Articles | Volume 6, issue 3
https://doi.org/10.5194/gchron-6-325-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-325-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Short communication: Resolving the discrepancy between U–Pb age estimates for the “Likhall” bed, a key level in the Ordovician timescale
Department of Earth Sciences, Université de Genève, Geneva, Switzerland
Anders Lindskog
Department of Geology, Lund University, Lund, Sweden
Urs Schaltegger
Department of Earth Sciences, Université de Genève, Geneva, Switzerland
Related authors
Nicolas Esteves, Pierre Bouilhol, Urs Schaltegger, Maria Ovtcharova, André Navin Paul, and Lydéric France
Eur. J. Mineral., 37, 667–693, https://doi.org/10.5194/ejm-37-667-2025, https://doi.org/10.5194/ejm-37-667-2025, 2025
Short summary
Short summary
Zircon in highly differentiated systems such as rare-metal granites often exhibits unusual texture and composition that need to be clarified. Based on a detailed study on zircon from the Beauvoir rare-metal granite (France), we show that zircon crystals were partially replaced during the magmatic–hydrothermal transition of these systems, resulting in a significant change in their crystal texture and chemistry.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Nicolas Esteves, Pierre Bouilhol, Urs Schaltegger, Maria Ovtcharova, André Navin Paul, and Lydéric France
Eur. J. Mineral., 37, 667–693, https://doi.org/10.5194/ejm-37-667-2025, https://doi.org/10.5194/ejm-37-667-2025, 2025
Short summary
Short summary
Zircon in highly differentiated systems such as rare-metal granites often exhibits unusual texture and composition that need to be clarified. Based on a detailed study on zircon from the Beauvoir rare-metal granite (France), we show that zircon crystals were partially replaced during the magmatic–hydrothermal transition of these systems, resulting in a significant change in their crystal texture and chemistry.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Cited articles
Ahlberg, P., Calner, M., Lehnert, O., Wickström, L., and Lindskog, A.: Regional geology of Västergötland Province, Sweden, in: Field guide for the ISOS 14 post-conference excursion. Geologiska Föreningen Specialpublikation, 9–12, 2023.
Ballo, E. G., Augland, L. E., Hammer, Ø., and Svensen, H. H.: A new age model for the Ordovician (Sandbian) K-bentonites in Oslo, Norway, Palaeogeogr. Palaeocl., 520, 203–213, https://doi.org/10.1016/J.PALAEO.2019.01.016, 2019.
Bergström, S. M.: Use of graphic correlation for assessing event-stratigraphic significance and trans-Atlantic relationships of Ordovician K-bentonites, Proc. Acad. Sci. Est. SSR, 38, 55–59, 1989.
Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb-Redux, Geochem. Geophys. Geosyst., 12, Q0AA19, https://doi.org/10.1029/2010GC003479, 2012.
Brenhin Keller, C., Boehnke, P., Schoene, B., and Harrison, T. M.: Stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis of microfractured Hadean zircon, Geochronology, 1, 85–97, https://doi.org/10.5194/gchron-1-85-2019, 2019.
Caricchi, L., Simpson, G., and Schaltegger, U.: Estimates of volume and magma input in crustal magmatic systems from zircon geochronology: The effect of modeling assumptions and system variables, Front. Earth Sci., 4, 48, https://doi.org/10.3389/feart.2016.00048, 2016.
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R.: Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochim. Cosmochim. Ac., 164, 464–480, https://doi.org/10.1016/j.gca.2015.05.026, 2015.
Condon, D., Schoene, B., Schmitz, M., Schaltegger, U., Ickert, R. B., Amelin, Y., Augland, L. E., Chamberlain, K. R., Coleman, D. S., Connelly, J. N., Corfu, F., Crowley, J. L., Davies, J. H. F. L., Denyszyn, S. W., Eddy, M. P., Gaynor, S. P., Heaman, L. M., Huyskens, M. H., Kamo, S., Kasbohm, J., Keller, C. B., MacLennan, S. A., McLean, N. M., Noble, S., Ovtcharova, M., Paul, A., Ramezani, J., Rioux, M., Sahy, D., Scoates, J. S., Szymanowski, D., Tapster, S., Tichomirowa, M., Wall, C. J., Wotzlaw, J.-F., Yang, C., and Yin, Q.-Z.: Recommendations for the reporting and interpretation of isotope dilution U-Pb geochronological information, GSA Bull., https://doi.org/10.1130/B37321.1, online first, 2024.
