The African Erosion
Surface: A Continental-Scale Synthesis of Geomorphology, Tectonics, and
Environmental Change over the Past 180 Million Years, in: The African
Erosion Surface: A Continental-Scale Synthesis of Geomorphology, Tectonics,
and Environmental Change over the Past 180 Million Years, Geological Society
of America, vol. 201, 1–66, ISBN 9780813712017, https://doi.org/10.1130/2008.1201, 2008.
Burnard, P., Zimmermann, L., and Sano, Y.: The Noble Gases as Geochemical
Tracers: History and Background, in: The Noble Gases as Geochemical Tracers,
edited by: Burnard, P., Springer Berlin Heidelberg, Berlin, Heidelberg,
1–15, https://doi.org/10.1007/978-3-642-28836-4_1, 2013.
Chorowicz, J.: The East African rift system, J. Afr. Earth
Sci., 43, 379–410, https://doi.org/10.1016/j.jafrearsci.2005.07.019,
2005.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin,
V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene
transition: characteristics, mechanisms, and implications for long-term
changes in atmospheric pCO2, Quaternary Sci. Rev., 25, 3150–3184,
2006.
Crohn, P. W. and Moore, D. H.: The Mud Tank carbonatite, Strangways Range,
Central Australia, BMR J. Aust. Geol. Geop., 9,
13–18, 1984.
Currie, K. L., Knutson, J., and Temby, P. A.: The Mud Tank carbonatite
complex, Central Australia – An example of metasomatism at midcrustal
levels, Contrib. Mineral. Petr., 109, 326–339,
https://doi.org/10.1007/bf00283322, 1992.
Delattre, S., Utsunomiya, S., Ewing, R. C., Boeglin, J. L., Braun, J. J.,
Balan, E., and Calas, G.: Dissolution of radiation-damaged zircon in
lateritic soils, Am. Mineral., 92, 1978–1989, https://doi.org/10.2138/am.2007.2514,
2007.
Dessert, C., Dupré, B., Gaillardet, J., François, L. M., and
Allègre, C. J.: Basalt weathering laws and the impact of basalt
weathering on the global carbon cycle, Chem. Geol., 202, 257–273,
https://doi.org/10.1016/j.chemgeo.2002.10.001, 2003.
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J.,
Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von
Blanckenburg, F., and Klein, M.: CologneAMS, a dedicated center for
accelerator mass spectrometry in Germany, Nucl. Instrum. Meth. B,
294, 18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013.
Dunai, T. J.: Cosmogenic Nuclides: Principles, concepts and applications in
the Earth surface sciences, 1st edn., Cambridge University Press, https://doi.org/10.1017/CBO9780511804519, 2010.
Dunai, T. J., Stuart, F. M., Pik, R., Burnard, P., and Gayer, E.: Production
of 3He in crustal rocks by cosmogenic thermal neutrons, Earth Planet.
Sc. Lett., 258, 228–236, https://doi.org/10.1016/j.epsl.2007.03.031, 2007.
Ehlers, J. and Gibbard, P. L.: The extent and chronology of Cenozoic Global
Glaciation, Quatern. Int., 164–165, 6–20,
https://doi.org/10.1016/j.quaint.2006.10.008, 2007.
Eikenberg, J., Signer, P., and Wieler, R.: U-Xe, U-Kr, and U-Pb systematics
for uranium minerals and investigations of the production of nucleogenic
neon and argon, Geochim. Cosmochim. Ac., 57, 1053–1069, 1993.
Eissmann, L.: Quaternary geology of eastern Germany (Saxony, Saxon–Anhalt,
South Brandenburg, Thüringia), type area of the Elsterian and Saalian
Stages in Europe, Quaternary Sci. Rev., 21, 1275–1346,
https://doi.org/10.1016/S0277-3791(01)00075-0, 2002.
Ewing, R. C., Meldrum, A., Wang, L. M., Weber, W. J., and Corrales, L. R.:
Radiation effects in zircon, in: Zircon, edited by: Hanchar, J. M. and
Hoskin, P. W. O., Rev. Mineral. Geochem., 53, 387–425,
https://doi.org/10.2113/0530387, 2003.
