Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-325-2020
https://doi.org/10.5194/gchron-2-325-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

Robust isochron calculation

Roger Powell, Eleanor C. R. Green, Estephany Marillo Sialer, and Jon Woodhead

Related authors

DQPB: software for calculating disequilibrium U–Pb ages
Timothy Pollard, Jon Woodhead, John Hellstrom, John Engel, Roger Powell, and Russell Drysdale
Geochronology, 5, 181–196, https://doi.org/10.5194/gchron-5-181-2023,https://doi.org/10.5194/gchron-5-181-2023, 2023
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024,https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024,https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024,https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
The daughter–parent plot: a tool for analyzing thermochronological data
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024,https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary

Cited articles

Brooks, C., Hart, S. R., and Wendt, I.: Realistic use of two-error regression treatments as applied to Rubidium-Strontium data, Rev. Geophys. Space Phys., 10, 551–577, 1972. a
Dickin, A. P.: Radiogenic isotope geology. Cambridge University Press, 492 pp., 2005. a
Fox, J.: Applied regression analysis & Generalised linear models, 3rd edn., Sage, Los Angeles, 791 pp., 2016. a
Fuller, W. A.: Measurement error models, John Wiley and Sons, 440 pp., 1987. a
Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M., and Stahel, W. A.: Robust statistics. Wiley and Sons, New York, 502 pp., 1986. a, b
Download
Short summary
The standard approach to isochron calculation assumes that the distribution of uncertainties on the data arising from isotopic analysis is strictly Gaussian. This excludes datasets that have more scatter, even though many appear to have age significance. Our new approach requires only that the central part of the uncertainty distribution of the data defines a "spine" in the trend of the data. A robust statistics approach is used to locate the spine, and an implementation in Python is given.