Articles | Volume 6, issue 1
https://doi.org/10.5194/gchron-6-37-2024
https://doi.org/10.5194/gchron-6-37-2024
Research article
 | 
19 Jan 2024
Research article |  | 19 Jan 2024

Modeling apparent Pb loss in zircon U–Pb geochronology

Glenn R. Sharman and Matthew A. Malkowski

Related authors

Carbon isotope chemostratigraphy, geochemistry, and biostratigraphy of the Paleocene–Eocene Thermal Maximum, deepwater Wilcox Group, Gulf of Mexico (USA)
Glenn R. Sharman, Eugene Szymanski, Rebecca A. Hackworth, Alicia C. M. Kahn, Lawrence A. Febo, Jordan Oefinger, and Gunnar M. Gregory
Clim. Past, 19, 1743–1775, https://doi.org/10.5194/cp-19-1743-2023,https://doi.org/10.5194/cp-19-1743-2023, 2023
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024,https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024,https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
The daughter–parent plot: a tool for analyzing thermochronological data
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024,https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Short communication: Resolving the discrepancy between U–Pb age estimates for the “Likhall” bed, a key level in the Ordovician timescale
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024,https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary

Cited articles

Aitchison, J. and Bacon-Shone, J.: Convex linear combinations of compositions, Biometrika, 86, 351–364, https://www.jstor.org/stable/2673517 (last access: 19 August 2023), 1999. 
Aitchison, J. and Shen, S. M.: Logistic-normal distributions: Some properties and uses, Biometrika, 67, 261–272, https://www.jstor.org/stable/2335470 (last access: 19 August 2023), 1980. 
Allen, C. M. and Campbell, I. H.: Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon, Chem. Geol., 332, 157–165, 2012. 
Andersen, T.: Correction of common lead in U–Pb analyses that do not report 204Pb, Chem. Geol., 192, 59–79, 2002. 
Andersen, T. and Elburg, M. A.: Open-system behaviour of detrital zircon during weathering: an example from the Palaeoproterozoic Pretoria Group, South Africa, Geol. Mag., 159, 561–576, 2022. 
Download
Short summary
The mineral zircon is widely used to determine the age of rocks based on the radioactive decay of U to Pb, but the measured U–Pb date can be too young if the zircon loses Pb. We present a method for estimating the distribution of apparent Pb loss by mathematical convolution. Applying this approach to 10 samples illustrates contrasting patterns of apparent Pb loss. This study highlights the importance of quantifying Pb loss to better understand its potential effects on zircon U–Pb dates.