Articles | Volume 2, issue 2
https://doi.org/10.5194/gchron-2-325-2020
https://doi.org/10.5194/gchron-2-325-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

Robust isochron calculation

Roger Powell, Eleanor C. R. Green, Estephany Marillo Sialer, and Jon Woodhead

Related authors

DQPB: software for calculating disequilibrium U–Pb ages
Timothy Pollard, Jon Woodhead, John Hellstrom, John Engel, Roger Powell, and Russell Drysdale
Geochronology, 5, 181–196, https://doi.org/10.5194/gchron-5-181-2023,https://doi.org/10.5194/gchron-5-181-2023, 2023
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
New controls on sedimentation and climate in the central equatorial Pacific Ocean
Allison W. Jacobel, Kassandra M. Costa, Lily M. Applebaum, and Serena Conde
Geochronology, 7, 123–138, https://doi.org/10.5194/gchron-7-123-2025,https://doi.org/10.5194/gchron-7-123-2025, 2025
Short summary
Measuring varve thickness using micro-computed tomography (µCT): a comparison with thin section
Marie-Eugénie Meusseunan Pascale Jamba, Pierre Francus, Antoine Gagnon-Poiré, and Guillaume St-Onge
Geochronology, 7, 83–111, https://doi.org/10.5194/gchron-7-83-2025,https://doi.org/10.5194/gchron-7-83-2025, 2025
Short summary
Controls on zircon age distributions in volcanic, porphyry and plutonic rocks
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology, 7, 15–33, https://doi.org/10.5194/gchron-7-15-2025,https://doi.org/10.5194/gchron-7-15-2025, 2025
Short summary
Interpreting cooling dates and histories from laser ablation in situ (U–Th–Sm) ∕ He thermochronometry: a modelling perspective
Christoph Glotzbach and Todd A. Ehlers
Geochronology, 6, 697–717, https://doi.org/10.5194/gchron-6-697-2024,https://doi.org/10.5194/gchron-6-697-2024, 2024
Short summary
Short communication: Nanoscale heterogeneity of U and Pb in baddeleyite from atom probe tomography – 238U series alpha recoil effects and U atom clustering
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology, 6, 607–619, https://doi.org/10.5194/gchron-6-607-2024,https://doi.org/10.5194/gchron-6-607-2024, 2024
Short summary

Cited articles

Brooks, C., Hart, S. R., and Wendt, I.: Realistic use of two-error regression treatments as applied to Rubidium-Strontium data, Rev. Geophys. Space Phys., 10, 551–577, 1972. a
Dickin, A. P.: Radiogenic isotope geology. Cambridge University Press, 492 pp., 2005. a
Fox, J.: Applied regression analysis & Generalised linear models, 3rd edn., Sage, Los Angeles, 791 pp., 2016. a
Fuller, W. A.: Measurement error models, John Wiley and Sons, 440 pp., 1987. a
Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M., and Stahel, W. A.: Robust statistics. Wiley and Sons, New York, 502 pp., 1986. a, b
Download
Short summary
The standard approach to isochron calculation assumes that the distribution of uncertainties on the data arising from isotopic analysis is strictly Gaussian. This excludes datasets that have more scatter, even though many appear to have age significance. Our new approach requires only that the central part of the uncertainty distribution of the data defines a "spine" in the trend of the data. A robust statistics approach is used to locate the spine, and an implementation in Python is given.
Share