Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-247-2021
https://doi.org/10.5194/gchron-3-247-2021
Research article
 | 
29 Apr 2021
Research article |  | 29 Apr 2021

On the treatment of discordant detrital zircon U–Pb data

Pieter Vermeesch

Related authors

(anchored) isochrons in IsoplotR
Pieter Vermeesch
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-5,https://doi.org/10.5194/gchron-2024-5, 2024
Preprint under review for GChron
Short summary
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
Origin of Great Unconformity Obscured by Thermochronometric Uncertainty
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23,https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022,https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS
Erin E. Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024,https://doi.org/10.5194/gchron-6-89-2024, 2024
Short summary
Modeling apparent Pb loss in zircon U–Pb geochronology
Glenn R. Sharman and Matthew A. Malkowski
Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024,https://doi.org/10.5194/gchron-6-37-2024, 2024
Short summary
Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024,https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023,https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023,https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary

Cited articles

Aitchison, J.: The statistical analysis of compositional data, Chapman and Hall, London, 1986. a, b
Bodorkos, S. and Vermeesch, P.: zircon U-Pb data compilation, Zenodo [data set], data collected or compiled by the Australian Government (Geoscience Australia), https://doi.org/10.5281/zenodo.4722564, 2021. a
Cohen, J.: A power primer, Psychol. Bull., 112, 155–159, 1992. a
Gehrels, G.: Detrital zircon U-Pb geochronology: Current methods and new opportunities, in: Tectonics of sedimentary basins: Recent advances, edited by: Busby, C. and Azor, A., Wiley Online Library, Chap. 2, 45–62, 2011. a, b, c, d
Ludwig, K. R.: On the treatment of concordant uranium-lead ages, Geochim. Cosmochim. Ac., 62, 665–676, https://doi.org/10.1016/S0016-7037(98)00059-3, 1998. a, b, c
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This paper shows that the current practice of filtering discordant U–Pb data based on the relative difference between the 206Pb/238U and 207Pb/206Pb ages is just one of several possible approaches to the problem and demonstrably not the best one. An alternative approach is to define discordance in terms of isotopic composition, as a log ratio distance between the measurement and the concordia line. Application to real data indicates that this reduces the positive bias of filtered age spectra.