Articles | Volume 4, issue 1
https://doi.org/10.5194/gchron-4-269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving age–depth relationships by using the LANDO (“Linked age and depth modeling”) model ensemble
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam-Golm, Germany
Einstein Center Digital Future, Robert-Koch-Forum, Wilhelmstraße 67, 10117 Berlin, Germany
Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
Bernhard Diekmann
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam-Golm, Germany
Johann-Christoph Freytag
Einstein Center Digital Future, Robert-Koch-Forum, Wilhelmstraße 67, 10117 Berlin, Germany
Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
Liudmila Syrykh
Department of Physical Geography and Environment, Herzen State Pedagogical University of Russia, Moyka Emb. 48, St. Petersburg 191186, Russia
Dmitry A. Subetto
Department of Physical Geography and Environment, Herzen State Pedagogical University of Russia, Moyka Emb. 48, St. Petersburg 191186, Russia
Institute for Water and Environmental Problems of the Siberian Branch of the Russian Academy of Sciences, Molodezhnayastr.1, Barnaul 656038,
Russia
Boris K. Biskaborn
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Research Unit Potsdam, Telegrafenberg A45, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam-Golm, Germany
Related authors
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms–Dick, Luidmila A. Pestryakova, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2470, https://doi.org/10.5194/egusphere-2024-2470, 2024
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study offers a unique 220-year sediment record from a remote Siberian boreal lake, revealing the impacts of climate warming and pollution. Multi-proxy analyses, including diatom taxonomy, silicon isotopes, carbon and nitrogen proxies, reveal complex biogeochemical interactions, highlighting the need for further research to mitigate anthropogenic effects on these vital water resources.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Bernhard Diekmann, Werner Stackebrandt, Roland Weiße, Margot Böse, Udo Rothe, Boris Biskaborn, and Achim Brauer
DEUQUA Spec. Pub., 4, 5–17, https://doi.org/10.5194/deuquasp-4-5-2022, https://doi.org/10.5194/deuquasp-4-5-2022, 2022
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Georg Schwamborn, Kai Hartmann, Bernd Wünnemann, Wolfgang Rösler, Annette Wefer-Roehl, Jörg Pross, Marlen Schlöffel, Franziska Kobe, Pavel E. Tarasov, Melissa A. Berke, and Bernhard Diekmann
Solid Earth, 11, 1375–1398, https://doi.org/10.5194/se-11-1375-2020, https://doi.org/10.5194/se-11-1375-2020, 2020
Short summary
Short summary
We use a sediment core from the Gobi Desert (Ejina Basin, NW China) to illustrate the landscape history of the area. During 2.5 million years a sediment package of 223 m thickness has been accumulated. Various sediment types document that the area turned from a playa environment (shallow water environment with multiple flooding events) to an alluvial–fluvial environment after the arrival of the Heihe in the area. The river has been diverted due to tectonics.
Boris K. Biskaborn, Larisa Nazarova, Lyudmila A. Pestryakova, Liudmila Syrykh, Kim Funck, Hanno Meyer, Bernhard Chapligin, Stuart Vyse, Ruslan Gorodnichev, Evgenii Zakharov, Rong Wang, Georg Schwamborn, Hannah L. Bailey, and Bernhard Diekmann
Biogeosciences, 16, 4023–4049, https://doi.org/10.5194/bg-16-4023-2019, https://doi.org/10.5194/bg-16-4023-2019, 2019
Short summary
Short summary
To better understand time-series data in lake sediment cores in times of rapidly changing climate, we study within-lake spatial variabilities of environmental indicator data in 38 sediment surface samples along spatial habitat gradients in the boreal deep Lake Bolshoe Toko (Russia). Our methods comprise physicochemical as well as diatom and chironomid analyses. Species diversities vary according to benthic niches, while abiotic proxies depend on river input, water depth, and catchment lithology.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Liv Heinecke, Steffen Mischke, Karsten Adler, Anja Barth, Boris K. Biskaborn, Birgit Plessen, Ingmar Nitze, Gerhard Kuhn, Ilhomjon Rajabov, and Ulrike Herzschuh
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-34, https://doi.org/10.5194/cp-2016-34, 2016
Revised manuscript not accepted
Short summary
Short summary
The climate history of the Pamir Mountains (Tajikistan) during the last ~29 kyr was investigated using sediments from Lake Karakul as environmental archive. The inferred lake level was highest from the Late Glacial to the early Holocene and lake changes were mainly coupled to climate change. We conclude that the joint influence of Westerlies and Indian Monsoon during the early Holocene caused comparatively moist conditions, while dominating Westerlies yielded dry conditions since 6.7 cal kyr BP.
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
E. Dietze, F. Maussion, M. Ahlborn, B. Diekmann, K. Hartmann, K. Henkel, T. Kasper, G. Lockot, S. Opitz, and T. Haberzettl
Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, https://doi.org/10.5194/cp-10-91-2014, 2014
Y. Wang, U. Herzschuh, L. S. Shumilovskikh, S. Mischke, H. J. B. Birks, J. Wischnewski, J. Böhner, F. Schlütz, F. Lehmkuhl, B. Diekmann, B. Wünnemann, and C. Zhang
Clim. Past, 10, 21–39, https://doi.org/10.5194/cp-10-21-2014, https://doi.org/10.5194/cp-10-21-2014, 2014
G. Schwamborn, L. Schirrmeister, and B. Diekmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-6255-2013, https://doi.org/10.5194/cpd-9-6255-2013, 2013
Preprint withdrawn
Related subject area
Geochronological data analysis/statistics/modelling
In situ rubidium–strontium geochronology of white mica in young metamafic and metasomatic rocks from Syros: testing the limits of laser-ablation triple-quadrupole inductively coupled plasma mass spectrometer mica dating using different anchoring approaches
An optimization tool for identifying multiple-diffusion domain model parameters
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
The daughter–parent plot: a tool for analyzing thermochronological data
Errorchrons and anchored isochrons in IsoplotR
Short communication: Resolving the discrepancy between U–Pb age estimates for the “Likhall” bed, a key level in the Ordovician timescale
Navigating the complexity of detrital rutile provenance: methodological insights from the Neotethys Orogen in Anatolia
Solving crustal heat transfer for thermochronology using physics-informed neural networks
Interpreting cooling dates and histories from laser ablation in-situ (U-Th-Sm)/He thermochronometry
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS
Short Communication: Nanoscale heterogeneity of U and Pb in baddeleyite – implications for nanogeochronology and 238U series alpha recoil effects
Modeling apparent Pb loss in zircon U–Pb geochronology
Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials
Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
Technical note: colab_zirc_dims: a Google Colab-compatible toolset for automated and semi-automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models
Calculation of uncertainty in the (U–Th) ∕ He system
Bayesian age–depth modelling applied to varve and radiometric dating to optimize the transfer of an existing high-resolution chronology to a new composite sediment profile from Holzmaar (West Eifel Volcanic Field, Germany)
Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya
U and Th content in magnetite and Al spinel obtained by wet chemistry and laser ablation methods: implication for (U–Th) ∕ He thermochronometer
In situ LA-ICPMS U–Pb dating of sulfates: applicability of carbonate reference materials as matrix-matched standards
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Technical note: Rapid phase identification of apatite and zircon grains for geochronology using X-ray micro-computed tomography
Simulating sedimentary burial cycles – Part 2: Elemental-based multikinetic apatite fission-track interpretation and modelling techniques illustrated using examples from northern Yukon
sandbox – creating and analysing synthetic sediment sections with R
How many grains are needed for quantifying catchment erosion from tracer thermochronology?
Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers
Technical note: Analytical protocols and performance for apatite and zircon (U–Th) ∕ He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020
Simulating sedimentary burial cycles – Part 1: Investigating the role of apatite fission track annealing kinetics using synthetic data
The closure temperature(s) of zircon Raman dating
On the treatment of discordant detrital zircon U–Pb data
An evaluation of Deccan Traps eruption rates using geochronologic data
geoChronR – an R package to model, analyze, and visualize age-uncertain data
Development of a multi-method chronology spanning the Last Glacial Interval from Orakei maar lake, Auckland, New Zealand
Robust isochron calculation
Resolving the timescales of magmatic and hydrothermal processes associated with porphyry deposit formation using zircon U–Pb petrochronology
Seasonal deposition processes and chronology of a varved Holocene lake sediment record from Chatyr Kol lake (Kyrgyz Republic)
Unifying the U–Pb and Th–Pb methods: joint isochron regression and common Pb correction
Exploring the advantages and limitations of in situ U–Pb carbonate geochronology using speleothems
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024, https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
Short summary
Dating the roots of plate boundaries is essential for understanding geologic processes, but geochemical limitations, particularly in young mafic rocks, make this challenging. Advancements in mass spectrometry now enable high-resolution analysis of micro-domains. We assess these limitations by dating rocks from Syros. Multi-phase mineral analysis improves age uncertainty 6-fold. We emphasize the importance of the local geologic context and propose strategies to mitigate uncertainties.
