Articles | Volume 7, issue 1
https://doi.org/10.5194/gchron-7-83-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-7-83-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measuring varve thickness using micro-computed tomography (µCT): a comparison with thin section
Marie-Eugénie Meusseunan Pascale Jamba
CORRESPONDING AUTHOR
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
GEOTOP Montréal, Quebec, H2X 3Y7, Canada
Pierre Francus
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
GEOTOP Montréal, Quebec, H2X 3Y7, Canada
Antoine Gagnon-Poiré
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
GEOTOP Montréal, Quebec, H2X 3Y7, Canada
currently at: Ministère de l'environnement, de la lutte contre les changements climatiques, de la faune et des parcs, Québec, Canada
Guillaume St-Onge
GEOTOP Montréal, Quebec, H2X 3Y7, Canada
Institut des sciences de la mer (ISMER), Université du Québec à Rimouski (UQAR) and Canada Research Chair in Marine Geology, Rimouski, QC G5L 3A1, Canada
Related authors
No articles found.
François Lapointe, Antoine Gagnon-Poiré, Pierre Francus, Patrick Lajeunesse, and Clarence Gagnon
Clim. Past, 21, 1595–1610, https://doi.org/10.5194/cp-21-1595-2025, https://doi.org/10.5194/cp-21-1595-2025, 2025
Short summary
Short summary
A new 1500-year-long sediment record made of annual laminations (varves) from Grand Lake, Labrador, reveals past hydroclimatic conditions. The Medieval Climate Anomaly (~1050–1225 CE) had thicker varves indicating more precipitation, while the Little Ice Age (1400–1875 CE) had thinner varves, suggesting a dryer climate. Teleconnections show that Grand Lake is influenced by winter North Atlantic Oscillation (NAO), hence making this record a promising candidate for future NAO reconstructions.
Antoine Lachance, Matthew Peros, Jeannine-Marie St-Jacques, Pierre Francus, and Nicole K. Sanderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-400, https://doi.org/10.5194/egusphere-2025-400, 2025
Short summary
Short summary
This study explores storm patterns in eastern Canada's Magdalen Islands over 4000 years, using coastal peatlands to understand past storm activity. Our findings reveal key storm periods, including during the Little Ice Age, linked to broader climatic shifts like the Atlantic Multidecadal Variability. By comparing our results with other North American records, we show how peat data can complement marine storm archives and improve our understanding of past storms.
Antoine Gagnon-Poiré, Pierre Brigode, Pierre Francus, David Fortin, Patrick Lajeunesse, Hugues Dorion, and Annie-Pier Trottier
Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, https://doi.org/10.5194/cp-17-653-2021, 2021
Short summary
Short summary
A very high quality 160-year-long annually laminated (varved) sediment sequence of fluvial origin was recently discovered in an especially deep lake in Labrador. Each varve represents 1 hydrological year. A significant relation between varves' physical parameters (i.e., thickness and grain size extracted from each annual lamination) and river discharge instrumental observations provided the opportunity to develop regional discharge reconstructions beyond the instrumental period.
Cited articles
Ahmed, O. M. H. and Song, Y.: A Review of Common Beam Hardening Correction Methods for Industrial X-ray Computed Tomography, Sains Malaysiana, 47, 1883–1890, https://doi.org/10.17576/jsm-2018-4708-29, 2018.
Altman, D. G. and Bland, J. M.: Measurement in Medicine: The Analysis of Method Comparison Studies, J. Roy. Stat. Soc. D, 32, 307–317, https://doi.org/10.2307/2987937, 1983.
Amann, B., Lamoureux, S. F., and Boreux, M. P.: Winter temperature conditions (1670–2010) reconstructed from varved sediments, western Canadian High Arctic, Quaternary Sci. Rev., 172, 1–14, https://doi.org/10.1016/j.quascirev.2017.07.013, 2017.
Ay, M. R., Mehranian, A., Maleki, A., Ghadiri, H., Ghafarian, P., and Zaidi, H.: Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners, Phys. Med., 29, 249–260, https://doi.org/10.1016/j.ejmp.2012.03.005, 2013.
Ballo, E. G., Bajard, M., Støren, E., and Bakke, J.: Using microcomputed tomography (µCT) to count varves in lake sediment sequences: Application to Lake Sagtjernet, Eastern Norway, Quat. Geochronol., 75, 101432, https://doi.org/10.1016/j.quageo.2023.101432, 2023.
