Articles | Volume 6, issue 3
https://doi.org/10.5194/gchron-6-325-2024
https://doi.org/10.5194/gchron-6-325-2024
Short communication/technical note
 | 
05 Jul 2024
Short communication/technical note |  | 05 Jul 2024

Short communication: Resolving the discrepancy between U–Pb age estimates for the “Likhall” bed, a key level in the Ordovician timescale

André Navin Paul, Anders Lindskog, and Urs Schaltegger

Related authors

High-precision U–Pb ages in the early Tithonian to early Berriasian and implications for the numerical age of the Jurassic–Cretaceous boundary
Luis Lena, Rafael López-Martínez, Marina Lescano, Beatriz Aguire-Urreta, Andrea Concheyro, Verónica Vennari, Maximiliano Naipauer, Elias Samankassou, Márcio Pimentel, Victor A. Ramos, and Urs Schaltegger
Solid Earth, 10, 1–14, https://doi.org/10.5194/se-10-1-2019,https://doi.org/10.5194/se-10-1-2019, 2019
Short summary
Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age–depth modeling
Björn Baresel, Hugo Bucher, Morgane Brosse, Fabrice Cordey, Kuang Guodun, and Urs Schaltegger
Solid Earth, 8, 361–378, https://doi.org/10.5194/se-8-361-2017,https://doi.org/10.5194/se-8-361-2017, 2017
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Navigating the complexity of detrital rutile provenance: methodological insights from the Neotethys Orogen in Anatolia
Megan A. Mueller, Alexis Licht, Andreas Möller, Cailey B. Condit, Julie C. Fosdick, Faruk Ocakoğlu, and Clay Campbell
Geochronology, 6, 265–290, https://doi.org/10.5194/gchron-6-265-2024,https://doi.org/10.5194/gchron-6-265-2024, 2024
Short summary
Solving crustal heat transfer for thermochronology using physics-informed neural networks
Ruohong Jiao, Shengze Cai, and Jean Braun
Geochronology, 6, 227–245, https://doi.org/10.5194/gchron-6-227-2024,https://doi.org/10.5194/gchron-6-227-2024, 2024
Short summary
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS
Erin E. Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024,https://doi.org/10.5194/gchron-6-89-2024, 2024
Short summary
Technical note: RA138 Calcite U-Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-7,https://doi.org/10.5194/gchron-2024-7, 2024
Revised manuscript accepted for GChron
Short summary
(anchored) isochrons in IsoplotR
Pieter Vermeesch
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-5,https://doi.org/10.5194/gchron-2024-5, 2024
Revised manuscript accepted for GChron
Short summary

Cited articles

Ahlberg, P., Calner, M., Lehnert, O., Wickström, L., and Lindskog, A.: Regional geology of Västergötland Province, Sweden, in: Field guide for the ISOS 14 post-conference excursion. Geologiska Föreningen Specialpublikation, 9–12, 2023. 
Ballo, E. G., Augland, L. E., Hammer, Ø., and Svensen, H. H.: A new age model for the Ordovician (Sandbian) K-bentonites in Oslo, Norway, Palaeogeogr. Palaeocl., 520, 203–213, https://doi.org/10.1016/J.PALAEO.2019.01.016, 2019. 
Bergström, S. M.: Use of graphic correlation for assessing event-stratigraphic significance and trans-Atlantic relationships of Ordovician K-bentonites, Proc. Acad. Sci. Est. SSR, 38, 55–59, 1989. 
Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb-Redux, Geochem. Geophys. Geosyst., 12, Q0AA19, https://doi.org/10.1029/2010GC003479, 2012. 
Brenhin Keller, C., Boehnke, P., Schoene, B., and Harrison, T. M.: Stepwise chemical abrasion–isotope dilution–thermal ionization mass spectrometry with trace element analysis of microfractured Hadean zircon, Geochronology, 1, 85–97, https://doi.org/10.5194/gchron-1-85-2019, 2019. 
Download
Short summary
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth during the Ordovician period. It is important to understand the timing of this meteorite bombardment when attempting to correlate it with biodiversity changes during the Ordovician period. Calibrating a good age for the “Likhall” bed is, however, challenging and benefited in this study from advances in sample preparation.