Ewing, R. C., Haaker, R. F., and Lutze, W.: Leachability of Zircon as a
Function of Alpha Dose, MRS Online Proceedings Library, 11, 389,
https://doi.org/10.1557/PROC-11-389, 2011.
Farley, K. A.: He diffusion systematics in minerals: Evidence from synthetic
monazite and zircon structure phosphates, Geochim. Cosmochim. Ac., 71,
4015–4052, 2007.
Gain, S. E. M., Greau, Y., Henry, H., Belousova, E., Dainis, I., Griffin, W.
L., and O'Reilly, S. Y.: Mud Tank Zircon: Long-Term Evaluation of a
Reference Material for U-Pb Dating, Hf-Isotope Analysis and Trace Element
Analysis, Geostand. Geoanal. Res., 43, 339–354,
https://doi.org/10.1111/ggr.12265, 2019.
Gautheron, C. E., Tassan-Got, L., and Farley, K. A.: (U–Th) Ne chronometry, Earth Planet. Sc. Lett., 243, 520–535, https://doi.org/10.1016/j.epsl.2006.01.025, 2006.
Gerdes, A. and Zeh, A.: Zircon formation versus zircon alteration – New
insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and
consequences for the interpretation of Archean zircon from the Central Zone
of the Limpopo Belt, Chem. Geol., 261, 230–243,
https://doi.org/10.1016/j.chemgeo.2008.03.005, 2009.
Gibbard, P. L. and Lewin, J.: River incision and terrace formation in the
Late Cenozoic of Europe, Tectonophysics, 474, 41–55,
https://doi.org/10.1016/j.tecto.2008.11.017, 2009.
Gilabert, E., Lavielle, B., Michel, R., Leya, I., Neumann, S., and Herpers,
U.: Production of krypton and xenon isotopes in thick stony and iron targets
isotropically irradiated with 1600 MeV protons, Meteorit. Planet.
Sci., 37, 951–976, https://doi.org/10.1111/j.1945-5100.2002.tb00869.x, 2002.
Goodfellow, B. and Boelhouwers, J.: Hillslope Processes in Cold Environments: An illustration of High Latitude Hillslope Processes and Forms, in:
Treatise of Geomorphology, edited by: John, F. S., Elsevier, 320–336, ISBN 9780123747396, 2013.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides:
theory and application, Quaternary Sci. Rev., 20, 1475–1560, 2001.
Granger, D. E. and Riebe, C. S.: 7.12 – Cosmogenic Nuclides in Weathering
and Erosion, in: Treatise on Geochemistry, second edn., edited by:
Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 401–436,
https://doi.org/10.1016/B978-0-08-095975-7.00514-3, 2014.
Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L.,
Cheadle, M. J., Hanghoj, K., and Schwartz, J. J.: Trace element chemistry of
zircons from oceanic crust: A method for distinguishing detrital zircon
provenance, Geology, 35, 643–646, https://doi.org/10.1130/g23603a.1, 2007.
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester,
G.: Helium diffusion in natural zircon: radiation damage, anisotropy, and
the interpretation of zircon (U-Th) He thermochronology, Am. J.
Sci., 313, 145–198, https://doi.org/10.2475/03.2013.01, 2013.
Haeuselmann, P., Granger, D. E., Jeannin, P. Y., and Lauritzen, S. E.:
Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in
Switzerland, Geology, 35, 143–146, 2007.
Harrison, T., Msuya, C. P., Murray, A. M., Jacobs, B. F., Báez, A. M.,
Mundil, R., and Ludwig, K. R.: Paleontological Investigations at the Eocene
Locality of Mahenge in North-Central Tanzania, East Africa, in: Eocene
Biodiversity: Unusual Occurrences and Rarely Sampled Habitats, edited by:
Gunnell, G. F., Springer US, Boston, MA, 39-74,
https://doi.org/10.1007/978-1-4615-1271-4_2, 2001.
Head, M. J. and Gibbard, P. L.: Early-middle Pleistocene transitions: the
land-ocean evidence, Geol. Soc. Spec. Publ., 247, 1–18, 2005.
Head, M. J. and Gibbard, P. L.: Early–Middle Pleistocene transitions:
Linking terrestrial and marine realms, Quatern. Int., 389, 7–46,
https://doi.org/10.1016/j.quaint.2015.09.042, 2015.
