Articles | Volume 7, issue 1
https://doi.org/10.5194/gchron-7-15-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-15-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on zircon age distributions in volcanic, porphyry and plutonic rocks
Chetan Nathwani
CORRESPONDING AUTHOR
Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zurich, Switzerland
Dawid Szymanowski
Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zurich, Switzerland
Lorenzo Tavazzani
Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zurich, Switzerland
Sava Markovic
Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zurich, Switzerland
Adrianna L. Virmond
Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zurich, Switzerland
Cyril Chelle-Michou
Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zurich, Switzerland
Related authors
Zoe Moser, Marcel Guillong, Chetan Nathwani, Kurumi Iwahashi, Razvan-Gabriel Popa, and Olivier Bachmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4232, https://doi.org/10.5194/egusphere-2025-4232, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
To improve U-Th zircon dating, we developed a U–Th–Pb double-dating strategy for young zircon (150–300 ka). We found that the overall U-Th age spectrum is consistent whether assuming a constant melt composition or a constant U/Th fractionation between zircon and melt, but testing the representability of the measured glass with the youngest isochron intercept proved essential. A Bayesian model with a uniform prior distribution gave the most accurate estimates of eruption timing for U-Th datasets.
Zoe Moser, Marcel Guillong, Chetan Nathwani, Kurumi Iwahashi, Razvan-Gabriel Popa, and Olivier Bachmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4232, https://doi.org/10.5194/egusphere-2025-4232, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
To improve U-Th zircon dating, we developed a U–Th–Pb double-dating strategy for young zircon (150–300 ka). We found that the overall U-Th age spectrum is consistent whether assuming a constant melt composition or a constant U/Th fractionation between zircon and melt, but testing the representability of the measured glass with the youngest isochron intercept proved essential. A Bayesian model with a uniform prior distribution gave the most accurate estimates of eruption timing for U-Th datasets.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Sava Markovic, Jörn-Frederik Wotzlaw, Dawid Szymanowski, Joakim Reuteler, Peng Zeng, and Cyril Chelle-Michou
Geochronology, 6, 621–638, https://doi.org/10.5194/gchron-6-621-2024, https://doi.org/10.5194/gchron-6-621-2024, 2024
Short summary
Short summary
We present a pioneering method for high-precision U–Pb dating of individual growth zones in zircon. These micrometer zones in single grains can record key geological processes from magma priming prior to eruptions to planetary formation, yet dating them at high precision has so far been technically challenging. Our method employs two cutting-edge microbeam techniques to microsample these growth zones for high-precision dating, allowing us to tackle a number of outstanding research questions.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary
Short summary
Acid leaching is used to remove radiation-damaged portions of zircon crystals prior to U–Pb dating to improve the accuracy of datasets. We test how the temperature and duration of acid leaching affect geochronological and geochemical outcomes. We build a framework that relates radiation damage, zircon solubility, and Pb loss.
Cited articles
Barboni, M., Annen, C., and Schoene, B.: Evaluating the construction and evolution of upper crustal magma reservoirs with coupled zircon geochronology and thermal modeling: A case study from the Mt. Capanne pluton (Elba, Italy), Earth Planet. Sc. Lett., 432, 436–448, https://doi.org/10.1016/j.epsl.2015.09.043, 2015. a, b, c, d, e, f, g
Bindeman, I. N., Wotzlaw, J. F., Stern, R. A., Chiaradia, M., Guillong, M., and Colón, D. P.: Geochronology and geochemistry data for the Elbrus, Tyrnyauz, and Chegem magmatic centers, Greater Caucasus, Russia, Data in Brief, 35, 106896, https://doi.org/10.1016/j.dib.2021.106896, 2021. a
