Articles | Volume 6, issue 1
https://doi.org/10.5194/gchron-6-37-2024
https://doi.org/10.5194/gchron-6-37-2024
Research article
 | 
19 Jan 2024
Research article |  | 19 Jan 2024

Modeling apparent Pb loss in zircon U–Pb geochronology

Glenn R. Sharman and Matthew A. Malkowski

Related authors

Carbon isotope chemostratigraphy, geochemistry, and biostratigraphy of the Paleocene–Eocene Thermal Maximum, deepwater Wilcox Group, Gulf of Mexico (USA)
Glenn R. Sharman, Eugene Szymanski, Rebecca A. Hackworth, Alicia C. M. Kahn, Lawrence A. Febo, Jordan Oefinger, and Gunnar M. Gregory
Clim. Past, 19, 1743–1775, https://doi.org/10.5194/cp-19-1743-2023,https://doi.org/10.5194/cp-19-1743-2023, 2023
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024,https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Increased accuracy and precision in igneous and detrital zircon geochronology using CA-LA-ICPMS
Erin Elizabeth Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology Discuss., https://doi.org/10.5194/gchron-2023-20,https://doi.org/10.5194/gchron-2023-20, 2023
Revised manuscript accepted for GChron
Short summary
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023,https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Technical note: colab_zirc_dims: a Google Colab-compatible toolset for automated and semi-automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models
Michael C. Sitar and Ryan J. Leary
Geochronology, 5, 109–126, https://doi.org/10.5194/gchron-5-109-2023,https://doi.org/10.5194/gchron-5-109-2023, 2023
Short summary

Cited articles

Aitchison, J. and Bacon-Shone, J.: Convex linear combinations of compositions, Biometrika, 86, 351–364, https://www.jstor.org/stable/2673517 (last access: 19 August 2023), 1999. 
Aitchison, J. and Shen, S. M.: Logistic-normal distributions: Some properties and uses, Biometrika, 67, 261–272, https://www.jstor.org/stable/2335470 (last access: 19 August 2023), 1980. 
Allen, C. M. and Campbell, I. H.: Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon, Chem. Geol., 332, 157–165, 2012. 
Andersen, T.: Correction of common lead in U–Pb analyses that do not report 204Pb, Chem. Geol., 192, 59–79, 2002. 
Andersen, T. and Elburg, M. A.: Open-system behaviour of detrital zircon during weathering: an example from the Palaeoproterozoic Pretoria Group, South Africa, Geol. Mag., 159, 561–576, 2022. 
Download
Short summary
The mineral zircon is widely used to determine the age of rocks based on the radioactive decay of U to Pb, but the measured U–Pb date can be too young if the zircon loses Pb. We present a method for estimating the distribution of apparent Pb loss by mathematical convolution. Applying this approach to 10 samples illustrates contrasting patterns of apparent Pb loss. This study highlights the importance of quantifying Pb loss to better understand its potential effects on zircon U–Pb dates.