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024, https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
Short summary
The multiple-diffusion domain (MDD) model quantifies the temperature dependence of noble gas diffusivity in minerals. However, current methods for tuning MDD parameters can yield biased results, leading to underestimates of sample temperatures through geologic time. Our "MDD Tool Kit" software optimizes all MDD parameters simultaneously, overcoming these biases. We then apply this software to a previously published 40Ar/39Ar dataset (Wong, 2023) to showcase its efficacy.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024, https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary
Short summary
We present a new data analysis workflow for thermochronological data based on plots of radiogenic daughter vs. radioactive parent concentration. The daughter–parent relationship helps to identify the sources of age variation. Our workflow classifies the daughter–parent relationship and provides further suggestions, e.g., if a dataset can be described by a sample age and which type of sample age to report. We also introduce Incaplot, which is software for creating daughter–parent plots.
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024, https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Short summary
The age of some geological materials can be estimated from the ratio of certain radiogenic "daughter" isotopes to their radioactive "parent". However, in many cases, the age estimation process is complicated by the presence of an inherited component of non-radiogenic daughter isotopes. This paper presents an improved algorithm to estimate the radiogenic and non-radiogenic components, either separately or jointly.
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024, https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary
Short summary
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth during the Ordovician period. It is important to understand the timing of this meteorite bombardment when attempting to correlate it with biodiversity changes during the Ordovician period. Calibrating a good age for the “Likhall” bed is, however, challenging and benefited in this study from advances in sample preparation.
Megan A. Mueller, Alexis Licht, Andreas Möller, Cailey B. Condit, Julie C. Fosdick, Faruk Ocakoğlu, and Clay Campbell
Geochronology, 6, 265–290, https://doi.org/10.5194/gchron-6-265-2024, https://doi.org/10.5194/gchron-6-265-2024, 2024
Short summary
Short summary
Sedimentary provenance refers to the study of the origin of sedimentary rocks, tracing where sediment particles originated. Common sedimentary provenance techniques struggle to track mafic igneous and metamorphic rock sources and rutile forms in these rock types. We use rutile form ancient sedimentary rocks in Türkiye to present new recommendations and workflows for integrating rutile U–Pb ages and chemical composition into an accurate sedimentary provenance reconstruction.
Ruohong Jiao, Shengze Cai, and Jean Braun
Geochronology, 6, 227–245, https://doi.org/10.5194/gchron-6-227-2024, https://doi.org/10.5194/gchron-6-227-2024, 2024
Short summary
Short summary
We demonstrate a machine learning method to estimate the temperature changes in the Earth's crust over time. The method respects physical laws and conditions imposed by users. By using observed rock cooling ages as constraints, the method can be used to estimate the tectonic and landscape evolution of the Earth. We show the applications of the method using a synthetic rock uplift model in 1D and an evolution model of a real mountain range in 3D.
Christoph Glotzbach and Todd A. Ehlers
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-12, https://doi.org/10.5194/gchron-2024-12, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
The (U-Th)/He dating method helps understand rock’s cooling history. Synthetic modeling experiments were conducted to explore factors affecting in-situ vs. whole-grain (U-Th)/He dates. In-situ dates are often 30 % older than whole-grain dates, whereas very rapid cooling makes helium loss negligible, resulting in similar whole-grain and in-situ dates. In addition, in-situ data can reveal cooling histories even from a single grain by measuring helium distributions.
Erin E. Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024, https://doi.org/10.5194/gchron-6-89-2024, 2024
Short summary
Short summary
Chemical abrasion (CA) is a technique that reduces or eliminates the effects of Pb loss in zircon U–Pb geochronology. However, CA has yet to be applied to large-n detrital zircon (DZ) analyses. We show that CA does not negatively impact or systematically bias U–Pb dates, improves the resolution of age populations defined by 206Pb/238U dates, and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates.
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-4, https://doi.org/10.5194/gchron-2024-4, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
Decay of U to Pb in the mineral baddeleyite is used for precisely dating mafic rocks, but some daughter Pb atoms can be ejected out of the crystal, resulting in an age that appears too young. Atom Probe Tomography was used to map the distribution of U and Pb atoms in 3 dimensions within a baddeleyite crystal and estimate the average distance that Pb atoms are displaced by decay of U. This allows us to correct the measured age on a baddeleyite crystal knowing its size and shape.
Glenn R. Sharman and Matthew A. Malkowski
Geochronology, 6, 37–51, https://doi.org/10.5194/gchron-6-37-2024, https://doi.org/10.5194/gchron-6-37-2024, 2024
Short summary
Short summary
The mineral zircon is widely used to determine the age of rocks based on the radioactive decay of U to Pb, but the measured U–Pb date can be too young if the zircon loses Pb. We present a method for estimating the distribution of apparent Pb loss by mathematical convolution. Applying this approach to 10 samples illustrates contrasting patterns of apparent Pb loss. This study highlights the importance of quantifying Pb loss to better understand its potential effects on zircon U–Pb dates.
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024, https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short summary
Radiometric dating methods, involving laser ablation as the sample introduction, require robust calibrations to reference materials with similar ablation properties to the analysed samples. In the case of the rubidium–strontium dating method, calibrations are often conducted to nano powder with different ablation characteristics than the crystalline minerals. We describe the limitations of this approach and recommend an alternative calibration method involving natural minerals.
Alex Lipp and Pieter Vermeesch
Geochronology, 5, 263–270, https://doi.org/10.5194/gchron-5-263-2023, https://doi.org/10.5194/gchron-5-263-2023, 2023
Short summary
Short summary
We propose using the Wasserstein-2 distance (W2) as an alternative to the widely used Kolmogorov–Smirnov (KS) statistic for analysing distributional data in geochronology. W2 measures the horizontal distance between observations, while KS measures vertical differences in cumulative distributions. Using case studies, we find that W2 is preferable in scenarios where the absolute age differences in observations provide important geological information. W2 has been added to the R package IsoplotR.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Michael C. Sitar and Ryan J. Leary
Geochronology, 5, 109–126, https://doi.org/10.5194/gchron-5-109-2023, https://doi.org/10.5194/gchron-5-109-2023, 2023
Short summary
Short summary
We developed code to automatically and semi-automatically measure dimensions of detrital mineral grains in reflected-light images saved at laser ablation–inductively coupled plasma–mass spectrometry facilities that use Chromium targeting software. Our code uses trained deep learning models to segment grain images with greater accuracy than is achievable using other segmentation techniques. We implement our code in Jupyter notebooks which can also be run online via Google Colab.
Peter E. Martin, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 91–107, https://doi.org/10.5194/gchron-5-91-2023, https://doi.org/10.5194/gchron-5-91-2023, 2023
Short summary
Short summary
There is currently no standardized method of performing uncertainty propagation in the (U–Th) / He system, causing data interpretation difficulties. We present two methods of uncertainty propagation and describe free, open-source software (HeCalc) to apply them. Compilation of real data using only analytical uncertainty as well as 2 % and 5 % uncertainties in FT yields respective median relative date uncertainties of 2.9 %, 3.3 %, and 5.0 % for apatites and 1.7 %, 3.3 %, and 5.0 % for zircons.
Stella Birlo, Wojciech Tylmann, and Bernd Zolitschka
Geochronology, 5, 65–90, https://doi.org/10.5194/gchron-5-65-2023, https://doi.org/10.5194/gchron-5-65-2023, 2023
Short summary
Short summary
Sediment cores from the volcanic lake Holzmaar provide a very precise chronology based on tree-ring-like annual laminations or varves. We statistically combine this varve chronology with radiometric dating and tested three different methods to upgrade the age–depth model. However, only one of the three methods tested improved the dating accuracy considerably. With this work, an overview of different age integration methods is discussed and made available for increased future demands.
Peter van der Beek and Taylor F. Schildgen
Geochronology, 5, 35–49, https://doi.org/10.5194/gchron-5-35-2023, https://doi.org/10.5194/gchron-5-35-2023, 2023
Short summary
Short summary
Thermochronometric data can provide unique insights into the patterns of rock exhumation and the driving mechanisms of landscape evolution. Several well-established thermal models allow for a detailed exploration of how cooling rates evolved in a limited area or along a transect, but more regional analyses have been challenging. We present age2exhume, a thermal model that can be used to rapidly provide a synoptic overview of exhumation rates from large regional thermochronologic datasets.
Marianna Corre, Arnaud Agranier, Martine Lanson, Cécile Gautheron, Fabrice Brunet, and Stéphane Schwartz
Geochronology, 4, 665–681, https://doi.org/10.5194/gchron-4-665-2022, https://doi.org/10.5194/gchron-4-665-2022, 2022
Short summary
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
Aratz Beranoaguirre, Iuliana Vasiliev, and Axel Gerdes
Geochronology, 4, 601–616, https://doi.org/10.5194/gchron-4-601-2022, https://doi.org/10.5194/gchron-4-601-2022, 2022
Short summary
Short summary
U–Pb dating by the in situ laser ablation mass spectrometry (LA-ICPMS) technique requires reference materials of the same nature as the samples to be analysed. Here, we have explored the suitability of using carbonate materials as a reference for sulfates, since there is no sulfate reference material. The results we obtained are satisfactory, and thus, from now on, the sulfates can also be analysed.