Bohrson, W. A., Spera, F. J., Ghiorso, M. S., Brown, G. A., Creamer, J. B., and Mayfield, A.: Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: the Magma Chamber Simulator, J. Petrol., 55, 1685–1717, https://doi.org/10.1093/petrology/egu036, 2014. a
Brlek, M., Richard Tapster, S., Schindlbeck-Belo, J., Gaynor, S. P., Kutterolf, S., Hauff, F., Georgiev, S. V., Trinajstić, N., Šuica, S., Brčić, V., Wang, K.-L., Lee, H.-Y., Beier, C., Abersteiner, A. B., Mišur, I., Peytcheva, I., Kukoč, D., Németh, B., Trajanova, M., Balen, D., Guillong, M., Szymanowski, D., and Lukács, R.: Tracing widespread Early Miocene ignimbrite eruptions and petrogenesis at the onset of the Carpathian-Pannonian Region silicic volcanism, Gondwana Res., 116, 40–60, https://doi.org/10.1016/j.gr.2022.12.015, 2023. a
Brown, S. J. A. and Fletcher, I. R.: SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for >250 k.y. magma residence times, Geology, 27, 1035, https://doi.org/10.1130/0091-7613(1999)027<1035:SUPDOT>2.3.CO;2, 1999. a
Bunker, E.: The hypogene evolution of the Spence porphyry copper deposit, northern Chile, PhD thesis, University of Bristol, https://research-information.bris.ac.uk/en/studentTheses/the-hypogene-evolution-of-the-spence-porphyry-copper-deposit-nort (last access: 6 February 2025), 2020. a
Buret, Y., von Quadt, A., Heinrich, C., Selby, D., Wälle, M., and Peytcheva, I.: From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina), Earth Planet. Sc. Lett., 450, 120–131, https://doi.org/10.1016/j.epsl.2016.06.017, 2016. a
Buret, Y., Wotzlaw, J.-F., Roozen, S., Guillong, M., von Quadt, A., and Heinrich, C. A.: Zircon petrochronological evidence for a plutonic-volcanic connection in porphyry copper deposits, Geology, 45, 623–626, https://doi.org/10.1130/G38994.1, 2017. a
Caricchi, L., Simpson, G., and Schaltegger, U.: Estimates of volume and magma input in crustal magmatic systems from zircon geochronology: the effect of modeling assumptions and system variables, Frontiers in Earth Science, 4, 48, https://doi.org/10.3389/feart.2016.00048, 2016. a, b, c
Chelle-Michou, C. and Schaltegger, U.: U–Pb Dating of Mineral Deposits: From Age Constraints to Ore-Forming Processes, in: Isotopes in Economic Geology, Metallogenesis and Exploration, edited by: Huston, D. and Gutzmer, J., Springer International Publishing, Cham, 37–87, ISBN 978-3-031-27897-6, https://doi.org/10.1007/978-3-031-27897-6_3, 2023. a
Curry, A., Gaynor, S. P., Davies, J. H. F. L., Ovtcharova, M., Simpson, G., and Caricchi, L.: Timescales and thermal evolution of large silicic magma reservoirs during an ignimbrite flare-up: perspectives from zircon, Contrib. Mineral. Petr., 176, 103, https://doi.org/10.1007/s00410-021-01862-w, 2021. a
Deering, C. D., Keller, B., Schoene, B., Bachmann, O., Beane, R., and Ovtcharova, M.: Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution, Geology, 44, 267–270, https://doi.org/10.1130/G37539.1, 2016. a
Eddy, M. P., Pamukçu, A., Schoene, B., Steiner-Leach, T., and Bell, E. A.: Constraints on the timescales and processes that led to high-SiO2 rhyolite production in the Searchlight pluton, Nevada, USA, Geosphere, 18, 1000–1019, https://doi.org/10.1130/GES02439.1, 2022. a
Farina, F., Dini, A., Davies, J. H., Ovtcharova, M., Greber, N. D., Bouvier, A.-S., Baumgartner, L., Ulianov, A., and Schaltegger, U.: Zircon petrochronology reveals the timescale and mechanism of anatectic magma formation, Earth Planet. Sc. Lett., 495, 213–223, https://doi.org/10.1016/j.epsl.2018.05.021, 2018. a
Farina, F., Weber, G., Hartung, E., Rubatto, D., Forni, F., Luisier, C., and Caricchi, L.: Magma flux variations triggering shallow-level emplacement of the Takidani pluton (Japan): Insights into the volcanic-plutonic connection, Earth Planet. Sc. Lett., 635, 118688, https://doi.org/10.1016/j.epsl.2024.118688, 2024. a
Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N. T. H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A., and Vayer, T.: POT: Python Optimal Transport, J. Mach. Learn. Res., 22, 1–8, http://jmlr.org/papers/v22/20-451.html (last access: 6 February 2025), 2021. a
Gagnevin, D., Daly, J. S., and Kronz, A.: Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system, Contrib. Mineral. Petr., 159, 579–596, https://doi.org/10.1007/s00410-009-0443-0, 2010. a
Gaynor, S. P., Smith, T. M., and Schaltegger, U.: Tracing magmatic genesis and evolution through single zircon crystals from successive supereruptions from the Socorro Caldera Complex, USA, Earth Planet. Sc. Lett., 616, 118236, https://doi.org/10.1016/j.epsl.2023.118236, 2023. a
Hildreth, W.: Gradients in silicic magma chambers: Implications for lithospheric magmatism, J. Geophys. Res.-Sol. Ea., 86, 10 153–10 192, https://doi.org/10.1029/JB086iB11p10153, 1981. a
Ickert, R. B., Mundil, R., Magee, C. W., and Mulcahy, S. R.: The U–Th–Pb systematics of zircon from the Bishop Tuff: A case study in challenges to high-precision geochronology at the millennial scale, Geochim. Cosmochim. Ac., 168, 88–110, https://doi.org/10.1016/j.gca.2015.07.018, 2015. a
Irpino, A. and Romano, E.: Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation, https://www.semanticscholar.org/paper/Optimal-histogram-representation-of-large-data-vs-Irpino-Romano/8d599e43066c27a7128ea36db83b434816d39281 (last access: 6 February 2025), 2007. a
Keller, C. B.: Chron.jl: A Bayesian framework for integrated eruption age and age-depth modelling, OSF [software], https://doi.org/10.17605/OSF.IO/TQX3F, 2018. a
Kinney, S. T., MacLennan, S. A., Keller, C. B., Schoene, B., Setera, J. B., VanTongeren, J. A., and Olsen, P. E.: Zircon U-Pb Geochronology Constrains Continental Expression of Great Meteor Hotspot Magmatism, Geophys. Res. Lett., 48, e2020GL091390, https://doi.org/10.1029/2020GL091390, 2021. a, b
Klein, B. Z. and Eddy, M. P.: What's in an age? Calculation and interpretation of ages and durations from U-Pb zircon geochronology of igneous rocks, Geol. Soc. Am. Bull., 136, 93–109, https://doi.org/10.1130/B36686.1, 2023. a, b, c, d
Large, S. J. E., von Quadt, A., Wotzlaw, J.-F., Guillong, M., and Heinrich, C. A.: Magma evolution leading to porphyry Au–Cu mineralization at the Ok Tedi deposit, Papua New Guinea: Trace element geochemistry and high-precision geochronology of igneous zircon, Econ. Geol., 113, 39–61, https://doi.org/10.5382/econgeo.2018.4543, 2018. a
Large, S. J. E., Wotzlaw, J.-F., Guillong, M., von Quadt, A., and Heinrich, C. A.: Resolving the timescales of magmatic and hydrothermal processes associated with porphyry deposit formation using zircon U–Pb petrochronology, Geochronology, 2, 209–230, https://doi.org/10.5194/gchron-2-209-2020, 2020. a, b
Large, S. J. E., Buret, Y., Wotzlaw, J. F., Karakas, O., Guillong, M., von Quadt, A., and Heinrich, C. A.: Copper-mineralised porphyries sample the evolution of a large-volume silicic magma reservoir from rapid assembly to solidification, Earth Planet. Sc. Lett., 563, 116877, https://doi.org/10.1016/j.epsl.2021.116877, 2021. a
Liu, P.-P., Caricchi, L., Chung, S.-L., Li, X.-H., Li, Q.-L., Zhou, M.-F., Lai, Y.-M., Ghani, A. A., Sihotang, T., Sheldrake, T. E., and Simpson, G.: Growth and thermal maturation of the Toba magma reservoir, P. Natl. Acad. Sci. USA, 118, e2101695118, https://doi.org/10.1073/pnas.2101695118, 2021. a
Markovic, S., Wotzlaw, J.-F., Szymanowski, D., Reuteler, J., Zeng, P., and Chelle-Michou, C.: µID-TIMS: spatially resolved high-precision U–Pb zircon geochronology, Geochronology, 6, 621–638, https://doi.org/10.5194/gchron-6-621-2024, 2024. a, b
McKanna, A. J., Schoene, B., and Szymanowski, D.: Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments, Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, 2024. a
McLean, N. M., Bowring, J. F., and Bowring, S. A.: An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophys. Geosy., 12, Q0AA18, https://doi.org/10.1029/2010GC003478, 2011. a
Miller, J. S., Matzel, J. E., Miller, C. F., Burgess, S. D., and Miller, R. B.: Zircon growth and recycling during the assembly of large, composite arc plutons, J. Volcanol. Geoth. Res., 167, 282–299, https://doi.org/10.1016/j.jvolgeores.2007.04.019, 2007. a, b, c
