Articles | Volume 6, issue 2
https://doi.org/10.5194/gchron-6-147-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-147-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional beryllium-10 production rate for the mid-elevation mountainous regions in central Europe, deduced from a multi-method study of moraines and lake sediments in the Black Forest
Felix Martin Hofmann
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, 79104, Germany
Claire Rambeau
Laboratoire Image, Ville, Environnement (LIVE UMR 7362), CNRS/Université de Strasbourg/ENGEES, France
Lukas Gegg
Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, 79104, Germany
Melanie Schulz
Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, 79104, Germany
Martin Steiner
Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, 79104, Germany
Alexander Fülling
Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, 79104, Germany
Laëtitia Léanni
CNRS, IRD, INRAE, Aix-Marseille Université, Aix-en-Provence, 13545, France
Frank Preusser
Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, 79104, Germany
A full list of authors appears at the end of the paper.
Related authors
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Felix Martin Hofmann
E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, https://doi.org/10.5194/egqsj-72-235-2023, 2023
Short summary
Short summary
This study aims to reconstruct the last glaciation of the southern Black Forest. Ice-marginal positions in this region were, for the first time, directly dated. Glacier retreat from the last glaciation maximum position was probably underway no later than 21 ka. Re-advances and/or standstills of glaciers (no later than 17–16 ka, 15–14 ka and 13 ka) punctuated the subsequent trend towards ice-free conditions.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Felix Martin Hofmann, Florian Rauscher, William McCreary, Jan-Paul Bischoff, and Frank Preusser
E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, https://doi.org/10.5194/egqsj-69-61-2020, 2020
Short summary
Short summary
The Black Forest was covered by a 1000 km2 large ice cap during the last glaciation. Glacial landforms in the area north-west of the highest summit of the Black Forest, the Feldberg (1493 m above sea level), were investigated to select suitable sampling sites for dating glacial landforms in future studies. Some of the terminal moraines described in this study are mapped for the first time. The application of dating methods will provide insights into the chronology of the last glaciation.
Felix Martin Hofmann
E&G Quaternary Sci. J., 67, 37–40, https://doi.org/10.5194/egqsj-67-37-2018, https://doi.org/10.5194/egqsj-67-37-2018, 2018
Lukas Gegg, Felicitas A. Griebling, Nicole Jentz, and Ulrike Wielandt-Schuster
E&G Quaternary Sci. J., 73, 239–249, https://doi.org/10.5194/egqsj-73-239-2024, https://doi.org/10.5194/egqsj-73-239-2024, 2024
Short summary
Short summary
The subdivision and distinction of gravel units is an important tool in terrestrial Quaternary stratigraphy but can be challenging. Here, we investigate the glaciofluvial infill of the Upper Rhine Graben as an archive of recurring Alpine glaciations. With the help of statistical approaches, we identify differences in petrographic compositions, thereby differentiating two units that are likely representative of the last and penultimate glaciation, which have previously been difficult to pinpoint.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann
E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, https://doi.org/10.5194/egqsj-72-235-2023, 2023
Short summary
Short summary
This study aims to reconstruct the last glaciation of the southern Black Forest. Ice-marginal positions in this region were, for the first time, directly dated. Glacier retreat from the last glaciation maximum position was probably underway no later than 21 ka. Re-advances and/or standstills of glaciers (no later than 17–16 ka, 15–14 ka and 13 ka) punctuated the subsequent trend towards ice-free conditions.
Lukas Gegg and Johann Gegg
Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, https://doi.org/10.5194/sd-32-55-2023, 2023
Short summary
Short summary
Geoscientists working with drill cores often struggle with proper photo documentation. We present a simple smartphone-based setup for acquiring high-resolution undistorted core pictures as an alternative to state-of-the-art commercial line scan imaging systems that are typically expensive and inflexible. It makes use of the phone's panoramic picture mode while being guided along the core in question on a rail, and the resulting images are of similar quality to classic line scan photos.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Felix Martin Hofmann, Florian Rauscher, William McCreary, Jan-Paul Bischoff, and Frank Preusser
E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, https://doi.org/10.5194/egqsj-69-61-2020, 2020
Short summary
Short summary
The Black Forest was covered by a 1000 km2 large ice cap during the last glaciation. Glacial landforms in the area north-west of the highest summit of the Black Forest, the Feldberg (1493 m above sea level), were investigated to select suitable sampling sites for dating glacial landforms in future studies. Some of the terminal moraines described in this study are mapped for the first time. The application of dating methods will provide insights into the chronology of the last glaciation.
Ferréol Salomon, Darío Bernal-Casasola, José J. Díaz, Macarena Lara, Salvador Domínguez-Bella, Damien Ertlen, Patrick Wassmer, Pierre Adam, Philippe Schaeffer, Laurent Hardion, Cécile Vittori, Stoil Chapkanski, Hugo Delile, Laurent Schmitt, Frank Preusser, Martine Trautmann, Alessia Masi, Cristiano Vignola, Laura Sadori, Jacob Morales, Paloma Vidal Matutano, Vincent Robin, Benjamin Keller, Ángel Sanchez Bellón, Javier Martínez López, and Gilles Rixhon
Sci. Dril., 27, 35–47, https://doi.org/10.5194/sd-27-35-2020, https://doi.org/10.5194/sd-27-35-2020, 2020
Short summary
Short summary
PalaeoCADIX-Z is an interdisciplinary project that studied three cores drilled in a marine palaeochannel that ran through the ancient city of Cádiz (Spain). These cores reveal a ≥ 50 m thick Holocene sedimentary sequence. Importantly, most of the deposits date from the 1st millennium BCE to the 1st millennium CE. Geoarchaeologists, geomorphologists, archaeologists, sedimentologists, palaeoenvironmentalists, geochemists, and geochronologists collaborated within this project.