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022, https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary
Short summary
Secondary ion mass spectrometry (SIMS) is the oldest and most sensitive analytical technique for in situ U–Pb geochronology. This paper introduces a new algorithm for SIMS data reduction that treats data as
compositional data, which means that the relative abundances of 204Pb, 206Pb, 207Pb, and 238Pb are processed within a tetrahedral data space or
simplex. The new method is implemented in an eponymous computer programme that is compatible with the two dominant types of SIMS instruments.
Emily H. G. Cooperdock, Florian Hofmann, Ryley M. C. Tibbetts, Anahi Carrera, Aya Takase, and Aaron J. Celestian
Geochronology, 4, 501–515, https://doi.org/10.5194/gchron-4-501-2022, https://doi.org/10.5194/gchron-4-501-2022, 2022
Short summary
Short summary
Apatite and zircon are the most widely used minerals for dating rocks, but they can be difficult to identify in some crushed rock samples. Incorrect mineral identification results in wasted analytical resources and inaccurate data. We show how X-ray computed tomography can be used to efficiently and accurately distinguish apatite from zircon based on density variations, and provide non-destructive 3D grain-specific size, shape, and inclusion information for improved data quality.
Dale R. Issler, Kalin T. McDannell, Paul B. O'Sullivan, and Larry S. Lane
Geochronology, 4, 373–397, https://doi.org/10.5194/gchron-4-373-2022, https://doi.org/10.5194/gchron-4-373-2022, 2022
Short summary
Short summary
Phanerozoic sedimentary rocks of northern Canada have compositionally heterogeneous detrital apatite with high age dispersion caused by differential thermal annealing. Discrete apatite fission track kinetic populations with variable annealing temperatures are defined using elemental data but are poorly resolved using conventional parameters. Inverse thermal modelling of samples from northern Yukon reveals a record of multiple heating–cooling cycles consistent with geological constraints.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers
Geochronology, 4, 177–190, https://doi.org/10.5194/gchron-4-177-2022, https://doi.org/10.5194/gchron-4-177-2022, 2022
Short summary
Short summary
Cooling ages date the time at which minerals cross a certain isotherm on the way up to Earth's surface. Such ages can be measured from bedrock material and river sand. If spatial variations in bedrock ages are known in a river catchment, the spatial distribution of erosion can be inferred from the distribution of the ages measured from the river sand grains. Here we develop a new tool to help such analyses, with particular emphasis on quantifying uncertainties due to sample size.
Yang Li and Pieter Vermeesch
Geochronology, 3, 415–420, https://doi.org/10.5194/gchron-3-415-2021, https://doi.org/10.5194/gchron-3-415-2021, 2021
Short summary
Short summary
A conventional isochron is a straight-line fit to two sets of isotopic ratios, D/d and P/d, where P is the radioactive parent, D is the radiogenic daughter, and d is a second isotope of the daughter element. The slope of this line is proportional to the age of the system. An inverse isochron is a linear fit through d/D and P/D. The horizontal intercept of this line is inversely proportional to the age. The latter approach is preferred when d<D, which is the case in Re–Os and K–Ca geochronology.
Cécile Gautheron, Rosella Pinna-Jamme, Alexis Derycke, Floriane Ahadi, Caroline Sanchez, Frédéric Haurine, Gael Monvoisin, Damien Barbosa, Guillaume Delpech, Joseph Maltese, Philippe Sarda, and Laurent Tassan-Got
Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, https://doi.org/10.5194/gchron-3-351-2021, 2021
Short summary
Short summary
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's evolution through the history of cooling and exhumation over the first dozen kilometers. The geological implications of these data rely on the precision of measurements of He, U, Th, and Sm contents in crystals. This technical note documents the methods for He thermochronology developed at the GEOPS laboratory, Paris-Saclay University, that allow (U–Th) / He data to be obtained with precision.
Kalin T. McDannell and Dale R. Issler
Geochronology, 3, 321–335, https://doi.org/10.5194/gchron-3-321-2021, https://doi.org/10.5194/gchron-3-321-2021, 2021
Short summary
Short summary
We generated a synthetic dataset applying published kinetic models and distinct annealing kinetics for the apatite fission track and (U–Th)/He methods using a predetermined thermal history. We then tested how well the true thermal history could be recovered under different data interpretation schemes and geologic constraint assumptions using the Bayesian QTQt software. Our results demonstrate that multikinetic data increase time–temperature resolution and can constrain complex thermal histories.
Birk Härtel, Raymond Jonckheere, Bastian Wauschkuhn, and Lothar Ratschbacher
Geochronology, 3, 259–272, https://doi.org/10.5194/gchron-3-259-2021, https://doi.org/10.5194/gchron-3-259-2021, 2021
Short summary
Short summary
We carried out thermal annealing experiments between 500 and 1000 °C to determine the closure temperature of radiation-damage annealing in zircon (ZrSiO4). Our results show that the different Raman bands of zircon respond differently to annealing. The repair is highest for the external rotation Raman band near 356.6 cm−1. The closure temperature estimates range from 250 to 370 °C for different bands. The differences in closure temperatures offer the prospect of multi-T zircon Raman dating.
Pieter Vermeesch
Geochronology, 3, 247–257, https://doi.org/10.5194/gchron-3-247-2021, https://doi.org/10.5194/gchron-3-247-2021, 2021
Short summary
Short summary
This paper shows that the current practice of filtering discordant U–Pb data based on the relative difference between the 206Pb/238U and 207Pb/206Pb ages is just one of several possible approaches to the problem and demonstrably not the best one. An alternative approach is to define discordance in terms of isotopic composition, as a log ratio distance between the measurement and the concordia line. Application to real data indicates that this reduces the positive bias of filtered age spectra.
Blair Schoene, Michael P. Eddy, C. Brenhin Keller, and Kyle M. Samperton
Geochronology, 3, 181–198, https://doi.org/10.5194/gchron-3-181-2021, https://doi.org/10.5194/gchron-3-181-2021, 2021
Short summary
Short summary
We compare two published U–Pb and 40Ar / 39Ar geochronologic datasets to produce eruption rate models for the Deccan Traps large igneous province. Applying the same approach to each dataset, the resulting models agree well, but the higher-precision U–Pb dataset results in a more detailed eruption model than the lower-precision 40Ar / 39Ar data. We explore sources of geologic uncertainty and reiterate the importance of systematic uncertainties in comparing U–Pb and 40Ar / 39Ar datasets.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Roger Powell, Eleanor C. R. Green, Estephany Marillo Sialer, and Jon Woodhead
Geochronology, 2, 325–342, https://doi.org/10.5194/gchron-2-325-2020, https://doi.org/10.5194/gchron-2-325-2020, 2020
Short summary
Short summary
The standard approach to isochron calculation assumes that the distribution of uncertainties on the data arising from isotopic analysis is strictly Gaussian. This excludes datasets that have more scatter, even though many appear to have age significance. Our new approach requires only that the central part of the uncertainty distribution of the data defines a "spine" in the trend of the data. A robust statistics approach is used to locate the spine, and an implementation in Python is given.
Simon J. E. Large, Jörn-Frederik Wotzlaw, Marcel Guillong, Albrecht von Quadt, and Christoph A. Heinrich
Geochronology, 2, 209–230, https://doi.org/10.5194/gchron-2-209-2020, https://doi.org/10.5194/gchron-2-209-2020, 2020
Short summary
Short summary
The integration of zircon geochemistry and U–Pb geochronology (petrochronology) allows us to improve our understanding of magmatic processes. Here we could reconstruct the ~300 kyr evolution of the magma reservoir that sourced the magmas, fluids and metals to form the Batu Hijau porphyry Cu–Au deposit. The application of in situ LA-ICP-MS and high-precision CA–ID–TIMS geochronology to the same zircons further allowed an assessment of the strengths and limitations of the different techniques.
Julia Kalanke, Jens Mingram, Stefan Lauterbach, Ryskul Usubaliev, Rik Tjallingii, and Achim Brauer
Geochronology, 2, 133–154, https://doi.org/10.5194/gchron-2-133-2020, https://doi.org/10.5194/gchron-2-133-2020, 2020
Short summary
Short summary
Our study presents the first seasonally laminated (varved) sediment record covering almost the entire Holocene in high mountainous arid Central Asia. The established floating varve chronology is confirmed by two terrestrial radiocarbon dates, whereby aquatic radiocarbon dates reveal decreasing reservoir ages up core. Changes in seasonal deposition characteristics are attributed to changes in runoff and precipitation and/or to evaporative summer conditions.
Pieter Vermeesch
Geochronology, 2, 119–131, https://doi.org/10.5194/gchron-2-119-2020, https://doi.org/10.5194/gchron-2-119-2020, 2020
Short summary
Short summary
The U–Pb method is one of the most powerful and versatile methods in the geochronological toolbox. With two isotopes of uranium decaying to two different isotopes of lead, the U–Pb method offers an internal quality control that is absent from most other geochronological techniques. U-bearing minerals often contain significant amounts of Th, which decays to a third Pb isotope. This paper presents an algorithm to jointly process all three chronometers at once.
Jon Woodhead and Joseph Petrus
Geochronology, 1, 69–84, https://doi.org/10.5194/gchron-1-69-2019, https://doi.org/10.5194/gchron-1-69-2019, 2019
Short summary
Short summary
Recently developed methods for in situ U–Pb age determination in carbonates have found widespread application, but the benefits and limitations of the method over bulk analysis approaches have yet to be fully explored. Here we use speleothems – cave carbonates such as stalagmites and flowstones – to investigate the utility of these in situ dating methodologies for challenging matrices with low U and Pb contents and predominantly late Cenozoic ages.
Cited articles
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R.,
Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden,
P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A system for large-scale
machine learning, in: 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2–4 November 2016, Savannah, GA, USA, 265–283, https://doi.org/10.1016/0076-6879(83)01039-3, 2016.
Abbott, M. B. and Stafford, T. W.: Radiocarbon geochemistry of modern and
Ancient Arctic lake systems, Baffin Island, Canada, Quat. Res., 45,
300–311, https://doi.org/10.1006/qres.1996.0031, 1996.
Alasadi, S. A. and Bhaya, W. S.: Review of data preprocessing techniques in
data mining, J. Eng. Appl. Sci., 12, 4102–4107, 2017.
Anderson, P., Minyuk, P., Lozhkin, A., Cherepanova, M., Borkhodoev, V., and
Finney, B.: A multiproxy record of Holocene environmental changes from the
northern Kuril Islands (Russian Far East), J. Paleolimnol., 54, 379–393,
https://doi.org/10.1007/s10933-015-9858-y, 2015.
Anderson, P. M. and Lozhkin, A. V.: Late Quaternary vegetation of Chukotka
(Northeast Russia), implications for Glacial and Holocene environments of
Beringia, Quat. Sci. Rev., 107, 112–128,
https://doi.org/10.1016/j.quascirev.2014.10.016, 2015.
Andreev, A. A., Tarasov, P. E., Siegert, C., Ebel, T., Klimanov, V. A.,
Melles, M., Bobrov, A. A., Dereviagin, A. Y., Lubinski, D. J., and
Hubberten, H.-W.: Late Pleistocene and Holocene vegetation and climate on
the northern Taymyr Peninsula, Boreas, 32, 484–505,
https://doi.org/10.1111/j.1502-3885.2003.tb01230.x, 2003a.
Andreev, A. A., Tarasov, P. E., Siegert, C., Ebel, T., Klimanov, V. A., Melles, M., Bobrov, A. A., Dereviagin, A. Y., Lubinski, D. J., and Hubberten, H.-W.: Table 1. Radiocarbon dating on profile PG1228, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.726591, 2003b.
Andreev, A. A., Tarasov, P. E., Klimanov, V. A., Melles, M., Lisitsyna, O.
M., and Hubberten, H. W.: Vegetation and climate changes around the Lama
Lake, Taymyr Peninsula, Russia during the Late Pleistocene and Holocene,
Quat. Int., 122, 69–84, https://doi.org/10.1016/j.quaint.2004.01.032, 2004.
Andreev, A. A., Tarasov, P. E., Ilyashuk, B. P., Ilyashuk, E. A., Cremer,
H., Hermichen, W.-D., Wischer, F., and Hubberten, H.-W.: Holocene
environmental history recorded in Lake Lyadhej-To sediments, Polar Urals,
Russia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 223, 181–203,
https://doi.org/10.1016/j.palaeo.2005.04.004, 2005a.
Andreev, A. A., Tarasov, P. E., Ilyashuk, B. P., Ilyashuk, E. A., Cremer, H., Hermichen, W.-D., Wischer, F., and Hubberten, H.-W.: Age determinations on a sediment profile from lake Lyadhej-To, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.728450, 2005b.
Andreev, A. A., Shumilovskikh, L. S., Savelieva, L. A., Gromig, R., Fedorov,
G. B., Ludikova, A., Wagner, B., Wennrich, V., Brill, D., and Melles, M.:
Environmental conditions in northwestern Russia during MIS 5 inferred from
the pollen stratigraphy in a sediment core from Lake Ladoga, Boreas, 48, 377–386,
https://doi.org/10.1111/bor.12382, 2019.
Andreev, A. A., Raschke, E., Biskaborn, B. K., Vyse, S. A., Courtin, J.,
Böhmer, T., Stoof-Leichsenring, K., Kruse, S., Pestryakova, L. A., and
Herzschuh, U.: Late Pleistocene to Holocene vegetation and climate changes
in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney and
Rauchuagytgyn pollen records, Boreas, 50, 652–670,
https://doi.org/10.1111/bor.12521, 2021.
Appleby, P. G.: Three decades of dating recent sediments by fallout
radionuclides: A review, Holocene, 18, 83–93,
https://doi.org/10.1177/0959683607085598, 2008.
Ascough, P., Cook, G., and Dugmore, A.: Methodological approaches to
determining the marine radiocarbon reservoir effect, Prog. Phys. Geogr., 29,
532–547, https://doi.org/10.1191/0309133305pp461ra, 2005.
Austin, W. E. N., Bard, E., Hunt, J. B., Kroon, D., and Peacock, J. D.: The
14C Age of the Icelandic Vedde Ash: Implications for Younger Dryas Marine
Reservoir Age Corrections, Radiocarbon, 37, 53–62,
https://doi.org/10.1017/S0033822200014788, 1995.
Bao, R., McNichol, A. P., Hemingway, J. D., Lardie Gaylord, M. C., and
Eglinton, T. I.: Influence of different acid treatments on the radiocarbon
content spectrum of sedimentary organic matter determined by RPO/accelerator
mass spectrometry, Radiocarbon, 61, 395–413,
https://doi.org/10.1017/RDC.2018.125, 2019.
Baud, A., Jenny, J. P., Francus, P., and Gregory-Eaves, I.: Global
acceleration of lake sediment accumulation rates associated with recent
human population growth and land-use changes, J. Paleolimnol., 66, 453–467,
https://doi.org/10.1007/s10933-021-00217-6, 2021.
Baumer, M. M., Wagner, B., Meyer, H., Leicher, N., Lenz, M., Fedorov, G.,
Pestryakova, L. A., and Melles, M.: Climatic and environmental changes in
the Yana Highlands of north-eastern Siberia over the last c. 57 000 years,
derived from a sediment core from Lake Emanda, Boreas, 50, 114–133,
https://doi.org/10.1111/bor.12476, 2021.
Bayer, M.: SQLAlchemy, in: The Architecture of Open Source Applications
Volume II: Structure, Scale, and a Few More Fearless Hacks, edited by:
Brown, A. and Wilson, G., The Architecture of Open Source Applications, http://aosabook.org (last access: 20 April 2022), 2012.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and
Diekmann, B.: Environmental variability in northeastern Siberia during the
last ∼ 13 300 yr inferred from lake diatoms and
sediment-geochemical parameters, Palaeogeogr. Palaeoclimatol. Palaeoecol.,
329–330, 22–36, https://doi.org/10.1016/j.palaeo.2012.02.003, 2012a.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D. Y., Savelieva, L. A., and Diekmann, B.: (Table 1) Age determination of sediment core PG1984, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.776407, 2012b.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., Zibulski,
R., and Diekmann, B.: Late Holocene thermokarst variability inferred from
diatoms in a lake sediment record from the Lena Delta, Siberian Arctic, J.
Paleolimnol., 49, 155–170, https://doi.org/10.1007/s10933-012-9650-1,
2013a.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D. Y., Schwamborn, G., and
Diekmann, B.: Thermokarst processes and depositional events in a Tundra
Lake, Northeastern Siberia, Permafr. Periglac. Process., 24, 160–174,
https://doi.org/10.1002/ppp.1769, 2013b.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D. Y., Savelieva, L. A., Zibulski, R., and Diekmann, B.: Age determination of sediment core PG1972-1 (09-Tik-03), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.780526, 2013c.
Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D. Y., Schwamborn, G., and Diekmann, B.: Age determination of sediment core PG1975-1 (09-Tik-05), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.780385, 2013d.
Biskaborn, B. K., Subetto, D. A., Savelieva, L. A., Vakhrameeva, P. S.,
Hansche, A., Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L. A.,
Meyer, H., Kuhn, G., and Diekmann, B.: Late Quaternary vegetation and lake
system dynamics in north-eastern Siberia: Implications for seasonal climate
variability, Quat. Sci. Rev., 147, 406–421,
https://doi.org/10.1016/j.quascirev.2015.08.014, 2016a.
Biskaborn, B. K., Subetto, D. A., Savelieva, L. A., Vakhrameeva, P., Hansche, A., Herzschuh, U., Klemm, J., Heinecke, L., Pestryakova, L. A., Meyer, H., Kuhn, G., and Diekmann, B.: Radiocarbon age determination on composite core PG2023, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.848897, 2016b.
Biskaborn, B. K., Nazarova, L., Pestryakova, L. A., Syrykh, L., Funck, K., Meyer, H., Chapligin, B., Vyse, S., Gorodnichev, R., Zakharov, E., Wang, R., Schwamborn, G., Bailey, H. L., and Diekmann, B.: Spatial distribution of environmental indicators in surface sediments of Lake Bolshoe Toko, Yakutia, Russia, Biogeosciences, 16, 4023–4049, https://doi.org/10.5194/bg-16-4023-2019, 2019.
Biskaborn, B. K., Nazarova, L., Kröger, T., Pestryakova, L. A., Syrykh,
L., Pfalz, G., Herzschuh, U., and Diekmann, B.: Late Quaternary Climate
Reconstruction and Lead-Lag Relationships of Biotic and Sediment-Geochemical
Indicators at Lake Bolshoe Toko, Siberia, Front. Earth Sci., 9, 703,
https://doi.org/10.3389/feart.2021.737353, 2021.
Bjune, A. E., Greve Alsos, I., Brendryen, J., Edwards, M. E., Haflidason,
H., Johansen, M. S., Mangerud, J., Paus, A., Regnéll, C., Svendsen, J.,
and Clarke, C. L.: Rapid climate changes during the Lateglacial and the
early Holocene as seen from plant community dynamics in the Polar Urals,
Russia, J. Quat. Sci., 00, jqs.3352, https://doi.org/10.1002/jqs.3352, 2021.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon
sequences, Quat. Geochronol., 5, 512–518,
https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Blaauw, M.: clam: Classical Age-Depth Modelling of Cores from Deposits, R CRAN [code], https://cran.r-project.org/package=clam (last access: 20 April 2022), 2021.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011.
Blaauw, M. and Heegaard, E.: Estimation of Age-Depth Relationships, in: Tracking Environmental Change Using Lake Sediments, Developments in Paleoenvironmental Research, edited by: Birks, H., Lotter, A., Juggins, S., and Smol, J., Springer, Dordrecht, vol. 5, 379–413, https://doi.org/10.1007/978-94-007-2745-8_12, 2012.
Blaauw, M., Christen, J. A., Bennett, K. D., and Reimer, P. J.: Double the
dates and go for Bayes – Impacts of model choice, dating density and
quality on chronologies, Quat. Sci. Rev., 188, 58–66,
https://doi.org/10.1016/j.quascirev.2018.03.032, 2018.
Blaauw, M., Christen, J. A., and Aquino Lopez, M. A.: rbacon: Age-Depth
Modelling using Bayesian Statistics, R CRAN [code],
https://cran.r-project.org/package=rbacon (last access: 20 April 2022), 2021.
Bradley, R. S.: Paleoclimatology: Reconstructing Climates of the Quaternary
Second Edition, 3rd edn., Elsevier, Oxford, 557 pp.,
https://doi.org/10.1029/eo081i050p00613-01, 2015.
Brauer, A.: Annually Laminated Lake Sediments and Their Palaeoclimatic
Relevance, in: The Climate in Historical Times, GKSS School of Environmental Research, Springer, Berlin, Heidelberg, 109–127, https://doi.org/10.1007/978-3-662-10313-5_7, 2004.
Brock, F., Higham, T., Ditchfield, P., and Ramsey, C. B.: Current
Pretreatment Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon
Accelerator Unit (Orau), Radiocarbon, 52, 103–112,
https://doi.org/10.1017/S0033822200045069, 2010.
Bronk Ramsey, C.: Radiocarbon Calibration and Analysis of Stratigraphy: The
OxCal Program, Radiocarbon, 37, 425–430,
https://doi.org/10.1017/s0033822200030903, 1995.
Bronk Ramsey, C.: Deposition models for chronological records, Quat. Sci.
Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Dealing with Outliers and Offsets in Radiocarbon Dating,
Radiocarbon, 51, 1023–1045, https://doi.org/10.1017/s0033822200034093,
2009.
Bronk Ramsey, C. and Lee, S.: Recent and Planned Developments of the Program
OxCal, Radiocarbon, 55, 720–730, https://doi.org/10.1017/s0033822200057878, 2013.
Cadena-Vela, S., Mazón, J.-N., and Fuster-Guilló, A.: Defining a
Master Data Management Approach for Increasing Open Data Understandability,
in: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Cham, LNCS, vol. 11878, 169–178, https://doi.org/10.1007/978-3-030-40907-4_17, 2020.
Chollet, F.: Keras: The Python Deep Learning library, GitHub [code],
https://keras.io (last access: 20 April 2022), 2015.
Ciarletta, D. J., Shawler, J. L., Tenebruso, C., Hein, C. J., and
Lorenzo-Trueba, J.: Reconstructing Coastal Sediment Budgets From Beach- and
Foredune-Ridge Morphology: A Coupled Field and Modeling Approach, J.
Geophys. Res.-Earth Surf., 124, 1398–1416,
https://doi.org/10.1029/2018JF004908, 2019.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
Last Glacial Maximum, Science, 325, 710–714,
https://doi.org/10.1126/science.1172873, 2009.
Colman, S. M., Jones, G. A., Rubin, M., King, J. W., Peck, J. A., and Orem,
W. H.: AMS radiocarbon analyses from Lake Baikal, Siberia: Challenges of
dating sediments from a large, oligotrophic lake, Quat. Sci. Rev., 15,
669–684, https://doi.org/10.1016/0277-3791(96)00027-3, 1996.
Corner, G. D., Kolka, V. V., Yevzerov, V. Y., and Møller, J. J.:
Postglacial relative sea-level change and stratigraphy of raised coastal
basins on Kola Peninsula, northwest Russia, Glob. Planet. Change, 31,
155–177, https://doi.org/10.1016/S0921-8181(01)00118-7, 2001.
Courtin, J., Andreev, A. A., Raschke, E., Bala, S., Biskaborn, B. K., Liu,
S., Zimmermann, H., Diekmann, B., Stoof-Leichsenring, K. R., Pestryakova, L.
A., and Herzschuh, U.: Vegetation Changes in Southeastern Siberia During the
Late Pleistocene and the Holocene, Front. Ecol. Evol., 9, 233,
https://doi.org/10.3389/fevo.2021.625096, 2021.
Cremer, H., Wagner, B., Melles, M., and Hubberten, H. W.: The postglacial
environmental development of Raffles Sø, East Greenland: Inferences from
a 10,000 year diatom record, J. Paleolimnol., 26, 67–87,
https://doi.org/10.1023/A:1011179321529, 2001a.
Cremer, H., Wagner, B., Melles, M., and Hubberten, H.-W.: (Table 1) Age determination of sediment profile PG1214, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.734137, 2001b.
Dask Development Team: Dask: Library for dynamic task scheduling, GitHub [code], https://dask.org (last access: 20 April 2022), 2016.
Dee, M. W., Palstra, S. W. L., Aerts-Bijma, A. T., Bleeker, M. O., De
Bruijn, S., Ghebru, F., Jansen, H. G., Kuitems, M., Paul, D., Richie, R. R.,
Spriensma, J. J., Scifo, A., Van Zonneveld, D., Verstappen-Dumoulin, B. M.
A. A., Wietzes-Land, P., and Meijer, H. A. J.: Radiocarbon Dating at
Groningen: New and Updated Chemical Pretreatment Procedures, Radiocarbon,
62, 63–74, https://doi.org/10.1017/RDC.2019.101, 2020.
Diekmann, B., Pestryakova, L., Nazarova, L., Subetto, D. A., Tarasov, P. E.,
Stauch, G., Thiemann, A., Lehmkuhl, F., Biskaborn, B. K., Kuhn, G., Henning,
D., and Müller, S.: Late Quaternary Lake Dynamics in the Verkhoyansk
Mountains of Eastern Siberia: Implications for Climate and Glaciation
History, Polarforschung, 86, 97–110,
https://doi.org/10.2312/polarforschung.86.2.97, 2017.
Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R.,
Sieger, R., and Wefer, G.: PANGAEA – an information system for environmental
sciences, Comput. Geosci., 28, 1201–1210,
https://doi.org/10.1016/S0098-3004(02)00039-0, 2002.
Dirksen, V., Dirksen, O., van den Bogaard, C., and Diekmann, B.: Holocene
pollen record from Lake Sokoch, interior Kamchatka (Russia), and its
paleobotanical and paleoclimatic interpretation, Glob. Planet. Change, 134,
129–141, https://doi.org/10.1016/j.gloplacha.2015.07.010, 2015.
Dolman, A. M.: hamstr: Hierarchical Accumulation Modelling with Stan and R, GitHub [code], https://github.com/EarthSystemDiagnostics/hamstr, last access: 20 April 2022.
Finkenbinder, M. S., Abbott, M. B., Finney, B. P., Stoner, J. S., and
Dorfman, J. M.: A multi-proxy reconstruction of environmental change
spanning the last 37 000 years from Burial Lake, Arctic Alaska, Quat. Sci.
Rev., 126, 227–241, https://doi.org/10.1016/j.quascirev.2015.08.031, 2015.
Fujiwara, H., Hajek, J., and Till, O.: Octave Forge - The “parallel”
package, Octave Forge [code], https://octave.sourceforge.io/parallel/index.html (last access: 20 April 2022), 2021.
Gaujoux, R.: doRNG: Generic Reproducible Parallel Backend for “foreach”
Loops, R CRAN [code], https://cran.r-project.org/package=doRNG (last access: 20 April 2022), 2020.
Goring, S., Williams, J. W., Blois, J. L., Jackson, S. T., Paciorek, C. J.,
Booth, R. K., Marlon, J. R., Blaauw, M., and Christen, J. A.: Deposition
times in the northeastern United States during the Holocene: Establishing
valid priors for Bayesian age models, Quat. Sci. Rev., 48, 54–60,
https://doi.org/10.1016/j.quascirev.2012.05.019, 2012.