Nathwani, C.: ChetanNathwani/zircon_age_spectra: Zenodo release, v1.0.1, Zenodo [code and data set], https://doi.org/10.5281/zenodo.13378412, 2024. a
Nathwani, C., Blundy, J., Large, S. J. E., Wilkinson, J. J., Buret, Y., Loader, M. A., Tavazzani, L., and Chelle-Michou, C.: A zircon case for super-wet arc magmas, Nat. Commun., 15, 8982, https://doi.org/10.1038/s41467-024-52786-5, 2024. a
Pamukçu, A. S., Schoene, B., Deering, C. D., Keller, C. B., and Eddy, M. P.: Volcano-pluton connections at the Lake City magmatic center (Colorado, USA), Geosphere, 18, 1435–1452, https://doi.org/10.1130/GES02467.1, 2022. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, http://jmlr.org/papers/v12/pedregosa11a.html (last access: 6 February 2025), 2011. a
Ratschbacher, B. C., Keller, C. B., Schoene, B., Paterson, S. R., Anderson, J. L., Okaya, D., Putirka, K., and Lippoldt, R.: A new workflow to assess emplacement duration and melt residence time of compositionally diverse magmas emplaced in a sub-volcanic reservoir, J. Petrol., 59, 1787–1809, https://doi.org/10.1093/petrology/egy079, 2018. a, b
Rioux, M., Farmer, G. L., Bowring, S. A., Wooton, K. M., Amato, J. M., Coleman, D. S., and Verplanck, P. L.: The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico, Contrib. Mineral. Petr., 171, 13, https://doi.org/10.1007/s00410-015-1208-6, 2016. a
Samperton, K. M., Schoene, B., Cottle, J. M., Keller, C. B., Crowley, J. L., and Schmitz, M. D.: Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological–geochemical constraints from the Bergell Intrusion, Central Alps, Chem. Geol., 417, 322–340, https://doi.org/10.1016/j.chemgeo.2015.10.024, 2015. a, b, c, d, e, f, g
Samperton, K. M., Bell, E. A., Barboni, M., Keller, C. B., and Schoene, B.: Zircon age-temperature-compositional spectra in plutonic rocks, Geology, 45, 983–986, https://doi.org/10.1130/G38645.1, 2017. a, b
Schaltegger, U., Schmitt, A. K., and Horstwood, M. S. A.: U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities, Chem. Geol., 402, 89–110, https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015. a
Schmitt, A., Sliwinski, J., Caricchi, L., Bachmann, O., Riel, N., Kaus, B., Cisneros de Léon, A., Cornet, J., Friedrichs, B., Lovera, O., Sheldrake, T., and Weber, G.: Zircon age spectra to quantify magma evolution, Geosphere, 19, 1006–1031, https://doi.org/10.1130/GES02563.1, 2023. a, b, c, d, e, f, g, h, i, j
Schmitt, A. K.: Uranium series accessory crystal dating of magmatic processes, Annu. Rev. Earth Pl. Sc., 39, 321–349, https://doi.org/10.1146/annurev-earth-040610-133330, 2011. a
Schoene, B.: U–Th–Pb Geochronology, in: Treatise on Geochemistry (Second Edition), edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 341–378, ISBN 978-0-08-098300-4, https://doi.org/10.1016/B978-0-08-095975-7.00310-7, 2014. a
Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A., and Günther, D.: Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy, Earth Planet. Sc. Lett., 355-356, 162–173, https://doi.org/10.1016/j.epsl.2012.08.019, 2012. a, b
Siégel, C., Bryan, S., Allen, C., and Gust, D.: Use and abuse of zircon-based thermometers: A critical review and a recommended approach to identify antecrystic zircons, Earth-Sci. Rev., 176, 87–116, https://doi.org/10.1016/j.earscirev.2017.08.011, 2018. a
Sliwinski, J. T., Guillong, M., Horstwood, M. S. A., and Bachmann, O.: Quantifying long-term reproducibility of zircon reference materials by U-Pb LA-ICP-MS dating, Geostandard. Geoanal. Res., 46, 401–409, https://doi.org/10.1111/ggr.12442, 2022. a
Sparks, S. R. J., Sigurdsson, H., and Wilson, L.: Magma mixing: a mechanism for triggering acid explosive eruptions, Nature, 267, 315–318, https://doi.org/10.1038/267315a0, 1977. a
Szymanowski, D., Ellis, B. S., Wotzlaw, J.-F., and Bachmann, O.: Maturation and rejuvenation of a silicic magma reservoir: High-resolution chronology of the Kneeling Nun Tuff, Earth Planet. Sc. Lett., 510, 103–115, https://doi.org/10.1016/j.epsl.2019.01.007, 2019. a, b, c