Dominik Faust, Sebastian Kreutzer, Yesmine Trigui, Maximilian Pachtmann, Georg Mettig, Moncef Bouaziz, Jose Manuel Recio Espejo, Fernando Diaz del Olmo, Christoph Schmidt, Tobias Lauer, Zeljko Rezek, Alexander Fülling, and Sascha Meszner
E&G Quaternary Sci. J., 69, 55–58, https://doi.org/10.5194/egqsj-69-55-2020, https://doi.org/10.5194/egqsj-69-55-2020, 2020
Dorian Gaar, Hans Rudolf Graf, and Frank Preusser
E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, https://doi.org/10.5194/egqsj-68-53-2019, 2019
Short summary
Short summary
Deposits related to the last advance of Reuss Glacier are dated using a luminescence methodology. An age of 25 ka for sediment directly overlying the lodgement till corresponds with existing age constraints for the last maximal position of glaciers. Luminescence dating further implies an earlier advance of Reuss Glacier into the lowlands during Marine Isotope Stage 4. The data are discussed regarding potential changes in the source of precipitation during the Late Pleistocene.
Judit Deák, Frank Preusser, Marie-Isabelle Cattin, Jean-Christophe Castel, and François-Xavier Chauvière
E&G Quaternary Sci. J., 67, 41–72, https://doi.org/10.5194/egqsj-67-41-2019, https://doi.org/10.5194/egqsj-67-41-2019, 2019
Short summary
Short summary
Provided here are novel data concerning site formation processes and Middle Palaeolithic human presence at Cotencher cave (Switzerland). A local glaciation around 70 ka was followed by ice-free conditions, when artefacts and faunal remains were displaced by solifluction processes. Evidence of local glacier development around 36 ka is also presented. This interdisciplinary study contributes new elements for the understanding of climatic changes and human passage in the central Jura Mountains.
Felix Martin Hofmann
E&G Quaternary Sci. J., 67, 37–40, https://doi.org/10.5194/egqsj-67-37-2018, https://doi.org/10.5194/egqsj-67-37-2018, 2018
Julien Seguinot, Susan Ivy-Ochs, Guillaume Jouvet, Matthias Huss, Martin Funk, and Frank Preusser
The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, https://doi.org/10.5194/tc-12-3265-2018, 2018
Short summary
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
David Eschbach, Laurent Schmitt, Gwenaël Imfeld, Jan-Hendrik May, Sylvain Payraudeau, Frank Preusser, Mareike Trauerstein, and Grzegorz Skupinski
Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, https://doi.org/10.5194/hess-22-2717-2018, 2018
Short summary
Short summary
In this study we show the relevance of an interdisciplinary study for improving restoration within the framework of a European LIFE+ project on the French side of the Upper Rhine (Rohrschollen Island). Our results underscore the advantage of combining functional restoration with detailed knowledge of past trajectories in complex hydrosystems. We anticipate our approach will expand the toolbox of decision-makers and help orientate functional restoration actions in the future.
Lorenz Wüthrich, Marcel Bliedtner, Imke Kathrin Schäfer, Jana Zech, Fatemeh Shajari, Dorian Gaar, Frank Preusser, Gary Salazar, Sönke Szidat, and Roland Zech
E&G Quaternary Sci. J., 66, 91–100, https://doi.org/10.5194/egqsj-66-91-2017, https://doi.org/10.5194/egqsj-66-91-2017, 2017
Related subject area
Cosmogenic nuclide dating
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Technical note: Altitude scaling of 36Cl production from Fe
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand
Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz
Short communication: Cosmogenic noble gas depletion in soils by wildfire heating
Early Holocene ice retreat from Isle Royale in the Laurentian Great Lakes constrained with 10Be exposure-age dating
Technical note: Studying lithium metaborate fluxes and extraction protocols with a new, fully automated in situ cosmogenic 14C processing system at PRIME Lab
Cosmogenic 10Be in pyroxene: laboratory progress, production rate systematics, and application of the 10Be–3He nuclide pair in the Antarctic Dry Valleys
Technical note: A software framework for calculating compositionally dependent in situ 14C production rates
10Be age control of glaciation in the Beartooth Mountains, USA, from the latest Pleistocene through the Holocene
Constraining the aggradation mode of Pleistocene river deposits based on cosmogenic radionuclide depth profiling and numerical modelling
Technical note: Evaluating a geographical information system (GIS)-based approach for determining topographic shielding factors in cosmic-ray exposure dating
Combined linear-regression and Monte Carlo approach to modeling exposure age depth profiles
Cosmogenic nuclide weathering biases: corrections and potential for denudation and weathering rate measurements
Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes
Technical note: Accelerator mass spectrometry of 10Be and 26Al at low nuclide concentrations
Reconciling the apparent absence of a Last Glacial Maximum alpine glacial advance, Yukon Territory, Canada, through cosmogenic beryllium-10 and carbon-14 measurements
Cosmogenic ages indicate no MIS 2 refugia in the Alexander Archipelago, Alaska
In situ-produced cosmogenic krypton in zircon and its potential for Earth surface applications
Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica
Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis
Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite
Calibrating a long-term meteoric 10Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced 10Be depth profiles
Delayed and rapid deglaciation of alpine valleys in the Sawatch Range, southern Rocky Mountains, USA
Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating
Isolation of quartz for cosmogenic in situ 14C analysis
Chlorine-36∕beryllium-10 burial dating of alluvial fan sediments associated with the Mission Creek strand of the San Andreas Fault system, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024, https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Short summary
Cosmogenic nuclide exposure dating is an exceptional tool for reconstructing glacier histories, but reconstructions based on common target nuclides (e.g., 10Be) can be costly and time-consuming to generate. Here, we present a cost-effective proof-of-concept 21Ne exposure age chronology from Lassen Volcanic National Park, CA, USA, that broadly agrees with nearby 10Be chronologies but at lower precision.
Angus K. Moore and Darryl E. Granger
Geochronology, 6, 541–552, https://doi.org/10.5194/gchron-6-541-2024, https://doi.org/10.5194/gchron-6-541-2024, 2024
Short summary
Short summary
Cosmogenic nuclide geochronology requires accurately scaling production rates with altitude. The energy spectrum of cosmic radiation changes with altitude, and reactions that are sensitive to different energies may have different scaling behavior. Here, we model the altitude scaling of 36Cl production from Fe and evaluate this model against calibration data. The data are broadly consistent with the prediction of larger-altitude scaling factors for 36Cl from Fe than for other reactions.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024, https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary
Short summary
We present an improved workflow for extracting and measuring chlorine isotopes in rocks and minerals. Experiments on seven geologic samples demonstrate that our workflow provides reliable results while offering several distinct advantages over traditional methods. Most notably, our workflow reduces the amount of isotopically enriched chlorine spike used per rock sample by up to 95 %, which will allow researchers to analyze more samples using their existing laboratory supplies.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Greg Balco, Alan J. Hidy, William T. Struble, and Joshua J. Roering
Geochronology, 6, 71–76, https://doi.org/10.5194/gchron-6-71-2024, https://doi.org/10.5194/gchron-6-71-2024, 2024
Short summary
Short summary
We describe a new method of reconstructing the long-term, pre-observational frequency and/or intensity of wildfires in forested landscapes using trace concentrations of the noble gases helium and neon that are formed in soil mineral grains by cosmic-ray bombardment of the Earth's surface.