Hettmann, K., Siebel, W., Spiegel, C., and Reinecker, J.: Granite genesis
and migmatization in the western Aar Massif, Switzerland, Neues Jb.
Miner. Abh., 186, 309–320, https://doi.org/10.1127/0077-7757/2009/0150, 2009.
Hoch, M., Nakata, M., and Johnson, H. L.: Vapor pressure of inorganic
substances. XII. Zirconium Dioxide, J. Am. Soc., 76, 2651–2652, https://doi.org/10.1021/ja01639a014, 1954.
Honda, M., Nutman, A. P., Bennett, V. C., and Yatsevich, I.: Radiogenic,
nucleogenic and fissiogenic noble gas compositions in early Archaean
magmatic zircons from Greenland, Geochem. J., 38, 265–269,
https://doi.org/10.2343/geochemj.38.265, 2004.
Hoskin, P. W. O. and Schaltegger, U.: The composition of zircon and igneous
and metamorphic petrogenesis, in: Zircon, edited by: Hanchar, J. M. and
Hoskin, P. W. O., Rev. Mineral. Geochem., 53, 27–62,
https://doi.org/10.2113/0530027, 2003.
Japan Atomic Energy Agency (JAEA): JENDL FP Fission Yields Data File 2011, JAEA [dataset], available at: https://wwwndc.jaea.go.jp/cgi-bin/FPYfig (last acess: 16 January 2022), 2011.
Jenner, F. E. and O'Neill, H. S.: Analysis of 60 elements in 616 ocean floor
basaltic glasses, Geochem. Geophy. Geosy., 13, Q02005,
https://doi.org/10.1029/2011gc004009, 2012.
Kabete, J. M., Groves, D. I., McNaughton, N. J., and Mruma, A. H.: A new
tectonic and temporal framework for the Tanzanian Shield: Implications for
gold metallogeny and undiscovered endowment, Ore Geol. Rev., 48,
88–124, https://doi.org/10.1016/j.oregeorev.2012.02.009, 2012.
Kaiser, A., Lobert, M., and Telle, R.: Thermal stability of zircon (ZrSiO4),
J. Eur. Ceram. Soc., 28, 2199–2211,
https://doi.org/10.1016/j.jeurceramsoc.2007.12.040, 2008.
Kamenetsky, V. S., Golovin, A. V., Maas, R., Giuliani, A., Kamenetsky, M.
B., and Weiss, Y.: Towards a new model for kimberlite petrogenesis: Evidence
from unaltered kimberlites and mantle minerals, Earth-Sci. Rev., 139,
145–167, https://doi.org/10.1016/j.earscirev.2014.09.004, 2014.
Kaneoka, I.: Rare gas isotopes and mass fractionation: an indicator of gas
transport into or from a magma, Earth Planet. Sc. Lett., 48,
284–292, 1980.
Keller, C. B., Boehnke, P., and Schoene, B.: Temporal variation in relative
zircon abundance throughout Earth history, Geochemical Perspectives Letters,
3, 179–189, https://doi.org/10.7185/geochemlet.1721, 2017.
Kendrick, M. A.: High precision Cl, Br and I determinations in mineral
standards using the noble gas method, Chem. Geol., 292, 116–126,
https://doi.org/10.1016/j.chemgeo.2011.11.021, 2012.
King, L.: The geomorphology of central and southern Africa, in: Biogeography
and Ecology of Southern Africa, edited by: Werger, M. J. A., Springer
Netherlands, Dordrecht, 1–17, https://doi.org/10.1007/978-94-009-9951-0_1,
1978.
Kober, F., Ivy-Ochs, S., Zeilinger, G., Schlunegger, F., Kubik, P. W., Baur,
H., and Wieler, R.: Complex multiple cosmogenic nuclide concentration and
histories in the arid Rio Lluta catchment, northern Chile, Earth Surf.
Proc. Land., 34, 398–412, https://doi.org/10.1002/esp.1748, 2009.
Kohl, C. and Nishiizumi, K.: Chemical isolation of quartz for measurement of
in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56,
3583–3587, 1992.
Kreklow, J., Tetzlaff, B., Kuhnt, G., and Burkhard, B.: A Rainfall
Data Intercomparison Dataset of RADKLIM, RADOLAN,
and Rain Gauge Data for Germany, Data, 4, 118, https://doi.org/10.3390/data4030118, 2019.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, 1991.