Bendle, J. M., Palmer, A. P., and Carr, S. J.: A comparison of micro-CT and thin section analysis of Lateglacial glaciolacustrine varves from Glen Roy, Scotland, Quaternary Sci. Rev., 114, 61–77, https://doi.org/10.1016/j.quascirev.2015.02.008, 2015.
Brauer, A. and Casanova, J.: Chronology and depositional processes of the laminated sediment record from Lac d'Annecy, French Alps, J. Paleolimnol., 25, 163–177, https://doi.org/10.1023/A:1008136029735, 2001.
Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., and Negendank, J. F. W.: An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period, Nat. Geosci., 1, 520–523, https://doi.org/10.1038/ngeo263, 2008.
Chatzinikolaou, E. and Keklikoglou, K.: Micro-CT protocols for scanning and 3D analysis of Hexaplex trunculus during its different life stages, Biodiversity Data Journal, 9, e71542, https://doi.org/10.3897/BDJ.9.e71542, 2021.
Cnudde, V. and Boone, M. N.: High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Sci. Rev., 123, 1–17, https://doi.org/10.1016/j.earscirev.2013.04.003, 2013.
Cornard, P. H., Degenhart, G., Tropper, P., Moernaut, J., and Strasser, M.: Application of micro-CT to resolve textural properties and assess primary sedimentary structures of deep-marine sandstones, The Depositional Record, 10, 559–580, https://doi.org/10.1002/dep2.261, 2023.
Davis, G.: Development of two-dimensional beam hardening correction for X-ray micro-CT, J. X-Ray Sci. Technol., 30, 1–12, https://doi.org/10.3233/XST-221178, 2022.
De Geer, G.: A Geochronology of the past 12,000 years, in: Compte rendu du Congrès Geologique International, Stockholm, 11, 241–253, 1912.
Dewanckele, J., Boone, M. A., Coppens, F., D, V. A. N. L., and Merkle, A. P.: Innovations in laboratory-based dynamic micro-CT to accelerate in situ research, J. Microscopy, 277, 197–209, https://doi.org/10.1111/jmi.12879, 2020.
Du Plessis, A., Broeckhoven, C., Guelpa, A., and Roux, S.: Laboratory x-ray micro-computed tomography: a user guideline for biological samples, Gigascience, 6, 1–11, https://doi.org/10.1093/gigascience/gix027, 2017.
Emmanouilidis, A., Unkel, I., Seguin, J., Keklikoglou, K., Gianni, E., and Avramidis, P.: Application of Non-Destructive Techniques on a Varve Sediment Record from Vouliagmeni Coastal Lake, Eastern Gulf of Corinth, Greece, Appl. Sci., 10, 101432, https://doi.org/10.3390/app10228273, 2020.
Fabbri, S. C., Sabatier, P., Paris, R., Falvard, S., Feuillet, N., Lothoz, A., St-Onge, G., Gailler, A., Cordrie, L., Arnaud, F., Biguenet, M., Coulombier, T., Mitra, S., and Chaumillon, E.: Deciphering the sedimentary imprint of tsunamis and storms in the Lesser Antilles (Saint Martin): A 3500-year record in a coastal lagoon, Marine Geol., 471, 107284, https://doi.org/10.1016/j.margeo.2024.107284, 2024.
Francus, P.: An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediments, Sediment. Geol., 121, 289–298, https://doi.org/10.1016/s0037-0738(98)00078-5, 1998.
Francus, P.: Image Analysis, Sediments and Paleoenvironments, Springer Dordrecht, 330 pp., https://doi.org/10.1007/1-4020-2122-4, 2006.
Francus, P. and Asikainen, C. A.: Sub-sampling unconsolidated sediments: a solution for the preparation of undisturbed thin-sections from clay-rich sediments, J. Paleolimnol., 26, 323–326, https://doi.org/10.1023/a:1017572602692, 2001.
Francus, P. and Nobert, P.: An integrated computer system to acquire, process, measure and store images of laminated sediments in 4th International limnogeology congress, 11–14 July 2007, Barcelona, Spain, 2007.
Francus, P., Bradley, R. S., Abbott, M. B., Patridge, W., and Keimig, F.: Paleoclimate studies of minerogenic sediments using annually resolved textural parameters, Geophys. Res. Lett., 29, 59-51–59-54, https://doi.org/10.1029/2002gl015082, 2002.
Francus, P., Bradley, R. S., Lewis, T., Abbott, M. B., Retelle, M., and Stoner, J. S.: Limnological and sedimentary processes at Sawtooth Lake, Canadian High Arctic, and their influence on varve formation, J. Paleolimnol., 40, 963–985, https://doi.org/10.1007/s10933-008-9210-x, 2008.