Eric W. Portenga, David J. Ullman, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee
Geochronology, 5, 413–431, https://doi.org/10.5194/gchron-5-413-2023, https://doi.org/10.5194/gchron-5-413-2023, 2023
Short summary
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
Nathaniel Lifton, Jim Wilson, and Allie Koester
Geochronology, 5, 361–375, https://doi.org/10.5194/gchron-5-361-2023, https://doi.org/10.5194/gchron-5-361-2023, 2023
Short summary
Short summary
We describe a new, fully automated extraction system for in situ 14C at PRIME Lab that incorporates more reliable components and designs than our original systems. We use a LiBO2 flux to dissolve a quartz sample in oxygen after removing contaminant 14C with a lower-temperature combustion step. Experiments with new Pt/Rh sample boats demonstrated reduced procedural blanks, and analyses of well-characterized intercomparison materials tested the effects of process variables on 14C yields.
Allie Balter-Kennedy, Joerg M. Schaefer, Roseanne Schwartz, Jennifer L. Lamp, Laura Penrose, Jennifer Middleton, Jean Hanley, Bouchaïb Tibari, Pierre-Henri Blard, Gisela Winckler, Alan J. Hidy, and Greg Balco
Geochronology, 5, 301–321, https://doi.org/10.5194/gchron-5-301-2023, https://doi.org/10.5194/gchron-5-301-2023, 2023
Short summary
Short summary
Cosmogenic nuclides like 10Be are rare isotopes created in rocks exposed at the Earth’s surface and can be used to understand glacier histories and landscape evolution. 10Be is usually measured in the mineral quartz. Here, we show that 10Be can be reliably measured in the mineral pyroxene. We use the measurements to determine exposure ages and understand landscape processes in rocks from Antarctica that do not have quartz, expanding the use of this method to new rock types.
Alexandria J. Koester and Nathaniel A. Lifton
Geochronology, 5, 21–33, https://doi.org/10.5194/gchron-5-21-2023, https://doi.org/10.5194/gchron-5-21-2023, 2023
Short summary
Short summary
In situ 14C’s short half-life (5.7 kyr) is unique among cosmogenic nuclides, making it sensitive to complex exposure and burial histories since 25 ka. Current extraction methods focus on quartz, but the ability to extract it from other minerals would expand applications. We developed MATLAB® scripts to calculate in situ 14C production rates from a broad range of mineral compositions. Results confirm O, Si, Al, and Mg as key targets but also find significant production from Na for the first time.
Aaron M. Barth, Elizabeth G. Ceperley, Claire Vavrus, Shaun A. Marcott, Jeremy D. Shakun, and Marc W. Caffee
Geochronology, 4, 731–743, https://doi.org/10.5194/gchron-4-731-2022, https://doi.org/10.5194/gchron-4-731-2022, 2022
Short summary
Short summary
Deposits left behind by past glacial activity provide insight into the previous size and behavior of glaciers and act as another line of evidence for past climate. Here we present new age control for glacial deposits in the mountains of Montana and Wyoming, United States. While some deposits indicate glacial activity within the last 2000 years, others are shown to be older than previously thought, thus redefining the extent of regional Holocene glaciation.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Yiran Wang and Michael E. Oskin
Geochronology, 4, 533–549, https://doi.org/10.5194/gchron-4-533-2022, https://doi.org/10.5194/gchron-4-533-2022, 2022
Short summary
Short summary
When first introduced together with the depth profile technique to determine the surface exposure age, the linear inversion approach has suffered with the drawbacks of not incorporating erosion and muons into calculation. In this paper, we increase the accuracy and applicability of the linear inversion approach by fully considering surface erosion, muogenic production, and radioactive decay, while maintaining its advantage of being straightforward to determine an exposure age.
Richard F. Ott, Sean F. Gallen, and Darryl E. Granger
Geochronology, 4, 455–470, https://doi.org/10.5194/gchron-4-455-2022, https://doi.org/10.5194/gchron-4-455-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are a tool to quantify denudation – the total removal of mass from near the Earth's surface. Chemical weathering can introduce biases to cosmogenic-nuclide-based denudation rates measurements. Here, we investigate the effects of weathering on cosmogenic nuclides and develop tools to correct for this influence. Our results highlight which additional measurements are required to determine accurate denudation rates in regions where weathering is not negligible.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Brent M. Goehring, Brian Menounos, Gerald Osborn, Adam Hawkins, and Brent Ward
Geochronology, 4, 311–322, https://doi.org/10.5194/gchron-4-311-2022, https://doi.org/10.5194/gchron-4-311-2022, 2022
Short summary
Short summary
We explored surface exposure dating with two nuclides to date two sets of moraines from the Yukon Territory and explain the reasoning for the observed ages. Results suggest multiple processes, including preservation of nuclides from a prior exposure period, and later erosion of the moraines is required to explain the data. Our results only allow for the older moraines to date to Marine Isotope Stage 3 or 4 and the younger moraines to date to the very earliest Holocene.
