Articles | Volume 7, issue 1
https://doi.org/10.5194/gchron-7-15-2025
https://doi.org/10.5194/gchron-7-15-2025
Research article
 | 
18 Feb 2025
Research article |  | 18 Feb 2025

Controls on zircon age distributions in volcanic, porphyry and plutonic rocks

Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou

Related authors

µID-TIMS: spatially resolved high-precision U–Pb zircon geochronology
Sava Markovic, Jörn-Frederik Wotzlaw, Dawid Szymanowski, Joakim Reuteler, Peng Zeng, and Cyril Chelle-Michou
Geochronology, 6, 621–638, https://doi.org/10.5194/gchron-6-621-2024,https://doi.org/10.5194/gchron-6-621-2024, 2024
Short summary
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024,https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments
Alyssa J. McKanna, Blair Schoene, and Dawid Szymanowski
Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024,https://doi.org/10.5194/gchron-6-1-2024, 2024
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Interpreting cooling dates and histories from laser ablation in situ (U–Th–Sm) ∕ He thermochronometry: a modelling perspective
Christoph Glotzbach and Todd A. Ehlers
Geochronology, 6, 697–717, https://doi.org/10.5194/gchron-6-697-2024,https://doi.org/10.5194/gchron-6-697-2024, 2024
Short summary
Short communication: Nanoscale heterogeneity of U and Pb in baddeleyite from atom probe tomography – 238U series alpha recoil effects and U atom clustering
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology, 6, 607–619, https://doi.org/10.5194/gchron-6-607-2024,https://doi.org/10.5194/gchron-6-607-2024, 2024
Short summary
In situ rubidium–strontium geochronology of white mica in young metamafic and metasomatic rocks from Syros: testing the limits of laser-ablation triple-quadrupole inductively coupled plasma mass spectrometer mica dating using different anchoring approaches
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024,https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024,https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
Measuring varve thickness using µCT: a comparison with thin section
Marie-Eugénie Meusseunan Pascale Jamba, Pierre Francus, Antoine Gagnon-Poiré, and Guillaume St-Onge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2511,https://doi.org/10.5194/egusphere-2024-2511, 2024
Short summary

Cited articles

Barboni, M., Annen, C., and Schoene, B.: Evaluating the construction and evolution of upper crustal magma reservoirs with coupled U/Pb zircon geochronology and thermal modeling: A case study from the Mt. Capanne pluton (Elba, Italy), Earth Planet. Sc. Lett., 432, 436–448, https://doi.org/10.1016/j.epsl.2015.09.043, 2015. a, b, c, d, e, f, g
Bindeman, I. N., Wotzlaw, J. F., Stern, R. A., Chiaradia, M., Guillong, M., and Colón, D. P.: Geochronology and geochemistry data for the Elbrus, Tyrnyauz, and Chegem magmatic centers, Greater Caucasus, Russia, Data in Brief, 35, 106896, https://doi.org/10.1016/j.dib.2021.106896, 2021. a
Bohrson, W. A., Spera, F. J., Ghiorso, M. S., Brown, G. A., Creamer, J. B., and Mayfield, A.: Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: the Magma Chamber Simulator, J. Petrol., 55, 1685–1717, https://doi.org/10.1093/petrology/egu036, 2014. a
Brlek, M., Richard Tapster, S., Schindlbeck-Belo, J., Gaynor, S. P., Kutterolf, S., Hauff, F., Georgiev, S. V., Trinajstić, N., Šuica, S., Brčić, V., Wang, K.-L., Lee, H.-Y., Beier, C., Abersteiner, A. B., Mišur, I., Peytcheva, I., Kukoč, D., Németh, B., Trajanova, M., Balen, D., Guillong, M., Szymanowski, D., and Lukács, R.: Tracing widespread Early Miocene ignimbrite eruptions and petrogenesis at the onset of the Carpathian-Pannonian Region silicic volcanism, Gondwana Res., 116, 40–60, https://doi.org/10.1016/j.gr.2022.12.015, 2023. a
Brown, S. J. A. and Fletcher, I. R.: SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for >250 k.y. magma residence times, Geology, 27, 1035, https://doi.org/10.1130/0091-7613(1999)027<1035:SUPDOT>2.3.CO;2, 1999. a
Download
Short summary
We performed a statistical analysis of high-precision U–Pb zircon age distributions. This reveals that volcanic and porphyry zircon age distributions are skewed to younger ages, whereas plutonic age distributions are skewed to older ages. We show that this is caused  by truncation of zircon crystallisation by magma evacuation rather than differences in magmatic flux. Our contribution has key implications for modelling of magma dynamics and eruption ages using zircon age distributions.
Share