Gerstenberger, H. and Haase, G.: A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations, Chem. Geol., 136, 309–312, https://doi.org/10.1016/S0009-2541(96)00033-2, 1997.
Goldman, D., Sadler, P. M., Leslie, S. A., Agterberg, F. P., and Gradstein, F. M.: The Ordovician Period, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 631–694, https://doi.org/10.1016/C2020-1-02369-3, 2020.
Heck, P. R., Schmitz, B., Baur, H., and Wieler, R.: Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L-chondrite parent body breakup event, Meteor. Planet. Sci., 43, 517–528, 2008.
Huyskens, M. H., Zink, S., and Amelin, Y.: Evaluation of temperature-time conditions for the chemical abrasion treatment of single zircons for U-Pb geochronology, Chem. Geol., 438, 25–35, https://doi.org/10.1016/J.CHEMGEO.2016.05.013, 2016.
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M.: Precision Measurement of Half-Lives and Specific Activities of 235U and 238U, Phys. Rev. C, 4, 1889, https://doi.org/10.1103/PhysRevC.4.1889, 1971.
Keller, C. B.: Chron.jl: A Bayesian framework for integrated eruption age and age-depth modelling, OSF [code], https://doi.org/10.17605/osf.io/TQX, 2018.
Keller, C. B., Schoene, B., and Samperton, K. M.: A stochastic sampling approach to zircon eruption age interpretation, Geochemical Perspect. Lett., 8, 31–35, https://doi.org/10.7185/GEOCHEMLET.1826, 2018.
Korochantseva, E. V., Trieloff, M., Lorenz, C. A., Buykin, A. I., Ivanonva, M. A., Schwarz, W. H., Hopp, J., and Jessberger, E. K.: L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating, Meteorit. Planet. Sci., 42, 113–130, https://doi.org/10.1111/j.1945-5100.2007.tb00221.x, 2007.
Liao, S., Huyskens, M. H., Yin, Q.-Z., and Schmitz, B.: Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone, Earth Planet. Sc. Lett., 547, 116442, https://doi.org/10.1016/j.epsl.2020.116442, 2020.
Lindskog, A. and Eriksson, M. E.: Megascopic processes reflected in the microscopic realm: sedimentary and biotic dynamics of the Middle Ordovician “orthoceratite limestone” at Kinnekulle, Sweden, GFF, 139, 163–183, https://doi.org/10.1080/11035897.2017.1291538, 2017.
Lindskog, A., Costa, M. M., Rasmussen, C. M., Connelly, J. N., and Eriksson, M. E.: Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification, Nat. Commun., 81, 1–8, https://doi.org/10.1038/ncomms14066, 2017.
Lindskog, A., Young, S. A., Bowman, C. N., Kozik, N. P., Newby, S. M., Eriksson, M. E., Pettersson, J., Molin, E., and Owens, J. D.: Oxygenation of the Baltoscandian shelf linked to Ordovician biodiversification, Nat. Geosci., 16, 1047–1053, 2023.
Lindstrom, M.: Volcanic contribution to Ordovician pelagic sediments, J. Sediment. Res., 44, 287–291, https://doi.org/10.1306/74D72A13-2B21-11D7-8648000102C1865D, 1974.
Mattinson, J. M.: Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 47–66, https://doi.org/10.1016/J.CHEMGEO.2005.03.011, 2005.
McKanna, A. J., Koran, I., Schoene, B., and Ketcham, R. A.: Chemical abrasion: the mechanics of zircon dissolution, Geochronology, 5, 127–151, https://doi.org/10.5194/gchron-5-127-2023, 2023.
McKanna, A. J., Schoene, B., and Szymanowski, D.: Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments, Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, 2024.
McLaughlin, P. I., Normore, L., Sell, B. K., and Ramezani, J.: Ordovician tephra distribution, tephrochronology and geochronology, Geol. Soc. London, Spec. Publ., 532, 79–90, https://doi.org/10.1144/SP532-2022-267, 2023.
McLean, N. M., Bowring, J. F., and Bowring, S. A.: An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophys. Geosyst., 12, Q0AA18, https://doi.org/10.1029/2010GC003478, 2011.
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II) – ScienceDirect, Geochim. Cosmochim. Ac., 164, 481–501, 2015.
Mezger, K. and Krogstad, E. J.: Interpretation of discordant U-Pb zircon ages: An evaluation, J. Metamorph. Geol., 15, 127–140, https://doi.org/10.1111/J.1525-1314.1997.00008.X, 1997.