Caleb K. Walcott, Jason P. Briner, James F. Baichtal, Alia J. Lesnek, and Joseph M. Licciardi
Geochronology, 4, 191–211, https://doi.org/10.5194/gchron-4-191-2022, https://doi.org/10.5194/gchron-4-191-2022, 2022
Short summary
Short summary
We present a record of ice retreat from the northern Alexander Archipelago, Alaska. During the last ice age (~ 26 000–19 000 years ago), these islands were covered by the Cordilleran Ice Sheet. We tested whether islands were ice-free during the last ice age for human migrants moving from Asia to the Americas. We found that these islands became ice-free between ~ 15 100 years ago and ~ 16 000 years ago, and thus these islands were not suitable for human habitation during the last ice age.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Benedikt Ritter, Andreas Vogt, and Tibor J. Dunai
Geochronology, 3, 421–431, https://doi.org/10.5194/gchron-3-421-2021, https://doi.org/10.5194/gchron-3-421-2021, 2021
Short summary
Short summary
We describe the design and performance of a new noble gas mass laboratory dedicated to the development of and application to cosmogenic nuclides at the University of Cologne (Germany). At the core of the laboratory are a state-of-the-art high-mass-resolution multicollector Helix MCPlus (Thermo-Fisher) noble gas mass spectrometer and a novel custom-designed automated extraction line, including a laser-powered extraction furnace. Performance was tested with intercomparison (CREU-1) material.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Joseph P. Tulenko, William Caffee, Avriel D. Schweinsberg, Jason P. Briner, and Eric M. Leonard
Geochronology, 2, 245–255, https://doi.org/10.5194/gchron-2-245-2020, https://doi.org/10.5194/gchron-2-245-2020, 2020
Short summary
Short summary
We investigate the timing and rate of retreat for three alpine glaciers in the southern Rocky Mountains to test whether they followed the pattern of global climate change or were majorly influenced by regional forcing mechanisms. We find that the latter is most likely for these glaciers. Our conclusions are based on a new 10Be chronology of alpine glacier retreat. We quantify retreat rates for each valley using the BACON program in R, which may be of interest for the audience of Geochronology.
Greg Balco
Geochronology, 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020, https://doi.org/10.5194/gchron-2-169-2020, 2020
Short summary
Short summary
Geologic dating methods generally do not directly measure ages. Instead, interpreting a geochemical measurement as an age requires a middle layer of calculations and supporting data, and the fact that this layer continually improves is an obstacle to synoptic analysis of geochronological data. This paper describes a prototype data management and analysis system that addresses this obstacle by making the middle-layer calculations transparent and dynamic to the user.
Keir A. Nichols and Brent M. Goehring
Geochronology, 1, 43–52, https://doi.org/10.5194/gchron-1-43-2019, https://doi.org/10.5194/gchron-1-43-2019, 2019
Short summary
Short summary
We describe observations of anomalously high measurements of C-14 made from geologic material. We undertake a systematic investigation to identify the source of contamination, which we hypothesise is sourced from a commonly used method that is used prior to sample analysis. We find that the method does introduce modern carbon to samples and elevates C-14 measurements. We describe a standard procedure that effectively removes contamination from the aforementioned method.
Greg Balco, Kimberly Blisniuk, and Alan Hidy
Geochronology, 1, 1–16, https://doi.org/10.5194/gchron-1-1-2019, https://doi.org/10.5194/gchron-1-1-2019, 2019
Short summary
Short summary
This article applies a new geochemical dating method to determine the age of sedimentary deposits useful in reconstructing slip rates on a major fault system.
Cited articles
Ahnert, F.: Einführung in die Geomorphologie, 4th edn., Ulmer, Stuttgart, 393 pp., 2009.
Amschwand, D., Ivy-Ochs, S., Frehner, M., Steinemann, O., Christl, M., and Vockenhuber, C.: Deciphering the evolution of the Bleis Marscha rock glacier (Val d'Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling, The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, 2021.
Andrieu, V., Beaulieu, J.-L., Ponel, P., and Reille, M.: [Les distorsions de l'enregistrement pollinique de l'histoire de la végétation du dernier cycle climatique: Exemples de séquences lacustres du Sud de la France]. Distorsions in the pollen record of vegetation history over the last climatic cycle: examples of lake sequences from southern France, Geobios, 30, 195–202, https://doi.org/10.1016/S0016-6995(97)80091-5, 1997.
Arnold, M., Merchel, S., Bourlès, D. L., Braucher, R., Benedetti, L., Finkel, R. C., Aumaître, G., Gottdang, A., and Klein, M.: The French accelerator mass spectrometry facility ASTER: Improved performance and developments, Nucl. Instrum. Meth. B, 268, 1954–1959, https://doi.org/10.1016/j.nimb.2010.02.107, 2010.
Arnold, M., Aumaître, G., Bourlès, D. L., Keddadouche, K., Braucher, R., Finkel, R. C., Nottoli, E., Benedetti, L., and Merchel, S.: The French accelerator mass spectrometry facility ASTER after 4 years: Status and recent developments on 36Cl and 129I, Nucl. Instrum. Meth. B, 294, 24–28, https://doi.org/10.1016/j.nimb.2012.01.049, 2013.
Balco, G.: Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010, Quaternary Sci. Rev., 30, 3–27, https://doi.org/10.1016/j.quascirev.2010.11.003, 2011.
Balco, G.: Documentation–v3 exposure age calculator. Ancillary calculations and plots., https://sites.google.com/a/bgc.org/v3docs/documentation-v3-exposure-age-calculator/4-ancillary-calculations-and-plots (last access: 19 October 2023), 2023.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quat. Geochronol., 31, 188–198, https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Boxleitner, M., Ivy-Ochs, S., Egli, M., Brandova, D., Christl, M., and Maisch, M.: Lateglacial and Early Holocene glacier stages – New dating evidence from the Meiental in central Switzerland, Geomorphology, 340, 15–31, https://doi.org/10.1016/j.geomorph.2019.04.004, 2019.
Braucher, R., Guillou, V., Bourlès, D. L., Arnold, M., Aumaître, G., Keddadouche, K., and Nottoli, E.: Preparation of ASTER in-house standard solutions, Nucl. Instrum. Meth. B, 361, 335–340, https://doi.org/10.1016/j.nimb.2015.06.012, 2015.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Bayesian Analysis of Radiocarbon Dates, Radiocarbon, 51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Bronk Ramsey, C. and Lee, S.: Recent and Planned Developments of the Program OxCal, Radiocarbon, 55, 720–730, https://doi.org/10.1017/S0033822200057878, 2013.
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D.: Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nucl. Instrum. Meth. B, 268, 192–199, https://doi.org/10.1016/j.nimb.2009.09.012, 2010.
Claude, A., Ivy-Ochs, S., Kober, F., Antognini, M., Salcher, B., and Kubik, P. W.: The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution, Swiss J. Geosci., 107, 273–291, https://doi.org/10.1007/s00015-014-0170-z, 2014.
Dawson, A. G., Bishop, P., Hansom, J., and Fabel, D.: 10Be exposure age dating of Late Quaternary relative sea level changes and deglaciation of W Jura and NE Islay, Scottish Inner Hebrides, Earth Env. Sci. T. R. So., 113, 253–266, https://doi.org/10.1017/S175569102200010X, 2022.
Degering, D. and Degering, A.: Change is the only constant – time-dependent dose rates in luminescence dating, Quat. Geochronol., 58, 101074, https://doi.org/10.1016/j.quageo.2020.101074, 2020.
Dunai, T.: Cosmogenic nuclides: Principles, concepts and applications in the earth surface sciences, Cambridge University Press, Cambridge, 187 pp., 2010.
DWD (Deutscher Wetterdienst): Open Data [data set], https://opendata.dwd.de, 2023.
Eberle, J., Eitel, B., Blümel, W. D., and Wittmann, P.: Deutschlands Süden – vom Erdmittelalter zur Gegenwart, 4th edn., Springer, Berlin, Heidelberg, 233 pp., 2023.
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Quaternary Glaciations – Extent and Chronology.: A Closer Look, Developments in Quaternary Sciences, 15, Elsevier, Amsterdam, Oxford, 2011.
Engel, Z., Nývlt, D., Křížek, M., Treml, V., Jankovská, V., and Lisá, L.: Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic, Quaternary Sci. Rev., 29, 913–927, https://doi.org/10.1016/j.quascirev.2009.12.008, 2010.
Erb, L.: Die Geologie des Feldbergs, in: Der Feldberg im Schwarzwald, edited by: Müller, K., L. Bielefelds Verlag KG, Freiburg i. Br., 22–96, 1948.
Fenton, C. R., Hermanns, R. L., Blikra, L. H., Kubik, P. W., Bryant, C., Niedermann, S., Meixner, A., and Goethals, M. M.: Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69° N, Norway, Quat. Geochronol., 6, 437–452, https://doi.org/10.1016/j.quageo.2011.04.005, 2011.
Gaar, D., Graf, H. R., and Preusser, F.: New chronological constraints on the timing of Late Pleistocene glacier advances in northern Switzerland, E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, 2019.
Galbraith, R. F. and Roberts, R. G.: Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations, Quat. Geochronol., 11, 1–27, https://doi.org/10.1016/j.quageo.2012.04.020, 2012.
Gegg, L. and Gegg, J.: Poor Man's Line Scan – a simple tool for the acquisition of high-resolution, undistorted drill core photos, Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, 2023.
Geyer, M., Nitsch, E., and Simon, T. (Eds.): Geyer, O. F./Gwinner, M. P.: Geologie von Baden-Württemberg, 5th edn., Schweizerbart, Stuttgart, 627 pp., 2011.
Glew, J. R., Smol, J. P., and Last, W. M.: Sediment Core Collection and Extrusion, in: Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques, edited by: Last, W. M. and Smol, J. P., Springer Netherlands, Dordrecht, 73–105, https://doi.org/10.1007/0-306-47669-X_5, 2001.
Goehring, B. M., Lohne, Ø. S., Mangerud, J., Svendsen, J. I., Gyllencreutz, R., Schaefer, J., and Finkel, R.: Late glacial and holocene 10Be production rates for western Norway, J. Quaternary Sci., 27, 89–96, https://doi.org/10.1002/jqs.1517, 2012.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Hall, K., Thorn, C., and Sumner, P.: On the persistence of `weathering', Geomorphology, 149–150, 1–10, https://doi.org/10.1016/j.geomorph.2011.12.024, 2012.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, J. Paleolimnol., 25, 101–110, https://doi.org/10.1023/A:1008119611481, 2001.
Heiri, O., Koinig, K. A., Spötl, C., Barrett, S., Brauer, A., Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher, M., Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P., Schwörer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands, Quaternary Sci. Rev., 106, 186–205, https://doi.org/10.1016/j.quascirev.2014.05.021, 2014.
Hemmerle, H., May, J.-H., and Preusser, F.: Übersicht über die pleistozänen Vergletscherungen des Schwarzwaldes, Ber. Naturf. Ges. Freiburg i. Br., 106, 31–67, 2016.
Heyman, J., Applegate, P. J., Blomdin, R., Gribenski, N., Harbor, J. M., and Stroeven, A. P.: Boulder height – exposure age relationships from a global glacial 10Be compilation, Quat. Geochronol., 34, 1–11, https://doi.org/10.1016/j.quageo.2016.03.002, 2016.
Hilger, P., Hermanns, R. L., Gosse, J. C., Jacobs, B., Etzelmüller, B., and Krautblatter, M.: Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and 10Be exposure dating, Holocene, 28, 1841–1854, https://doi.org/10.1177/0959683618798165, 2018.
Hofmann, F. M.: Technical note: Evaluating a geographical information system (GIS)-based approach for determining topographic shielding factors in cosmic-ray exposure dating, Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, 2022.
Hofmann, F. M.: Geometry, chronology and dynamics of the last Pleistocene glaciation of the Black Forest, E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, 2023a.
Hofmann, F. M.: Geometry, Chronology and Dynamics of the last Pleistocene glaciation of the Black Forest, Dissertation, Faculty of Environment and Natural Resources, University of Freiburg, Germany, https://doi.org/10.6094/UNIFR/241069, 2023b.
Hofmann, F. M. and Konold, W.: Landscape history of the upper Seebachtal, southern Black Forest, Germany, Jber. Mitt. oberrhein. geol. Ver., 105, 63–89, https://doi.org/10.1127/jmogv/105/0004, 2023.
Hofmann, F. M., Rauscher, F., McCreary, W., Bischoff, J.-P., and Preusser, F.: Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany, E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, 2020.
Hofmann, F. M., Preusser, F., Schimmelpfennig, I., Léanni, L., and ASTER Team: Late Pleistocene glaciation history of the southern Black Forest, Germany: 10Be cosmic-ray exposure dating and equilibrium line altitude reconstructions in Sankt Wilhelmer Tal, J. Quaternary Sci., 37, 688–706, https://doi.org/10.1002/jqs.3407, 2022.
Hofmann, F. M., Groos, A. R., Garcia Morabito, E., Struck, J., Gnägi, C., Scharf, A., Rugel, G., Merchel, S., and Zech, R.: A regional assessment of the deglaciation history of the Swiss Plateau based on newly obtained and re-evaluated Be-10 cosmic-ray exposure ages, Quaternary Sci. Adv., 13, 100124, https://doi.org/10.1016/j.qsa.2023.100124, 2024a.
Hofmann, F. M., Steiner, M., Hergarten, S., ASTER Team, and Preusser, F.: Limitations of precipitation reconstructions using equilibrium line altitudes exemplified for former glaciers in the Southern Black Forest, Central Europe, Quaternary Res., 117, 135–159, https://doi.org/10.1017/qua.2023.53, 2024b.
Huntley, D. J. and Baril, M. R.: The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating, Ancient TL, 15, 11–13, 1997.
Ivanovich, M. and Harmon, R. S.: Uranium-series disequilibrium: applications to earth, marine, and environmental sciences, 2nd edn., Clarendon Press, Oxford, United Kingdom, 1992.
Ivy-Ochs, S. and Kober, F.: Surface exposure dating with cosmogenic nuclides, E&G Quaternary Sci. J., 57, 179–209, https://doi.org/10.3285/eg.57.1-2.7, 2008.
Ivy-Ochs, S., Kerschner, H., and Schlüchter, C.: Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: The Alpine perspective, Quat. Intern., 164–165, 53–63, https://doi.org/10.1016/j.quaint.2006.12.008, 2007.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Gostomski, C. L. von, Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting, Nucl. Instrum. Meth. B, 268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Krüger, S. and Bogaard, C. van den: Small shards and long distances – three cryptotephra layers from the Nahe palaeolake including the first discovery of Laacher See Tephra in Schleswig-Holstein (Germany), J. Quaternary Sci., 36, 8–19, https://doi.org/10.1002/jqs.3264, 2021.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lang, G.: Seen und Moore des Schwarzwaldes als Zeugen spätglazialen und holozänen Vegetationswandels. Stratigraphische, pollenanalytische und großrestanalytische Untersuchungen., Andrias 16, Karlsruhe, 160 pp., 2005.
Lang, G.: Late-glacial fluctuations of timberline in the Black Forest (SW Germany), Veget. Hist. Archaeobot, 15, 373–375, https://doi.org/10.1007/s00334-006-0048-8, 2006.
Lang, G., Merkt, J., and Streif, H.: Spätglazialer Gletscherrückzug und See- und Moorentwicklung im Südschwarzwald, Südwestdeutschland, Diss. Bot., 72 (Festschrift Welten), 213–234, 1984.
Le Roy, M., Deline, P., Carcaillet, J., Schimmelpfennig, I., Ermini, M., and ASTER Team: 10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps, Quaternary Sci. Rev., 178, 118–138, https://doi.org/10.1016/j.quascirev.2017.10.010, 2017.
LGL (Landesamt für Geoinformation und Landentwicklung Baden-Württemberg): DGM aus ALS_1, Landesamt für Geoinformation und Landentwicklung Baden-Württemberg [data set], https://www.lgl-bw.de/export/sites/lgl/Produkte/Galerien/Dokumente/Vergleich-DGM-aus-ALS_1-und-ALS_2.pdf (last access: 15 May 2024), 2015.
LGRB: Geologische Karte von Baden-Württemberg 1:50 000 (GeoLa), https://produkte.lgrb-bw.de/catalog/list/?wm_group_id=15111 (last access: 31 March 2023), 2013.
LGRB (Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg): Das Feldseekar, https://lgrbwissen.lgrbbw.de/geotourismus/glazialformen/schwarzwald/feldseekar (last access: 18 April 2023), 2023.
Li, Y.-K.: Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: a GIS model for discrete sample sites, J. Mt. Sci., 15, 939–947, https://doi.org/10.1007/s11629-018-4895-4, 2018.
Liehl, E.: Landschaftsgeschichte des Feldberggebietes: Altlandschaft – Eiszeit – Verwitterung und Abtragung heute, in: Der Feldberg im Schwarzwald: subalpine Insel im Mittelgebirge, edited by: Landesanstalt für Umweltschutz, Baden-Württemberg Institut für Ökologie und Naturschutz, Karlsruhe, 13–147, 1982.
Lifton, N.: Implications of two Holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling. Earth Planet. Sc. Lett., 433, 257–268, https://doi.org/10.1016/j.epsl.2015.11.006, 2016.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Lowe, J., Matthews, I., Mayfield, R., Lincoln, P., Palmer, A., Staff, R., and Timms, R.: On the timing of retreat of the Loch Lomond (`Younger Dryas') Readvance icefield in the SW Scottish Highlands and its wider significance, Quaternary Sci. Rev., 219, 171–186, https://doi.org/10.1016/j.quascirev.2019.06.034, 2019.
LUBW: Feldseemoor, http://www2.lubw.baden-wuerttemberg.de/public/abt2/dokablage/oac_77/moore01/405.htm (last access: 17 October 2023), 2006.
LUBW (Landesanstalt für Umwelt Baden-Württemberg): Fließgewässer (AWGN), Landesanstalt für Umwelt Baden-Württemberg [data set], https://rips-datenlink.lubw.de/UDO_download/Fliessgewaessernetz.zip (last access: 30 November 2023), 2022a.
LUBW: Stehendes Gewässer (AWGN), Landesanstalt für Umwelt Baden-Württemberg [data set], https://rips-datenlink.lubw.de/UDO_download/StehendeGewaesser.zip (last access: 30 November 2023), 2022b.
Martin, L. C. P., Blard, P. H., Balco, G., Lavé, J., Delunel, R., Lifton, N., and Laurent, V.: The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quat. Geochronol., 38, 25–49, https://doi.org/10.1016/j.quageo.2016.11.006, 2017.
Masarik, J. and Wieler, R.: Production rates of cosmogenic nuclides in boulders, Earth Planet. Sc. Lett., 216, 201–208, https://doi.org/10.1016/S0012-821X(03)00476-X, 2003.