Szymanowski, D., Forni, F., Wolff, J. A., and Ellis, B. S.: Modulation of zircon solubility by crystal–melt dynamics, Geology, 48, 798–802, https://doi.org/10.1130/G47405.1, 2020. a
Szymanowski, D., Forni, F., Phua, M., Jicha, B., Lee, D. W. J., Hsu, Y.-J., Rifai, H., Schoene, B., and Bouvet de Maisonneuve, C.: A shifty Toba magma reservoir: Improved eruption chronology and petrochronological evidence for lateral growth of a giant magma body, Earth Planet. Sc. Lett., 622, 118408, https://doi.org/10.1016/j.epsl.2023.118408, 2023. a, b
Tavazzani, L., Wotzlaw, J.-F., Economos, R., Sinigoi, S., Demarchi, G., Szymanowski, D., Laurent, O., Bachmann, O., and Chelle-Michou, C.: High-precision zircon age spectra record the dynamics and evolution of large open-system silicic magma reservoirs, Earth Planet. Sc. Lett., 623, 118432, https://doi.org/10.1016/j.epsl.2023.118432, 2023a. a, b, c, d, e, f, g, h, i, j
Tavazzani, L., Wotzlaw, J.-F., Economos, R., Szymanowski, D., Laurent, O., Bachmann, O., and Chelle-Michou, C.: AgeSpectraAnalyst: A MATLAB based package to model zircon age distributions in silicic magmatic systems, MethodsX, 11, 102406, https://doi.org/10.1016/j.mex.2023.102406, 2023b. a, b, c, d, e, f
Tierney, C. R., Schmitt, A. K., Lovera, O. M., and de Silva, S. L.: Voluminous plutonism during volcanic quiescence revealed by thermochemical modeling of zircon, Geology, 44, 683–686, https://doi.org/10.1130/G37968.1, 2016. a, b, c
Vermeesch, P.: On the visualisation of detrital age distributions, Chem. Geol., 312–313, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012. a
Vermeesch, P.: Multi-sample comparison of detrital age distributions, Chem. Geol., 341, 140–146, https://doi.org/10.1016/j.chemgeo.2013.01.010, 2013. a, b, c
Villani, C.: Topics in Optimal Transportation, no. 58, in: Graduate studies in mathematics, edited by: Craig, W., Ivanov, N., Krantz, S. G., and Saltman, D., American Mathematical Soc., ISBN 9780821833124, 2003. a
Virmond, A. L., Wotzlaw, J.-F., Rojas-Arrancibia, R., Selby, D., and Chelle-Michou, C.: Multi-million-year magmatic and hydrothermal activity is key to the formation of supergiant to behemothian porphyry copper deposits, Contrib. Mineral. Petr., 179, 88, https://doi.org/10.1007/s00410-024-02167-4, 2024. a, b
Watson, E. B.: Dissolution, growth and survival of zircons during crustal fusion: kinetic principals, geological models and implications for isotopic inheritance, Earth Env. Sci. T. R. So., 87, 43–56, https://doi.org/10.1017/S0263593300006465, 1996. a, b
Weber, G., Caricchi, L., Arce, J. L., and Schmitt, A. K.: Determining the current size and state of subvolcanic magma reservoirs, Nat. Commun., 11, 5477, https://doi.org/10.1038/s41467-020-19084-2, 2020. a, b
Widmann, P., Davies, J. H. F. L., and Schaltegger, U.: Calibrating chemical abrasion: Its effects on zircon crystal structure, chemical composition and U–Pb age, Chem. Geol., 511, 1–10, https://doi.org/10.1016/j.chemgeo.2019.02.026, 2019. a
Wotzlaw, J.-F., Schaltegger, U., Frick, D. A., Dungan, M. A., Gerdes, A., and Günther, D.: Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption, Geology, 41, 867–870, https://doi.org/10.1130/G34366.1, 2013. a, b, c
Wotzlaw, J.-F., Bindeman, I. N., Stern, R. A., D'Abzac, F.-X., and Schaltegger, U.: Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions, Scientific Reports, 5, 14026, https://doi.org/10.1038/srep14026, 2015. a
Short summary
We performed a statistical analysis of high-precision U–Pb zircon age distributions. This reveals that volcanic and porphyry zircon age distributions are skewed to younger ages, whereas plutonic age distributions are skewed to older ages. We show that this is caused by truncation of zircon crystallisation by magma evacuation rather than differences in magmatic flux. Our contribution has key implications for modelling of magma dynamics and eruption ages using zircon age distributions.
We performed a statistical analysis of high-precision U–Pb zircon age distributions. This...