Articles | Volume 6, issue 2
https://doi.org/10.5194/gchron-6-291-2024
https://doi.org/10.5194/gchron-6-291-2024
Research article
 | 
01 Jul 2024
Research article |  | 01 Jul 2024

Last ice sheet recession and landscape emergence above sea level in east-central Sweden, evaluated using in situ cosmogenic 14C from quartz

Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee

Related authors

The protocataclasite dilemma: in situ 36Cl and REE-Y lessons from an impure limestone fault scarp at Sparta, Greece
Bradley W. Goodfellow, Marc W. Caffee, Greg Chmiel, Ruben Fritzon, Alasdair Skelton, and Arjen P. Stroeven
Solid Earth, 15, 1343–1363, https://doi.org/10.5194/se-15-1343-2024,https://doi.org/10.5194/se-15-1343-2024, 2024
Short summary

Related subject area

Cosmogenic nuclide dating
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024,https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary
Technical note: Altitude scaling of 36Cl production from Fe
Angus K. Moore and Darryl E. Granger
Geochronology, 6, 541–552, https://doi.org/10.5194/gchron-6-541-2024,https://doi.org/10.5194/gchron-6-541-2024, 2024
Short summary
Terrestrial Cosmogenic Nuclide depth profiles used to infer changes in Holocene glacier cover, Vintage Peak, Southern Coast Mountains, British Columbia
Adam C. Hawkins, Brent M. Goehring, and Brian Menounos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2900,https://doi.org/10.5194/egusphere-2024-2900, 2024
Short summary
Production rate calibration for cosmogenic 10Be in pyroxene by applying a rapid fusion method to 10Be-saturated samples from the Transantarctic Mountains, Antarctica
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024,https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Technical note: Optimizing the in situ cosmogenic 36Cl extraction and measurement workflow for geologic applications
Alia J. Lesnek, Joseph M. Licciardi, Alan J. Hidy, and Tyler S. Anderson
Geochronology, 6, 475–489, https://doi.org/10.5194/gchron-6-475-2024,https://doi.org/10.5194/gchron-6-475-2024, 2024
Short summary

Cited articles

Alexanderson, H., Hättestrand, M., Lindqvist, M. A., and Sigfusdottir, T.: MIS 3 age of the Veiki moraine in N Sweden – Dating the landform record of an intermediate-sized ice sheet in Scandinavia, Arct. Antarct. Alp. Res., 54, 239–261, 2022. 
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, 2008. 
Berglund, M.: The Holocene shore displacement of Gästrikland, eastern Sweden: a contribution to the knowledge of Scandinavian glacio-isostatic uplift, J. Quaternary Sci., 20, 519–531, 2005. 
Bergström, E.: Late Holocene distribution of lake sediment and peat in NE Uppland, Sweden, SKB R-01-12, Svensk Kärnbränslehantering AB, ISSN 1402-3091, 2001. 
Bierman, P. R., Rood, D. H., Shakun, J. D., Portenga, E. W., and Corbett, L. B.: Directly dating postglacial Greenlandic land-surface emergence at high resolution using in situ 10Be, Quaternary Res., 90, 110–126, 2018. 
Download
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.