Gagnon-Poiré, A., Brigode, P., Francus, P., Fortin, D., Lajeunesse, P., Dorion, H., and Trottier, A.-P.: Reconstructing past hydrology of eastern Canadian boreal catchments using clastic varved sediments and hydro-climatic modelling: 160 years of fluvial inflows, Clim. Past, 17, 653–673, https://doi.org/10.5194/cp-17-653-2021, 2021.
Grenier, B., Dubreuil, M., and Journois, D.: Comparaison de deux méthodes de mesure d'une même grandeur : méthode de Bland et Altman, Ann. Fr. Anesth. Reanim., 19 128–135, https://doi.org/10.1016/S0750-7658(00)00109-X, 2000.
Hardy, D. R., Bradley, R. S., and Zolitschka, B.: The climatic signal in varved sediments from Lake C2, northern Ellesmere Island, Canada, J. Paleolimnol., 16, 227–238, https://doi.org/10.1007/BF00176938, 1996.
Hughen, K. A.: Marine Varves, in: Encyclopedia of Scientific Dating Methods, edited by: Rink, W. J. and Thompson, J., Springer Netherlands, Dordrecht, 1–8, https://doi.org/10.1007/978-94-007-6326-5_162-1, 2013.
Jamba, M.-E.: Min and max values around the mean, Borealis [code], https://doi.org/10.5683/SP3/XWVOOW, 2025.
Kemp, A. E. S.: Palaeoclimatology and Palaeoceanography from Laminated Sediments, Geological Society Special Publication 116, London, 258 pp., 1-897799-67-5, 1996.
Laeveren, D. S. R.: Helical Scanning with Iterative Reconstruction Technology: The Next Generation in microCT, ThermoFisher scientific, technical report, 2020.
Lapointe, F., Francus, P., Stoner, J. S., Abbott, M. B., Balascio, N. L., Cook, T. L., Bradley, R. S., Forman, S. L., Besonen, M., and St-Onge, G.: Chronology and sedimentology of a new 2.9 ka annually laminated record from South Sawtooth Lake, Ellesmere Island in this NOAA depository: https://www.ncdc.noaa.gov/paleo/study/33214, Quaternary Sci. Rev., 222, 105875, https://doi.org/10.1016/j.quascirev.2019.105875, 2019.
Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Obremska, M., and Von Grafenstein, U.: Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps), J. Quaternary Sci., 26, 253–267, https://doi.org/10.1002/jqs.1448, 2011.
Lisson, K., Van Daele, M., Schröer, L., and Cnudde, V.: An integrated methodology of micro-CT and thin-section analysis for paleoflow reconstructions in lacustrine event deposits, EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023, EGU23-14489, https://doi.org/10.5194/egusphere-egu23-14489, 2023.
Lotter, A. F. and Lemcke, G.: Methods for preparing and counting biochemical varves, Boreas, 28, 243–252, https://doi.org/10.1111/j.1502-3885.1999.tb00218.x, 2008.
Martin-Puertas, C., Walsh, A. A., Blockley, S. P. E., Harding, P., Biddulph, G. E., Palmer, A. P., Ramisch, A., and Brauer, A.: The first Holocene varve chronology for the UK: Based on the integration of varve counting, radiocarbon dating and tephrostratigraphy from Diss Mere (UK), Quat. Geochronol., 61, 101134, https://doi.org/10.1016/j.quageo.2020.101134, 2021.
McGuire, A. M., Smith, C. D., Chamberlin, J. H., Maisuria, D., Toth, A., Schoepf, U. J., O'Doherty, J., Munden, R. F., Burt, J., Baruah, D., and Kabakus, I. M.: Reduction of beam hardening artifact in photon-counting computed tomography: Using low-energy threshold polyenergetic reconstruction, J. Cardiovasc. Comput., 17, 356–357, https://doi.org/10.1016/j.jcct.2023.08.007, 2023.
Meganck, J. A., Kozloff, K. M., Thornton, M. M., Broski, S. M., and Goldstein, S. A.: Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD, Bone, 45, 1104–1116, https://doi.org/10.1016/j.bone.2009.07.078, 2009.
Normandeau, A., Brown, O., Jarrett, K. A., Francus, P., and De Coninck, A.: Epoxy impregnation of unconsolidated marine sediment core subsamples for the preparation of thin sections at the Geological Survey of Canada (Atlantic), Geol. Surv. Canada., Technical Note 10, https://doi.org/10.4095/313055, 2019.