Larsen, I. J., Farley, K. A., and Lamb, M. P.: Cosmogenic 3He production
rate in ilmenite and the redistribution of spallation 3He in fine-grained
minerals, Geochim. Cosmochim. Ac., 265, 19–31,
https://doi.org/10.1016/j.gca.2019.08.025, 2019.
Lerner, J.: Half-life of 85Kr, J. Inorg. Nucl. Chem.,
25, 749–757, https://doi.org/10.1016/0022-1902(63)80357-7, 1963.
Leya, I., Gilabert, E., Lavielle, B., Wiechert, U., and Wieler, R.:
Production rates for cosmogenic krypton and argon isotopes in H-Chondrites
with known 36Cl-36Ar ages, Antarct. Meteorite Res., 17, 185–199,
2004.
Leya, I., Dalcher, N., Vogel, N., Wieler, R., Caffee, M. W., Welten, K. C.,
and Nishiizumi, K.: Calibration of cosmogenic noble gas production based on
36Cl-36Ar ages. Part 2. The 81Kr-Kr dating technique, Meteorit.
Planet. Sci., 50, 1863–1879, https://doi.org/10.1111/maps.12515, 2015.
Lifshitz, M. and Singer, P.: Nuclear excitation function and particle
emission from complex nuclei following muon capture, Phys. Rev. C, 22,
2135–2150, https://doi.org/10.1103/PhysRevC.22.2135, 1980.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sc. Lett., 386, 149–160,
https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20, PA10003, https://doi.org/10.1029/2004PA001071,
2005.
Ludwig, K. R.: User's manual for Isoplot 3.75, 77 pp., available at: https://www.geocalculate.com/wp-content/uploads/2019/10/Isoplot3_75-4_15manual.pdf (last access: 16 January 2022), 2012.
Mannard, G. W.: The Geology of the Singida Kimberlite Pipes, Tanganyika,
Geological Sciences, PhD thesis, McGill University, Montreal, 377 pp., available at: https://escholarship.mcgill.ca/concern/theses/sq87bv51d (last access: 16 January 2022), 1962.
Marti, K.: Mass-spectrometric detection of cosmic-ray-produced 81Kr in
meteorites and possiblity of Kr-Kr dating, Phys. Rev. Lett., 18,
264, https://doi.org/10.1103/PhysRevLett.18.264, 1967.
Marti, K., Eberhardt, P., and Geiss, J.: Spallation, fission and neutron
capture anomalies in meteoritic Krypton and Xenon, Z.
Naturforsch. Pt. A, 21,
398–413, 1966.
Martin, L. C. P., Blard, P. H., Balco, G., Lave, J., Delunel, R., Lifton,
N., and Laurent, V.: The CREp program and the ICE-D production rate
calibration database: A fully parameterizable and updated online tool to
compute cosmic ray exposure ages, Quat. Geochronol., 38, 25–49,
https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Mason, B., Nelon, J. A., Muir, P., and Taylor, S. R.: The compostion of the
Chassigny meteorite, Meteoritics, 11, 21–27,
https://doi.org/10.1111/j.1945-5100.1976.tb00311.x, 1976.
McClymont, E. L., Sosdian, S. M., Rosell-Melé, A., and Rosenthal, Y.:
Pleistocene sea-surface temperature evolution: Early cooling, delayed
glacial intensification, and implications for the mid-Pleistocene climate
transition, Earth-Sci. Rev., 123, 173–193,
https://doi.org/10.1016/j.earscirev.2013.04.006, 2013.
Measday, D. F.: The nuclear physics of muon capture, Phys. Rep., 354, 243–409, https://doi.org/10.1016/s0370-1573(01)00012-6,
2001.
Modalek, W., Seifert, G., and Weiß, S.: Edle Zirkone aus dem
Sächsischen Vogtland, Lapis, 34, 13–26, 2009.
Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R.,
Rogledi, S., and Sciunnach, D.: Onset of major Pleistocene glaciations in
the Alps, Geology, 31, 989–992, https://doi.org/10.1130/g19445.1, 2003.
Niedermann, S.: Cosmic-ray-produced noble gases in terrestrial rocks: dating
tools for surface processes, Rev. Mineral. Geochem., 47,
731–784, 2002.