Nielsen, A. T., Ove, J., Ebbestad, R., Hammer, Ø., Alexander, D., Harper, T., Lindskog, A., Mac, C., Rasmussen, Ø., and Stouge, S.: The Ordovician of Scandinavia: a revised regional stage classification, Geol. Soc. London, Spec. Publ., 532, 267–315, https://doi.org/10.1144/SP532-2022-157, 2023.
Paul, A. N.: Repository For: Short Communication: Resolving the Discrepancy between U–Pb Age Estimates for the “Likhall” Bed, a Key Level in the Ordovician Timescale, Yareta [data set], https://doi.org/10.26037/yareta:54zokxodvrhlthtwk26htfeyla, 2024.
Rasmussen, J. A., Thibault, N., and Rasmussen, C. M. Ø.: Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations, Nat. Commun., 12, 6430, https://doi.org/10.1038/s41467-021-26396-4, 2021.
Samperton, K. M., Schoene, B., Cottle, J. M., Brenhin Keller, C., Crowley, J. L., and Schmitz, M. D.: Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological–geochemical constraints from the Bergell Intrusion, Central Alps, Chem. Geol., 417, 322–340, https://doi.org/10.1016/J.CHEMGEO.2015.10.024, 2015.
Schaltegger, U., Ovtcharova, M., Gaynor, S. P., Schoene, B., Wotzlaw, J.-F., Davies, J. F. H. L., Farina, F., Greber, N. D., Szymanowski, D., and Chelle-Michou, C.: Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology, J. Anal. At. Spectrom., 36, 1466–1477, https://doi.org/10.1039/D1JA00116G, 2021.
Schmitz, B., Harper, D. A. T., Peucker-Ehrenbrink, B., Stouge, S., Alwmark, C., Cronholm, A., Bergström, S. M., Tassinari, M., and Xiaofeng, W.: Asteroid breakup linked to the Great Ordovician Biodiversification Event, Nat. Geosci., 1, 49–53, 2008.
Schmitz, B., Farley, K. A., Goderis, S., Heck, P. R., Bergström, S. M., Boschi, S., Claeys, P., Debaille, V., Dronov, A., van Ginneken, M., Harper, D. A. T., Iqbal, F., Friberg, J., Liao, S., Martin, E., Meier, M. M. M., Peucker-Ehrenbrink, B., Soens, B., Wieler, R., and Terfelt, F.: An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body, Sci. Adv., 5, eaax4184, https://doi.org/10.1126/sciadv.aax4184, 2019.
Schmitz, M. D. and Schoene, B.: Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data, Geochem. Geophys. Geosyst., 8, Q08006, https://doi.org/10.1029/2006GC001492, 2007.
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., and Bowring, S. A.: Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data, Geochim. Cosmochim. Ac., 70, 426–445, https://doi.org/10.1016/j.gca.2005.09.007, 2006.
Servais, T. and Harper, D. A. T.: The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration, Lethaia, 51, 151–164, https://doi.org/10.1111/LET.12259, 2018.
Trayler, R. B., Meyers, S. R., Sageman, B. B., and Schmitz, M. D.: Bayesian integration of astrochronology and radioisotope geochronology, Geochronology, 6, 107–123, https://doi.org/10.5194/gchron-6-107-2024, 2024.
von Quadt, A., Wotzlaw, J.-F., Buret, Y., Large, E. S. J., Peytcheva, I., and Trinquier, A.: High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors, J. Anal. At. Spectrom., 31, 658–665, https://doi.org/10.1039/C5JA00457H, 2016.
Watson, E. B., Cherniak, D. J., Hanchar, J. M., Harrison, T. M., and Wark, D. A.: The incorporation of Pb into zircon, Chem. Geol., 141, 19–31, 1997.
Weber, G., Caricchi, L., Arce, J. L., and Schmitt, A. K.: Determining the current size and state of subvolcanic magma reservoirs, Nat. Commun., 111, 1–14, https://doi.org/10.1038/s41467-020-19084-2, 2020.
Widmann, P., Davies, J. H. F. L., and Schaltegger, U.: Calibrating chemical abrasion: Its effects on zircon crystal structure, chemical composition and UPb age, Chem. Geol., 511, 1–10, https://doi.org/10.1016/J.CHEMGEO.2019.02.026, 2019.
Short summary
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth during the Ordovician period. It is important to understand the timing of this meteorite bombardment when attempting to correlate it with biodiversity changes during the Ordovician period. Calibrating a good age for the “Likhall” bed is, however, challenging and benefited in this study from advances in sample preparation.
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth...