Articles | Volume 4, issue 1
Geochronology, 4, 373–397, 2022
Geochronology, 4, 373–397, 2022
Research article
15 Jun 2022
Research article | 15 Jun 2022

Simulating sedimentary burial cycles – Part 2: Elemental-based multikinetic apatite fission-track interpretation and modelling techniques illustrated using examples from northern Yukon

Dale R. Issler et al.

Related authors

Simulating sedimentary burial cycles – Part 1: Investigating the role of apatite fission track annealing kinetics using synthetic data
Kalin T. McDannell and Dale R. Issler
Geochronology, 3, 321–335,,, 2021
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
sandbox – creating and analysing synthetic sediment sections with R
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338,,, 2022
Short summary
Improving age–depth relationships by using the LANDO (“Linked age and depth modeling”) model ensemble
Gregor Pfalz, Bernhard Diekmann, Johann-Christoph Freytag, Liudmila Syrykh, Dmitry A. Subetto, and Boris K. Biskaborn
Geochronology, 4, 269–295,,, 2022
Short summary
How many grains are needed for quantifying catchment erosion from tracer thermochronology?
Andrea Madella, Christoph Glotzbach, and Todd A. Ehlers
Geochronology, 4, 177–190,,, 2022
Short summary
Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers
Yang Li and Pieter Vermeesch
Geochronology, 3, 415–420,,, 2021
Short summary
Technical note: Analytical protocols and performance for apatite and zircon (U–Th) ∕ He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020
Cécile Gautheron, Rosella Pinna-Jamme, Alexis Derycke, Floriane Ahadi, Caroline Sanchez, Frédéric Haurine, Gael Monvoisin, Damien Barbosa, Guillaume Delpech, Joseph Maltese, Philippe Sarda, and Laurent Tassan-Got
Geochronology, 3, 351–370,,, 2021
Short summary

Cited articles

Barbarand, J., Carter, A., Wood, I., and Hurford, T.: Compositional and structural control of fission-track annealing in apatite, Chem. Geol., 198, 107–137, 2003. 
Brandon, M. T.: Decomposition of mixed grain age distributions using Binomfit, On Track, 24, 13–18, (last access: 27 November 2020), 2002. 
Burtner, R. L., Nigrini, A., and Donelick, R. A.: Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt, Am. Assoc. Pet. Geol. Bull., 78, 1613–1636,, 1994. 
Carlson, W. D., Donelick, R. A., and Ketcham, R. A.: Variability of apatite fission-track annealing kinetics: I. Experimental results, Am. Mineral., 84, 1213–1223, 1999. 
Carter, A. and Gallagher, K.: Characterizing the significance of provenance on the inference of thermal history models from apatite fission-track data – a synthetic data study, Goel. Soc. Am. Spec. Paper, 378, 7–23, 2004. 
Short summary
Phanerozoic sedimentary rocks of northern Canada have compositionally heterogeneous detrital apatite with high age dispersion caused by differential thermal annealing. Discrete apatite fission track kinetic populations with variable annealing temperatures are defined using elemental data but are poorly resolved using conventional parameters. Inverse thermal modelling of samples from northern Yukon reveals a record of multiple heating–cooling cycles consistent with geological constraints.