Niedermann, S., Schaefer, J. M., Wieler, R., and Naumann, R.: The production
of cosmogenic 38Ar from calcium in terrestrial pyroxene, Earth Planet.
Sc. Lett., 257, 596–608, 2007.
Nishiizumi, K.: Preparation of 26Al AMS standards, Nucl. Instrum.
Meth. B, 223, 388–392, 2004.
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C.,
and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl. Instrum.
Meth. B, 258, 403–413, 2007.
Oostingh, K. F., Jourdan, F., Danisik, M., and Evans, N. J.: Advancements in
cosmogenic 38Ar exposure dating of terrestrial rocks, Geochim.
Cosmochim. Ac., 217, 193–218, https://doi.org/10.1016/j.gca.2017.07.043, 2017.
Owen, M. R.: Hafnium content of detrital zircons, a new tool for provenance
study, J. Sediment. Petrol., 57, 824–830, 1987.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pena, L. D. and Goldstein, S. L.: Thermohaline circulation crisis and
impacts during the mid-Pleistocene transition, Science, 345, 318–322,
https://doi.org/10.1126/science.1249770, 2014.
Ragettli, R. A., Hebeda, E. H., Signer, P., and Wieler, R.: Uranium-xenon
chronology: precise determination of Ysf for
spontaneous fission of 238U, Earth Planet. Sc. Lett., 128, 653–670,
1994.
Reiners, P. W.: Zircon (U-Th) He Thermochronometry, Rev. Mineral. Geochem., 58, 151–179, https://doi.org/10.2138/rmg.2005.58.6, 2005.
Renne, P. R., Farley, K. A., Becker, T. A., and Sharp, W. D.: Terrestrial
cosmogenic argon, Earth Planet. Sc. Lett., 188, 435–440, 2001.
Ritter, B., Vogt, A., and Dunai, T. J.: Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis, Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, 2021.
Ruzie-Hamilton, L., Clay, P. L., Burgess, R., Joachim, B., Ballentine, C.
J., and Turner, G.: Determination of halogen abundances in terrestrial and
extraterrestrial samples by the analysis of noble gases produced by neutron
irradiation, Chem. Geol., 437, 77–87, https://doi.org/10.1016/j.chemgeo.2016.05.003,
2016.
Saldanha, R., Back, H. O., Tsang, R. H. M., Alexander, T., Elliott, S. R.,
Ferrara, S., Mace, E., Overman, C., and Zalavadia, M.: Cosmogenic production
of 39Ar and 37Ar in argon, Phys. Rev. C, 100, 024608,
https://doi.org/10.1103/PhysRevC.100.024608, 2019.
Samson, S. D., Moecher, D. P., and Satkoski, A. M.: Inherited, enriched,
heated, or recycled? Examining potential causes of Earth's most zircon
fertile magmatic episode, Lithos, 314, 350–359,
https://doi.org/10.1016/j.lithos.2018.06.015, 2018.
Schaller, M., von Blanckenburg, F., Hovius, N., and Kubik, P. W.:
Large-scale erosion rates from in situ produced cosmogenic nuclides in
European river sediments, Earth Planet. Sc. Lett., 188, 441–458, 2001.
Schaltegger, U. and Corfu, F.: The age and source of late Hercynian
magmatism in the Central Alps – Evidence from precise U-Pb ages and initial
Hf isotopes, Contrib. Mineral. Petr., 111, 329–344,
https://doi.org/10.1007/bf00311195, 1992.
Schick, H. L.: A Thermodynamic Analysis of the High-temperature Vaporization
Properties of Silica, Chem. Rev., 60, 331–362, https://doi.org/10.1021/cr60206a002,
1960.
Schmidt, A., Nowaczyk, N., Kampf, H., Schuller, I., Flechsig, C., and Jahr,
T.: Origin of magnetic anomalies in the large Ebersbrunn diatreme, W Saxony,
Germany, B. Volcanol., 75, 766, https://doi.org/10.1007/s00445-013-0766-6, 2013.
Soppera, N., Bossant, M., and Dupont, E.: Janis 4: An improved version of
the NEA Java-based Nuclear Date Information System, Nucl. Data Sheets,
120, 294–296, https://doi.org/10.1016/j.nds.2014.07.071, 2014.
Stone, J. O., Evans, N. J., Fifield, L. K., Allan, G. L., and Cresswell, R.
G.: Cosmogenic chlorine-36 production in calcite by muons, Geochim.
Cosmochim. Ac., 62, 433–454, 1998.
Strashnov, I. and Gilmour, J. D.: 81Kr-Kr cosmic ray exposure ages of
individual chondrules from Allegan, Meteorit. Planet. Sci., 48,
2430–2440, https://doi.org/10.1111/maps.12228, 2013.
Struck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D., Egholm,
D. L., Fülöp, R.-H., Wilcken, K. M., and Kotevski, S.: Soil
production and transport on postorogenic desert hillslopes quantified with
10Be and 26Al, GSA Bulletin, 130, 1017–1040, https://doi.org/10.1130/b31767.1, 2018a.
Struck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D., Fülöp, R.-H., Wilcken, K. M., Price, D. M., Kotevski, S., Fifield, L. K., and Chappell, J.: Tracking the 10Be–26Al source-area signal in sediment-routing systems of arid central Australia, Earth Surf. Dynam., 6, 329–349, https://doi.org/10.5194/esurf-6-329-2018, 2018b.
Sturchio, N. C., Du, X., Purtschert, R., Lehmann, B. E., Sultan, M.,
Patterson, L. J., Lu, Z. T., Muller, P., Bigler, T., Bailey, K., O'Connor,
T. P., Young, L., Lorenzo, R., Becker, R., El Alfy, Z., El Kaliouby, B.,
Dawood, Y., and Abdallah, A. M. A.: One million year old groundwater in the
Sahara revealed by krypton-81 and chlorine-36, Geophys. Res. Lett.,
31, L05503, https://doi.org/10.1029/2003gl019234, 2004.
Taylor, S. R. and McLennan, S. M.: The continental crust: its composition
and evolution, Geoscience Texts, Blackwell, Oxford, ISBN 0632011483, 1985.
Teiber, H., Scharrer, M., Marks, M. A. W., Arzamastsev, A. A., Wenzel, T.,
and Markl, G.: Equilibrium partitioning and subsequent re-distribution of
halogens among apatite-biotite-amphibole assemblages from mantle-derived
plutonic rocks: Complexities revealed, Lithos, 220, 221–237,
https://doi.org/10.1016/j.lithos.2015.02.015, 2015.
Trieloff, M., Kunz, J., Clague, D. A., Harrison, D., and Allegre, C. J.: The
nature of pristine noble gases in mantle plumes, Science, 288, 1036–1038,
https://doi.org/10.1126/science.288.5468.1036, 2000.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V.
D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A.,
Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E.,
Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J.,
Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher,
M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette,
J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K.
E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40
re-analysis, Q. J. Roy. Meteorol. Soc., 131,
2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
von Egidy, T. and Hartmann, F. J.: Average muonic coulomb capture
probabilities for 65 elements, Phys. Rev. A, 26, 2355–2360,
https://doi.org/10.1103/PhysRevA.26.2355, 1982.
Wirsig, C., Zasadni, J., Ivy-Ochs, S., Christl, M., Kober, F., and
Schluchter, C.: A deglaciation model of the Oberhasli, Switzerland, J.
Quaternary Sci., 31, 46–59, https://doi.org/10.1002/jqs.2831, 2016.
Woodhead, J. D. and Hergt, J. M.: A preliminary appraisal of seven natural
zircon reference materials for in situ Hf isotope determination,
Geostand. Geoanal. Res., 29, 183–195,
https://doi.org/10.1111/j.1751-908X.2005.tb00891.x, 2005.
Wyttenbach, A., Baertschi, P., Bajo, S., Hadermann, J., Junker, K., Katcoff,
S., Hermes, E. A., and Pruys, H. S.: Probabilites of muon induced
nuclear-reactions involving charged-particle emission, Nucl. Phys. A,
294, 278–292, https://doi.org/10.1016/0375-9474(78)90218-x, 1978.
Zimmermann, L., Avice, G., Blard, P.-H., Marty, B., Füri, E., and
Burnard, P. G.: A new all-metal induction furnace for noble gas extraction,
Chem. Geol., 480, 86–92, https://doi.org/10.1016/j.chemgeo.2017.09.018,
2018.
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify...