Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-435-2022
https://doi.org/10.5194/gchron-4-435-2022
Research article
 | 
05 Jul 2022
Research article |  | 05 Jul 2022

Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes

Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee

Related authors

Characterization of the 1966 Camp Century subglacial core: a multiscale analysis
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
Clim. Past, 21, 1359–1381, https://doi.org/10.5194/cp-21-1359-2025,https://doi.org/10.5194/cp-21-1359-2025, 2025
Short summary
Technical note: 21Ne in the CoQtz-N quartz standard material
Greg Balco
Geochronology, 7, 247–253, https://doi.org/10.5194/gchron-7-247-2025,https://doi.org/10.5194/gchron-7-247-2025, 2025
Short summary
Global analysis of in situ cosmogenic 26Al and 10Be and inferred erosion rate ratios in modern fluvial sediments indicates widespread sediment storage and burial during transport
Christopher T. Halsted, Paul R. Bierman, Alexandru T. Codilean, Lee B. Corbett, and Marc W. Caffee
Geochronology, 7, 213–228, https://doi.org/10.5194/gchron-7-213-2025,https://doi.org/10.5194/gchron-7-213-2025, 2025
Short summary
Cosmogenic 3He exposure dating in mafic rocks by 'Virtual mineral separation' of pyroxene
Marie Bergelin, Greg Balco, and Richard A. Ketcham
EGUsphere, https://doi.org/10.5194/egusphere-2025-3033,https://doi.org/10.5194/egusphere-2025-3033, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Antarctic ice sheet model comparison with uncurated geological constraints shows that higher spatial resolution improves deglacial reconstructions
Anna Ruth W. Halberstadt and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2025-2008,https://doi.org/10.5194/egusphere-2025-2008, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary

Related subject area

Cosmogenic nuclide dating
Cosmogenic 3He dating of olivine with tightly retained mantle 3He, Volcano Mountain, Yukon
Jessica M. Mueller, Jeffrey D. Bond, Kenneth A. Farley, and Brent C. Ward
Geochronology, 7, 255–263, https://doi.org/10.5194/gchron-7-255-2025,https://doi.org/10.5194/gchron-7-255-2025, 2025
Short summary
Technical note: 21Ne in the CoQtz-N quartz standard material
Greg Balco
Geochronology, 7, 247–253, https://doi.org/10.5194/gchron-7-247-2025,https://doi.org/10.5194/gchron-7-247-2025, 2025
Short summary
Terrestrial cosmogenic nuclide bedrock depth profiles used to infer changes in Holocene glacier cover, Vintage Peak, southern Coast Mountains, British Columbia
Adam C. Hawkins, Brent M. Goehring, and Brian Menounos
Geochronology, 7, 157–172, https://doi.org/10.5194/gchron-7-157-2025,https://doi.org/10.5194/gchron-7-157-2025, 2025
Short summary
Short communication: Updated CRN Denudation collections in OCTOPUS v2.3
Alexandru T. Codilean and Henry Munack
Geochronology, 7, 113–122, https://doi.org/10.5194/gchron-7-113-2025,https://doi.org/10.5194/gchron-7-113-2025, 2025
Short summary
Cosmogenic 21Ne exposure ages on late Pleistocene moraines in Lassen Volcanic National Park, California, USA
Joseph P. Tulenko, Greg Balco, Michael A. Clynne, and L. J. Patrick Muffler
Geochronology, 6, 639–652, https://doi.org/10.5194/gchron-6-639-2024,https://doi.org/10.5194/gchron-6-639-2024, 2024
Short summary

Cited articles

Balco, G. and Shuster, D. L.: Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces, Earth Planet. Sc. Lett., 281, 48–58, https://doi.org/10.1016/j.epsl.2009.02.006, 2009. 
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008. 
Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H., and Jackson, M. S.: A 14.5-million-year record of East Antarctic Ice Sheet fluctuations from the central Transantarctic Mountains, constrained with cosmogenic 3He, 10Be, 21Ne, and 26Al, The Cryosphere, 14, 2647–2672, https://doi.org/10.5194/tc-14-2647-2020, 2020. 
Barreto, H. N., Varajão, C. A. C., Braucher, R., Bourlès, D. L., Salgado, A. A. R., and Varajão, A. F. D. C.: Denudation rates of the Southern Espinhaço Range, Minas Gerais, Brazil, determined by in situ-produced cosmogenic beryllium-10, Geomorphology, 191, 1–13, https://doi.org/10.1016/j.geomorph.2013.01.021, 2013. 
Beck, H. E., de Roo, A., and van Dijk, A. I. J. M.: Global Maps of Streamflow Characteristics Based on Observations from Several Thousand Catchments, J. Hydrometeorol., 16, 1478–1501, https://doi.org/10.1175/jhm-d-14-0155.1, 2015. 
Download
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Share