Matzarakis, A.: Klima, in: Der Feldberg: subalpine Insel im Schwarzwald, edited by: Regierungspräsidium Freiburg, Jan Thorbecke Verlag der Schwabenverlag AG, Ostfildern, 95–106, 2012.
Meinig, R.: Halts and ice margin formations of the Bärental-Glacier, southern Black Forest, [Halte und Eisrandbildungen des würmzeitlichen Bärental-Gletschers, Südschwarzwald], in: [Spät- und postglaziale Gletscherschwankungen: Glazial- und Periglazialformen], Late- and postglacial oscillations of glaciers: glacial and periglacial landforms, Trier, 1980, 257–282, 1980.
Mentlík, P., Engel, Z., Braucher, R., and Léanni, L.: Chronology of the Late Weichselian glaciation in the Bohemian Forest in Central Europe, Quaternary Sci. Rev., 65, 120–128, https://doi.org/10.1016/j.quascirev.2013.01.020, 2013.
Mercier, J.-L., Bourlès, D. L., Kalvoda, J., Braucher, R., and Paschen, A.: Deglaciation of the Vosges dated using 10Be, Acta Universitatis Carolinae Geographica, 2, 139–155, 1999.
Mercier, J.-L., Kalvoda, J., Bourlès, D. L., Braucher, R., and Engel, Z.: Preliminary results of 10Be dating of glacial landscape in the Giant Mountains, Acta Universitatis Carolinae Geographica, Supplementum, 35, 157–170, 2000.
Metz, B.: Geomorphologische Karte 1:25 000 der Bundesrepublik Deutschland. GMK 25 Blatt 21, 8114 Feldberg, Geo Center, Stuttgart, 1985.
Metz, B. and Saurer, H.: Geomorphologie und Landschaftsentwicklung, in: Der Feldberg: subalpine Insel im Schwarzwald, edited by: Regierungspräsidium Freiburg, Jan Thorbecke Verlag der Schwabenverlag AG, Ostfildern, 14–62, 2012.
Migoń, P. and Waroszewski, J.: The Central European Variscan Ranges, in: Periglacial Landscapes of Europe, edited by: Oliva, M., Nývlt, D., and Fernández-Fernández, J. M., Springer International Publishing, Cham, 225–251, https://doi.org/10.1007/978-3-031-14895-8_10, 2022.
Millard, A. R.: Conventions for Reporting Radiocarbon Determinations, Radiocarbon, 56, 555–559, https://doi.org/10.2458/56.17455, 2014.
Muscheler, R., Beer, J., Kubik, P. W., and Synal, H. A.: Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C, Quaternary Sci. Rev., 24, 1849–1860, https://doi.org/10.1016/j.quascirev.2005.01.012, 2005.
NASA Jet Propulsion Laboratory: NASA Shuttle Radar Topography Mission Global 1 arc second, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013.
Nishiizumi, K., Winterer, E. L., Kohl, C. P., Klein, J., Middleton, R., Lal, D., and Arnold, J. R.: Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks, J. Geophys Res.-Sol. Ea., 94, 17907–17915, https://doi.org/10.1029/JB094iB12p17907, 1989.
Peirce, B.: Criterion for the rejection of doubtful observations, Astronom. J., 45, 161–163, 1852.
Phillips, F. M., Argento, D. C., Balco, G., Caffee, M. W., Clem, J., Dunai, T. J., Finkel, R., Goehring, B., Gosse, J. C., Hudson, A. M., Jull, A. T., Kelly, M. A., Kurz, M., Lal, D., Lifton, N., Marrero, S. M., Nishiizumi, K., Reedy, R. C., Schaefer, J., Stone, J. O., Swanson, T., and Zreda, M. G.: The CRONUS-Earth Project: A synthesis, Quat. Geochronol., 31, 119–154, https://doi.org/10.1016/j.quageo.2015.09.006, 2016.
Plug, L. J., Gosse, J. C., McIntosh, J. J., and Bigley, R.: Attenuation of cosmic ray flux in temperate forest, J. Geophys. Res., 112, F02022, https://doi.org/10.1029/2006JF000668, 2007.
Porter, P. R., Smart, M. J., and Irvine-Fynn, T. D. L.: Glacial Sediment Stores and Their Reworking, in: Geomorphology of Proglacial Systems, edited by: Heckmann, T. and Morche, D., Springer International Publishing, Cham, 157–176, https://doi.org/10.1007/978-3-319-94184-4_10, 2019.
Preusser, F.: IRSL dating of K-rich feldspars using the SAR protocol: Comparison with independent age control, Ancient TL, 21, 17–23, 2003.
Preusser, F. and Degering, D.: Luminescence dating of the Niederweningen mammoth site, Switzerland, Quat. Intern., 164–165, 106–112, https://doi.org/10.1016/j.quaint.2006.12.002, 2007.
Preusser, F., Ramseyer, K., and Schlüchter, C.: Characterisation of low OSL intensity quartz from the New Zealand Alps, Rad. Meas., 41, 871–877, https://doi.org/10.1016/j.radmeas.2006.04.019, 2006.
Preusser, F., May, J.-H., Eschbach, D., Trauerstein, M., and Schmitt, L.: Infrared stimulated luminescence dating of 19th century fluvial deposits from the upper Rhine River, Geochronometria, 43, 131–142, https://doi.org/10.1515/geochr-2015-0045, 2016.
Preusser, F., Büschelberger, M., Kemna, H. A., Miocic, J., Mueller, D., and May, J.-H.: Exploring possible links between Quaternary aggradation in the Upper Rhine Graben and the glaciation history of northern Switzerland, Int. J. Earth Sci., 110, 1827–1846, https://doi.org/10.1007/s00531-021-02043-7, 2021.
Preusser, F., Degering, D., Fülling, A., and Miocic, J.: Complex Dose Rate Calculations in Luminescence Dating of Lacustrine and Palustrine Sediments from Niederweningen, Northern Switzerland, Geochronometria, 50, 28–49, https://doi.org/10.2478/geochr-2023-0003, 2023.