Ojala, A. E. K., Francus, P., Zolitschka, B., Besonen, M., and Lamoureux, S. F.: Characteristics of sedimentary varve chronologies – A review, Quaternary Sci. Rev., 43, 45–60, https://doi.org/10.1016/j.quascirev.2012.04.006, 2012.
Palmer, A. P., Bendle, J. M., MacLeod, A., Rose, J., and Thorndycraft, V. R.: The micromorphology of glaciolacustrine varve sediments and their use for reconstructing palaeoglaciological and palaeoenvironmental change, Quaternary Sci. Rev., 226, 105964, https://doi.org/10.1016/j.quascirev.2019.105964, 2019.
Plotly: Continuous Error Bands in Python, Plotly [code], https://plotly.com/python/continuous-error-bars/, last access: 24 February 2024.
Rana, N., Rawat, D., Parmar, M., Dhawan, D. K., Bhati, A. K., and Mittal, B. R.: Evaluation of external beam hardening filters on image quality of computed tomography and single photon emission computed tomography/computed tomography, J. Med. Phys., 40, 198–206, https://doi.org/10.4103/0971-6203.170790, 2015.
Ranganathan, P. P. C. and Aggarwal, R.: Common pitfalls in statistical analysis: Measures of agreement, Perspect. Clin. Res., 8, 187–191, https://doi.org/10.4103/picr.PICR_123_17, 2017.
Roop, H., Levy, R., Dunbar, G., Vandergoes, M., Howarth, J., Fitzsimons, S., Moon, H., Zammit, C., Ditchburn, R., Baisden, T., and Yoon, H.: A hydroclimate-proxy model based on sedimentary facies in an annually laminated sequence from Lake Ohau, South Island, New Zealand, J. Paleolimnol., 55, 1–16, https://doi.org/10.1007/s10933-015-9853-3, 2016.
Schimmelmann, A., Lange, C. B., Schieber, J., Francus, P., Ojala, A. E. K., and Zolitschka, B.: Varves in marine sediments: A review, Earth-Sci. Rev., 159, 215–246, https://doi.org/10.1016/j.earscirev.2016.04.009, 2016.
Sheppard, A., Latham, S., Middleton, J., Kingston, A., Myers, G., Varslot, T., Fogden, A., Sawkins, T., Cruikshank, R., Saadatfar, M., Francois, N., Arns, C., and Senden, T.: Techniques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT, Nuclear Instruments and Methods in Physics Research Section B, 324, 49–56, https://doi.org/10.1016/j.nimb.2013.08.072, 2014.
Soreghan, M. and Francus, P.: Processing Backscattered Electron Digital Images of Thin Section, in: Image Analysis, Sediments and Paleoenvironments, edited by: Francus, P., Springer Netherlands, Dordrecht, 203–225, https://doi.org/10.1007/1-4020-2122-4_11, 2004.
Trottier, A. P., Lajeunesse, P., Gagnon-Poiré, A., and Francus, P.: Morphological signatures of deglaciation and postglacial sedimentary processes in a deep fjord-lake (Grand Lake, Labrador), Earth Surf. Process. Landf., 45, 928–947, https://doi.org/10.1002/esp.4786, 2020.
Voltolini, M., Zandomeneghi, D., Mancini, L., and Polacci, M.: Texture analysis of volcanic rock samples: Quantitative study of crystals and vesicles shape preferred orientation from X-ray microtomography data, J. Volcanol. Geoth. Res., 202, 83–95, https://doi.org/10.1016/j.jvolgeores.2011.02.003, 2011.
Żarczyński, M., Tylmann, W., and Goslar, T.: Multiple varve chronologies for the last 2000 years from the sediments of Lake Żabińskie (northeastern Poland) – Comparison of strategies for varve counting and uncertainty estimations, Quat. Geochronol., 47, 107-119, https://doi.org/10.1016/j.quageo.2018.06.001, 2018.
Zolitschka, B., Francus, P., Ojala, A. E. K., and Schimmelmann, A.: Varves in lake sediments – a review, Quaternary Sci. Rev., 117, 1–41, https://doi.org/10.1016/j.quascirev.2015.03.019, 2015.
Short summary
This article presents a non-destructive method for studying laminated sediments with X-ray micro-computed tomography (μCT). It aims to study the possibility of using μCT as an analytical tool to analyse varved sediments in the context of paleoclimatic studies. As a result, µCT offers the possibility of doing fast analysis and constitutes a powerful tool to improve the quality of results through the access of a 3D view, allowing for choosing the most representative part of a varved record.
This article presents a non-destructive method for studying laminated sediments with X-ray...