Gromig, R., Wagner, B., Wennrich, V., Fedorov, G., Savelieva, L., Lebas, E.,
Krastel, S., Brill, D., Andreev, A., Subetto, D., and Melles, M.:
Deglaciation history of Lake Ladoga (northwestern Russia) based on varved
sediments, Boreas, 48, 330–348, https://doi.org/10.1111/bor.12379, 2019.
Hajdas, I., Ascough, P., Garnett, M. H., Fallon, S. J., Pearson, C. L.,
Quarta, G., Spalding, K. L., Yamaguchi, H., and Yoneda, M.: Radiocarbon
dating, Nat. Rev. Methods Prim., 1, 62,
https://doi.org/10.1038/s43586-021-00058-7, 2021.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.:
Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020.
Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies, J. R. Stat. Soc. Ser. C Appl. Stat.,
57, 399–418, https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B.,
Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner,
L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55 000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hoff, U., Dirksen, O., Dirksen, V., Herzschuh, U., Hubberten, H. W., Meyer,
H., van den Bogaard, C., and Diekmann, B.: Late Holocene diatom assemblages
in a lake-sediment core from Central Kamchatka, Russia, J. Paleolimnol., 47,
549–560, https://doi.org/10.1007/s10933-012-9580-y, 2012.
Hoff, U., Biskaborn, B. K., Dirksen, V. G., Dirksen, O., Kuhn, G., Meyer,
H., Nazarova, L., Roth, A., and Diekmann, B.: Holocene environment of
Central Kamchatka, Russia: Implications from a multi-proxy record of
Two-Yurts Lake, Glob. Planet. Change, 134, 101–117,
https://doi.org/10.1016/j.gloplacha.2015.07.011, 2015.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S. M.,
Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C.,
Pearson, C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: SHCal20
Southern Hemisphere Calibration, 0–55 000 Years cal BP, Radiocarbon, 62,
759–778, https://doi.org/10.1017/RDC.2020.59, 2020.
Hollaway, M. J., Henrys, P. A., Killick, R., Leeson, A., and Watkins, J.:
Evaluating the ability of numerical models to capture important shifts in
environmental time series: A fuzzy change point approach, Environ. Model.
Softw., 139, 104993, https://doi.org/10.1016/j.envsoft.2021.104993, 2021.
Hughes-Allen, L., Bouchard, F., Hatté, C., Meyer, H., Pestryakova, L.
A., Diekmann, B., Subetto, D. A., and Biskaborn, B. K.: 14 000-year Carbon
Accumulation Dynamics in a Siberian Lake Reveal Catchment and Lake
Productivity Changes, Front. Earth Sci., 9, 1–19,
https://doi.org/10.3389/feart.2021.710257, 2021.
Joblib Development Team: Joblib: running Python functions as pipeline jobs, PyPI [code], https://joblib.readthedocs.io/ (last access: 20 April 2022), 2020.
Khazin, L. B., Khazina, I. V., Krivonogov, S. K., Kuzmin, Y. V., Prokopenko,
A. A., Yi, S., and Burr, G. S.: Holocene climate changes in southern West
Siberia based on ostracod analysis, Russ. Geol. Geophys., 57, 574–585,
https://doi.org/10.1016/j.rgg.2015.05.012, 2016.
Killick, R. and Eckley, I. A.: changepoint: An R Package for Changepoint
Analysis, J. Stat. Softw., 58, 1–19, 2014.
Killick, R., Haynes, K., and Eckley, I. A.: changepoint: An R package for
changepoint analysis, R CRAN [code], https://cran.r-project.org/package=changepoint (last access: 20 April 2022), 2016.
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,
Avila, D., Abdalla, S., and Willing, C.: Jupyter Notebooks – a publishing
format for reproducible computational workflows, in: Positioning and Power
in Academic Publishing: Players, Agents and Agendas, IOS Press, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016.
Kokorowski, H. D., Anderson, P. M., Mock, C. J., and Lozhkin, A. V.: A
re-evaluation and spatial analysis of evidence for a Younger Dryas climatic
reversal in Beringia, Quat. Sci. Rev., 27, 1710–1722,
https://doi.org/10.1016/j.quascirev.2008.06.010, 2008.
Kolka, V. V., Korsakova, O. P., Shelekhova, T. S., and Tolstobrova, A. N.: Reconstruction of the relative level of the White Sea
during the Lateglacial – Holocene according to lithological, diatom
analyses and radiocarbon dating of small lakes bottom sediments in the area
of the Chupa settlement (North Karelia, Russia), Murmansk State Technical University, Vestnik of MSTU, 18, 255–268, 2015.
Kolka, V. V., Korsakova, O. P., Lavrova, N. B., Shelekhova, T. S.,
Tolstobrova, A. N., Tolstobrov, D. S., and Zaretskaya, N. E.: Small lakes
bottom sediments stratigraphy and paleogeography of the Onega Bay west coast
of the White Sea in the Late Glacial and Holocene, Geomorphology, 2018, 48–59, https://doi.org/10.7868/S0435428118020049, 2018.
Kublitskiy, Y., Kulkova, M., Druzhinina, O., Subetto, D.,
Stančikaitė, M., Gedminienė, L., and Arslanov, K.: Geochemical
Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye
Lake (SE Baltic, Russia) during the Late Glacial and Holocene, Minerals, 10, 764, https://doi.org/10.3390/min10090764, 2020.
Lacourse, T. and Gajewski, K.: Current practices in building and reporting
age-depth models, Quat. Res., 96, 28–38, https://doi.org/10.1017/qua.2020.47, 2020.
Lehnherr, I., St Louis, V. L., Sharp, M., Gardner, A. S., Smol, J. P.,
Schiff, S. L., Muir, D. C. G., Mortimer, C. A., Michelutti, N., Tarnocai,
C., St Pierre, K. A., Emmerton, C. A., Wiklund, J. A., Köck, G.,
Lamoureux, S. F., and Talbot, C. H.: The world's largest High Arctic lake
responds rapidly to climate warming, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-03685-z, 2018.
Lougheed, B. C. and Obrochta, S. P.: A Rapid, Deterministic Age-Depth
Modeling Routine for Geological Sequences With Inherent Depth Uncertainty,
Paleoceanogr. Paleocl., 34, 122–133,
https://doi.org/10.1029/2018PA003457, 2019.
Lougheed, B. C., Van Der Lubbe, H. J. L., and Davies, G. R.: 87Sr/86Sr as a quantitative geochemical proxy for 14C reservoir age in dynamic, brackish waters: Assessing applicability and quantifying uncertainties, Geophys. Res. Lett., 43, 735–742, https://doi.org/10.1002/2015GL066983, 2016.
Lowe, J. J. and Walker, M.: Reconstructing Quaternary Environments,
Routledge, https://doi.org/10.4324/9781315797496, 2014.
Lozhkin, A., Minyuk, P., Cherepanova, M., Anderson, P., and Finney, B.:
Holocene environments of central Iturup Island, southern Kuril archipelago,
Russian Far East, Quat. Res. (USA), 88, 23–38, https://doi.org/10.1017/qua.2017.21, 2017.
Lozhkin, A., Anderson, P., Minyuk, P., Korzun, J., Brown, T., Pakhomov, A.,
Tsygankova, V., Burnatny, S., and Naumov, A.: Implications for conifer
glacial refugia and postglacial climatic variation in western Beringia from
lake sediments of the Upper Indigirka basin, Boreas, 47, 938–953,
https://doi.org/10.1111/bor.12316, 2018.
Lozhkin, A., Cherepanova, M., Anderson, P., Minyuk, P., Finney, B.,
Pakhomov, A., Brown, T., Korzun, J., and Tsigankova, V.: Late Holocene
history of Tokotan Lake (Kuril Archipelago, Russian Far East): The use of
lacustrine records for paleoclimatic reconstructions from geologically
dynamic settings, Quat. Int., 553, 104–117,
https://doi.org/10.1016/j.quaint.2020.05.023, 2020.
Mackay, A. W., Bezrukova, E. V., Leng, M. J., Meaney, M., Nunes, A.,
Piotrowska, N., Self, A., Shchetnikov, A., Shilland, E., Tarasov, P., Wang,
L., and White, D.: Aquatic ecosystem responses to Holocene climate change
and biome development in boreal, central Asia, Quat. Sci. Rev., 41,
119–131, https://doi.org/10.1016/j.quascirev.2012.03.004, 2012.
Martin, H., Schmid, C., Knitter, D., and Tietze, C.: oxcAAR: Interface to
“OxCal” Radiocarbon Calibration, R CRAN [code],
https://cran.r-project.org/package=oxcAAR (last access: 20 April 2022), 2021.
McKay, N. P., Emile-Geay, J., and Khider, D.: geoChronR – an R package to model, analyze, and visualize age-uncertain data, Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, 2021.
Microsoft Corporation and Weston, S.: doParallel: Foreach Parallel Adaptor
for the “parallel” Package, R CRAN [code],
https://cran.r-project.org/package=doParallel (last access: 20 April 2022), 2020a.
Microsoft Corporation and Weston, S.: doSNOW: Foreach Parallel Adaptor for
the “snow” Package, R CRAN [code], https://cran.r-project.org/package=doSNOW (last access: 20 April 2022), 2020b.
Microsoft Corporation and Weston, S.: foreach: Provides Foreach Looping
Construct, R CRAN [code], https://cran.r-project.org/package=foreach (last access: 20 April 2022), 2020c.
Müller, S., Tarasov, P. E., Andreev, A. A., and Diekmann, B.: (Table 2) Radiocarbon dates from Lake Billyakh, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.708169, 2008.
Müller, S., Tarasov, P. E., Andreev, A. A., and Diekmann, B.: Late Glacial to Holocene environments in the present-day coldest region of the Northern Hemisphere inferred from a pollen record of Lake Billyakh, Verkhoyansk Mts, NE Siberia, Clim. Past, 5, 73–84, https://doi.org/10.5194/cp-5-73-2009, 2009.
Müller, S., Tarasov, P. E., Andreev, A. A., Tütken, T., Gartz, S.,
and Diekmann, B.: Late Quaternary vegetation and environments in the
Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil
pollen record from Lake Billyakh, Quat. Sci. Rev., 29, 2071–2086,
https://doi.org/10.1016/j.quascirev.2010.04.024, 2010.
Nazarova, L., Lüpfert, H., Subetto, D., Pestryakova, L., and Diekmann,
B.: Holocene climate conditions in central Yakutia (Eastern Siberia)
inferred from sediment composition and fossil chironomids of Lake Temje,
Quat. Int., 290–291, 264–274,
https://doi.org/10.1016/j.quaint.2012.11.006, 2013a.
Nazarova, L. B., Lüpfert, H., Subetto, D. A., Pestryakova, L. A., and Diekmann, B.: (Table 1) Radiocarbon dates from the Lake Temje sediment core, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.802677, 2013b.
Niephaus, F., Felgentreff, T., and Hirschfeld, R.: Towards polyglot adapters
for the GraalVM, ACM Int. Conf. Proceeding Ser., 1–4 April 2019, Genova, Italy, https://doi.org/10.1145/3328433.3328458, 2019.
Nowaczyk, N. R., Minyuk, P., Melles, M., Brigham-Grette, J., Glushkova, O.,
Nolan, M., Lozhkin, A. V., Stetsenko, T. V., Andersen, P. M., and Forman, S.
L.: Magnetostratigraphic results from impact crater Lake El'gygytgyn,
northeastern Siberia: a 300 kyr long high-resolution terrestrial
palaeoclimatic record from the Arctic, Geophys. J. Int., 150, 109–126,
https://doi.org/10.1046/j.1365-246X.2002.01625.x, 2002.
Olsen, J., Ascough, P., Lougheed, B. C., and Rasmussen, P.: Radiocarbon
Dating in Estuarine Environments, in: Applications of Paleoenvironmental Techniques in Estuarine Studies, Developments in Paleoenvironmental Research, edited by: Weckström, K., Saunders, K., Gell, P., and Skilbeck, C., Springer, Dordrecht, vol. 20, 141–170, https://doi.org/10.1007/978-94-024-0990-1_7, 2017.
Palagushkina, O., Wetterich, S., Biskaborn, B. K., Nazarova, L.,
Schirrmeister, L., Lenz, J., Schwamborn, G., and Grosse, G.: Diatom records
and tephra mineralogy in pingo deposits of Seward Peninsula, Alaska,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 479, 1–15,
https://doi.org/10.1016/j.palaeo.2017.04.006, 2017.
Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E., and Huntley, B.:
A flexible approach to assessing synchroneity of past events using Bayesian
reconstructions of sedimentation history, Quat. Sci. Rev., 27, 1872–1885,
https://doi.org/10.1016/j.quascirev.2008.07.009, 2008.
Parnell, A. C., Buck, C. E., and Doan, T. K.: A review of statistical
chronology models for high-resolution, proxy-based Holocene
palaeoenvironmental reconstruction, Quat. Sci. Rev., 30, 2948–2960,
https://doi.org/10.1016/j.quascirev.2011.07.024, 2011.
Peng, B., Wang, G., Ma, J., Leong, M. C., Wakefield, C., Melott, J., Chiu,
Y., Du, D., and Weinstein, J. N.: SoS notebook: An interactive
multi-language data analysis environment, Bioinformatics, 34, 3768–3770,
https://doi.org/10.1093/bioinformatics/bty405, 2018.
Pfalz, G.: GPawi/LANDO: LANDO public release v1.3, Zenodo [code],
https://doi.org/10.5281/zenodo.5734333, 2022.
Pfalz, G., Diekmann, B., Freytag, J.-C., and Biskaborn, B. K.: Computers and
Geosciences Harmonizing heterogeneous multi-proxy data from lake systems,
Comput. Geosci., 153, 104791, https://doi.org/10.1016/j.cageo.2021.104791, 2021.
Piotrowska, N., Bluszcz, A., Demske, D., Granoszewski, W., and Heumann, G.:
Extraction and AMS Radiocarbon Dating of Pollen from Lake Baikal Sediments,
Radiocarbon, 46, 181–187, https://doi.org/10.1017/S0033822200039503, 2004.
Piotrowska, N., Bluszcz, A., Demske, D., Granoszewski, W., and Heumann, G.: Age determination of Lake Baikal sediment cores, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.856103, 2005.
Pisaric, M. F. J., MacDonald, G. M., Velichko, A. A., and Cwynar, L. C.: The
Lateglacial and Postglacial vegetation history of the northwestern limits of
Beringia, based on pollen, stomate and tree stump evidence, Quat. Sci. Rev.,
20, 235–245, https://doi.org/10.1016/S0277-3791(00)00120-7, 2001.
Raab, A., Melles, M., Berger, G. W., Hagedorn, B., and Hubberten, H. W.:
Non-glacial paleoenvironments and the extent of Weichselian ice sheets on
Severnaya Zemlya, Russian High Arctic, Quat. Sci. Rev., 22, 2267–2283,
https://doi.org/10.1016/S0277-3791(03)00139-2, 2003.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer,
H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111,
1–16, https://doi.org/10.1029/2005JD006079, 2006.
R Core Team: R: A Language and Environment for Statistical Computing, R CRAN [code], https://www.r-project.org/ (last access: 20 April 2022), 2021.
Reback, J., McKinney, W., jbrockmendel, Bossche, J. Van den, Augspurger, T.,
Cloud, P., gfyoung, Sinhrks, Hawkins, S., Roeschke, M., Klein, A., Petersen,
T., Tratner, J., She, C., Ayd, W., Naveh, S., Garcia, M., Schendel, J.,
Hayden, A., Saxton, D., Jancauskas, V., McMaster, A., Battiston, P.,
Seabold, S., patrick, Dong, K., chris-b1, h-vetinari, Hoyer, S., and
Gorelli, M.: pandas-dev/pandas: Pandas 1.1.5, Zenodo [code],
https://doi.org/10.5281/zenodo.4309786, 2020.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The Intcal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 1–33,
https://doi.org/10.1017/RDC.2020.41, 2020.
Rethemeyer, J., Gierga, M., Heinze, S., Stolz, A., Wotte, A.,
Wischhöfer, P., Berg, S., Melchert, J., and Dewald, A.: Current Sample
Preparation and Analytical Capabilities of the Radiocarbon Laboratory at
CologneAMS, Radiocarbon, 61, 1449–1460,
https://doi.org/10.1017/rdc.2019.16, 2019.
Rudaya, N.: Radiocarbon dates of sediment core Tel2006 Lake Teletskoye, Altai Mountains, south-eastern West Siberia, Russia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.914417, 2020.
Rudaya, N., Nazarova, L., Nourgaliev, D., Palagushkina, O., Papin, D., and
Frolova, L.: Mid-late Holocene environmental history of Kulunda, southern
West Siberia: vegetation, climate and humans, Quat. Sci. Rev., 48, 32–42,
https://doi.org/10.1016/j.quascirev.2012.06.002, 2012.
Rudaya, N., Nazarova, L., Novenko, E., Andreev, A., Kalugin, I., Daryin, A.,
Babich, V., Li, H. C., and Shilov, P.: Quantitative reconstructions of mid-
to late holocene climate and vegetation in the north-eastern altai mountains
recorded in lake teletskoye, Glob. Planet. Change, 141, 12–24,
https://doi.org/10.1016/j.gloplacha.2016.04.002, 2016.
Rudaya, N., Nazarova, L., Frolova, L., Palagushkina, O., Soenov, V., Cao,
X., Syrykh, L., Grekov, I., Otgonbayar, D., and Bayarkhuu, B.: The link
between climate change and biodiversity of lacustrine inhabitants and
terrestrial plant communities of the Uvs Nuur Basin (Mongolia) during the
last three millennia, Holocene, 31, 1443–1458,
https://doi.org/10.1177/09596836211019093, 2021.
Savelieva, L. A., Andreev, A. A., Gromig, R., Subetto, D. A., Fedorov, G.
B., Wennrich, V., Wagner, B., and Melles, M.: Vegetation and climate changes
in northwestern Russia during the Lateglacial and Holocene inferred from the
Lake Ladoga pollen record, Boreas, 48, 349–360, https://doi.org/10.1111/bor.12376,
2019.
Schleusner, P., Biskaborn, B. K., Kienast, F., Wolter, J., Subetto, D., and
Diekmann, B.: Basin evolution and palaeoenvironmental variability of the
thermokarst lake El'gene-Kyuele, Arctic Siberia, 44, 216–229,
https://doi.org/10.1111/bor.12084, 2015.
Shelekhova, T. and Lavrova, N.: Paleogeographic reconstructions of the
Northwest Karelia region evolution in the holocene based on the study of
small lake sediments, Proc. Karelian Res. Cent. Russ. Acad. Sci., 101, 101–122, https://doi.org/10.17076/lim1268, 2020.
Shelekhova, T. S., Tikhonova, Y. S., and Lazareva, O. V.: Late Glacial and Holocene Natural Environment Dynamics and Evolution of Lake Okunozero, South Karelia: Micropalaeontological Data, Proc. Karelian Res. Cent. Russ. Acad. Sci., 55, 134, https://doi.org/10.17076/lim1319, 2021a.
Shelekhova, T. S., Lavrova, N. B., Lazareva, O. V., and Tikhonova, Y. S.:
Paleogeographic Conditions Of Sedimentation In The Small Lakes Of Western
Karelia In The Holocene, in: Routes Of Evolutionary Geography – Issue 2, Institute of Geography RAS, 449–454, ISBN 978-5-89658-074-4, 2021b.
Shelekhova, T. S., Lavrova, N. B., and Subetto, D. A.: Reconstruction of
paleogeographic conditions in the Late Glacial-Holocene in Central Karelia
based on comprehensive analysis of sediments from the lake Yuzhnoe
Haugilampi, 153, 73–89, https://doi.org/10.31857/S0869607121060070, 2021c.
Smol, J. P.: Arctic and Sub-Arctic shallow lakes in a multiple-stressor
world: a paleoecological perspective, Hydrobiologia, 778, 253–272,
https://doi.org/10.1007/s10750-015-2543-3, 2016.
Strunk, A., Olsen, J., Sanei, H., Rudra, A., and Larsen, N. K.: Improving
the reliability of bulk sediment radiocarbon dating, Quat. Sci. Rev., 242,
106442, https://doi.org/10.1016/j.quascirev.2020.106442, 2020.
Subetto, D. A., Nazarova, L. B., Pestryakova, L. A., Syrykh, L. S.,
Andronikov, A. V., Biskaborn, B., Diekmann, B., Kuznetsov, D. D., Sapelko,
T. V., and Grekov, I. M.: Paleolimnological studies in Russian northern
Eurasia: A review, Contemp. Probl. Ecol., 10, 327–335,
https://doi.org/10.1134/S1995425517040102, 2017.
Syrykh, L., Subetto, D., and Nazarova, L.: Paleolimnological studies on the
East European Plain and nearby regions: the PaleoLake Database, J.
Paleolimnol., 65, 369–375, https://doi.org/10.1007/s10933-020-00172-8, 2021.
Telford, R. J., Heegaard, E., and Birks, H. J. B.: The intercept is a poor
estimate of a calibrated radiocarbon age, Holocene, 14, 296–298,
https://doi.org/10.1191/0959683604hl707fa, 2004.
Thanos, C.: Research Data Reusability: Conceptual Foundations, Barriers and
Enabling Technologies, 5, 2, https://doi.org/10.3390/publications5010002, 2017.
Tolstobrov, D., Tolstobrova, A., Kolka, V., Korsakova, O., and Subetto, D.:
Putative Records Of The Holocene Tsunami In Lacustrine Bottom Sediments Near
The Teriberka Settlement (Kola Peninsula, Russia), Proc. Karelian Res. Cent.
Russ. Acad. Sci., 6, 92, https://doi.org/10.17076/lim865, 2018.
Tolstobrova, A., Tolstobrov, D., Kolka, V., and Korsakova, O.: Late Glacial
And Postglacial History Of Lake Osinovoye (Kola Region) Inferred From
Ssdimentary Diatom Assemblages, Proc. Karelian Res. Cent. Russ. Acad. Sci.,
89, 106, https://doi.org/10.17076/lim305, 2016.
Trachsel, M. and Telford, R. J.: All age–depth models are wrong, but are
getting better, Holocene, 27, 860–869, https://doi.org/10.1177/0959683616675939,
2017.
von Hippel, B., Stoof-Leichsenring, K. R., Schulte, L., Seeber, P.,
Biskaborn, B. K., Diekmann, B., Melles, M., Pestryakova, L., and Herzschuh,
U.: Long-term fungus–plant co-variation from multi-site sedimentary ancient
DNA metabarcoding in Siberia, bioRxiv, 1–31 pp.,
https://doi.org/10.1101/2021.11.05.465756, 2021.
Vyse, S. A., Herzschuh, U., Andreev, A. A., Pestryakova, L. A., Diekmann,
B., Armitage, S. J., and Biskaborn, B. K.: Geochemical and sedimentological
responses of arctic glacial Lake Ilirney, chukotka (far east Russia) to
palaeoenvironmental change since ∼ 51.8 ka BP, Quat. Sci.
Rev., 247, 106607, https://doi.org/10.1016/j.quascirev.2020.106607, 2020a.
Vyse, S. A., Herzschuh, U., Andreev, A. A., Pestryakova, L. A., Diekmann, B., Armitage, S., and Biskaborn, B. K.: Age determination of sediment core EN18208 from Lake Ilirney, Chukotka, far east Russia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.921228, 2020b.
Vyse, S. A., Herzschuh, U., Pfalz, G., Pestryakova, L. A., Diekmann, B., Nowaczyk, N., and Biskaborn, B. K.: Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses, Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, 2021.
Wagner, B., Melles, M., Hahne, J., Niessen, F., and Hubberten, H.-W.:
Holocene climate history of Geographical Society Ø, East Greenland –
evidence from lake sediments, Palaeogeogr. Palaeoclimatol. Palaeoecol., 160,
45–68, https://doi.org/10.1016/S0031-0182(00)00046-8, 2000a.
Wagner, B., Melles, M., Hahne, J., Niessen, F., and Hubberten, H.-W.: (Table 1) Age determination of sediment core PG1205, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.734962, 2000b.
Walker, M., Johnsen, S., Rasmussen, S. O., Steffensen, J.-P., Popp, T.,
Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Björck, S., Cwynar, L.,
Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T.,
Newnham, R., and Schwander, J.: The Global Stratotype Section and Point
(GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period)
in the NGRIP ice core, Episodes, 31, 264–267,
https://doi.org/10.18814/epiiugs/2008/v31i2/016, 2008.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François,
R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.,
Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D.,
Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.:
Welcome to the Tidyverse, J. Open Source Softw., 4, 1686,
https://doi.org/10.21105/joss.01686, 2019.
Wolfe, A. P.: A high-resolution late-glacial and early Holocene diatom
record from Baffin Island, eastern Canadian Arctic, Can. J. Earth Sci., 33,
928–937, https://doi.org/10.1139/e96-070, 1996.
Wolfe, B. B., Edwards, T. W. D., and Aravena, R.: Changes in carbon and
nitrogen cycling during tree-line retreat recorded in the isotopic content
of lacustrine organic matter, western Taimyr Peninsula, Russia, Holocene, 9, 215–222, https://doi.org/10.1191/095968399669823431, 1999.
Wright, A. J., Edwards, R. J., van de Plassche, O., Blaauw, M., Parnell, A.
C., van der Borg, K., de Jong, A. F. M., Roe, H. M., Selby, K., and Black,
S.: Reconstructing the accumulation history of a saltmarsh sediment core:
Which age-depth model is best?, Quat. Geochronol., 39, 35–67,
https://doi.org/10.1016/j.quageo.2017.02.004, 2017.
Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng,
X., Rosen, J., Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J.,
Shenker, S., and Stoica, I.: Apache spark: A unified engine for big data
processing, Commun. ACM, 59, 56–65, https://doi.org/10.1145/2934664, 2016.
Zander, P. D., Szidat, S., Kaufman, D. S., Żarczyński, M., Poraj-Górska, A. I., Boltshauser-Kaltenrieder, P., and Grosjean, M.: Miniature radiocarbon measurements (< 150 µg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age–depth models, Geochronology, 2, 63–79, https://doi.org/10.5194/gchron-2-63-2020, 2020.
Zhdanova, A. N., Solotchina, E. P., Solotchin, P. A., Krivonogov, S. K., and
Danilenko, I. V.: Reflection of Holocene climatic changes in mineralogy of
bottom sediments from Yarkovsky Pool of Lake Chany (southern West Siberia),
Russ. Geol. Geophys., 58, 692–701, https://doi.org/10.1016/j.rgg.2016.07.005, 2017.
Zolitschka, B., Francus, P., Ojala, A. E. K., and Schimmelmann, A.: Varves
in lake sediments – a review, Quat. Sci. Rev., 117, 1–41,
https://doi.org/10.1016/j.quascirev.2015.03.019, 2015.
Short summary
We use age–depth modeling systems to understand the relationship between age and depth in lake sediment cores. However, depending on which modeling system we use, the model results may vary. We provide a tool to link different modeling systems in an interactive computational environment and make their results comparable. We demonstrate the power of our tool by highlighting three case studies in which we test our application for single-sediment cores and a collection of multiple sediment cores.
We use age–depth modeling systems to understand the relationship between age and depth in lake...