Protin, M., Schimmelpfennig, I., Mugnier, J.-L., Ravanel, L., Le Roy, M., Deline, P., Favier, V., Buoncristiani, J.-F., Aumaître, G., Bourlès, D. L., and Keddadouche, K.: Climatic reconstruction for the Younger Dryas/Early Holocene transition and the Little Ice Age based on paleo-extents of Argentière glacier (French Alps), Quaternary Sci. Rev., 221, 105863, https://doi.org/10.1016/j.quascirev.2019.105863, 2019.
Ramsay, A. C.: On the Glacial Origin of certain Lakes in Switzerland, the Black Forest, Great Britain, Sweden, North America, and elsewhere, Q. J. Geol. Soc. Lond., 18, 185–204, 1862.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Reinig, F., Wacker, L., Jöris, O., Oppenheimer, C., Guidobaldi, G., Nievergelt, D., Adolphi, F., Cherubini, P., Engels, S., Esper, J., Land, A., Lane, C., Pfanz, H., Remmele, S., Sigl, M., Sookdeo, A., and Büntgen, U.: Precise date for the Laacher See eruption synchronizes the Younger Dryas, Nature, 595, 66–69, https://doi.org/10.1038/s41586-021-03608-x, 2021.
Reuther, A. U.: Surface exposure dating of glacial deposits from the last glacial cycle. Evidence from the Eastern Alps, the Bavarian Forest, the Southern Carpathians and the Altai Mountains, Relief, Boden, Paläoklima, 21, Borntraeger, Berlin, Stuttgart, 213 pp., 2007.
Richter, D., Richter, A., and Dornich, K.: Lexsyg – A new system for luminescence research, Geochronometria, 40, 220–228, https://doi.org/10.2478/s13386-013-0110-0, 2013.
Ross, S.: Peirce's criterion for the elimination of suspect experimental data, J. Eng. Technol., 20, 1–12, 2003.
Schlüchter, C.: Sedimente des Gletschers (Teil I), Bulletin für angewandte Geologie, 2, 99–112, 1997.
Schoch-Baumann, A., Blöthe, J. H., Munack, H., Hornung, J., Codilean, A. T., Fülöp, R.-H., Wilcken, K., and Schrott, L.: Postglacial outsize fan formation in the Upper Rhone valley, Switzerland – gradual or catastrophic? Earth Surf. Proc. Land. 47, 1032–1053, https://doi.org/10.1002/esp.5301, 2022.
Schreiner, A.: Quartär, in: Geologische Karte 1:25 000 von Baden-Württemberg. Erläuterungen zu Blatt 8114 Feldberg, 2nd edn., edited by: Geologisches Landesamt Baden-Württemberg, Landesvermessungsamt Baden-Württemberg, Stuttgart, 67–95, 1990.
Schrepfer, H.: Zur Kenntnis der Eiszeit im Wutachgebiet, Mitt. bad. Landesver, Naturkunde u. Naturschutz, 1, 469–473, 1925.
Small, D. and Fabel, D.: Was Scotland deglaciated during the Younger Dryas? Quaternary Sci. Rev.. 145, 259–263, https://doi.org/10.1016/j.quascirev.2016.05.031, 2016a.
Small, D. and Fabel, D.: Response to Bromley et al. “Comment on `Was Scotland deglaciated during the Younger Dryas?' By Small and Fabel (2016)”. Quaternary Sci. Rev., 152, 206–208, https://doi.org/10.1016/j.quascirev.2016.09.021, 2016b.
Steinmann, G.: Die Bildungen der letzten Eiszeit im Bereiche des alten Wutachgebiets, Ber. oberrh. geol. Ver., 35, 16–23, 1902.
Stojakowits, P., Friedmann, A., and Bull, A.: Die spätglaziale Vegetationsgeschichte im oberen Illergebiet (Allgäu/Bayern), E&G Quaternary Sci. J., 63, 130–142, https://doi.org/10.3285/eg.63.2.02, 2014.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Stroeven, A. P., Heyman, J., Fabel, D., Björck, S., Caffee, M. W., Fredin, O., and Harbor, J. M.: A new Scandinavian reference 10Be production rate, Quat. Geochronol., 29, 104–115, https://doi.org/10.1016/j.quageo.2015.06.011, 2015.
Stuart, F. M. and Dunai, T. J.: Advances in cosmogenic isotope research from CRONUS-EU, Quat. Geochronol., 4, 435–436, https://doi.org/10.1016/j.quageo.2009.09.009, 2009.
Tomkins, M. D., Dortch, J. M., Hughes, P. D., Huck, J. J., Pallàs, R., Rodés, Á., Allard, J. L., Stimson, A. G., Bourlès, D., Rinterknecht, V., Jomelli, V., Rodríguez-Rodríguez, L., Copons, R., Barr, I. D., Darvill, C. M., and Bishop, T.: Moraine crest or slope: An analysis of the effects of boulder position on cosmogenic exposure age, Earth Planet. Sc. Lett., 570, 117092, https://doi.org/10.1016/j.epsl.2021.117092, 2021.
United States Geological Survey (USGS): Earth Explorer, United States Geological Survey (USGS) [data set], https://earthexplorer.usgs.gov/ (last access: 14 May 2024), 2024.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Da Bechtold, V. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van Berg, L. de, Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J. F., Morcrette, J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Vočadlová, K., Petr, L., Žáčková, P., Křížek, M., Křížová, L., Hutchinson, S. M., and Šobr, M.: The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic, Boreas, 44, 769–784, https://doi.org/10.1111/bor.12126, 2015.
Walchner, F. A.: Handbuch der Geognosie zum Gebrauche bei seinen Vorlesungen und zum Selbststudium mit besonderer Berücksichtigung der geognostischen Verhältnisse des Grossherzogtums Baden, Christian Theodor Groos, Karlsruhe, 1120 pp., 1846.
Wimmenauer, W., Liehl, E., and Schreiner, A.: Geologische Karte von Baden-Württemberg 1:25 000, Blatt 8114 Feldberg, Landesvermessungsamt Baden-Württemberg, Stuttgart, 1990.
Zweck, C., Zreda, M., and Desilets, D.: Snow shielding factors for cosmogenic nuclide dating inferred from Monte Carlo neutron transport simulations, Earth Planet. Sc. Lett., 379, 64–71, https://doi.org/10.1016/j.epsl.2013.07.023, 2013.
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW...