Articles | Volume 3, issue 1
https://doi.org/10.5194/gchron-3-149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-3-149-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
geoChronR – an R package to model, analyze, and visualize age-uncertain data
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
Julien Emile-Geay
Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
Deborah Khider
Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
Related authors
Alice R. Paine, Joost Frieling, Timothy M. Shanahan, Tamsin A. Mather, Nicholas McKay, Stuart A. Robinson, David M. Pyle, Isabel M. Fendley, Ruth Kiely, and William D. Gosling
Clim. Past, 21, 817–839, https://doi.org/10.5194/cp-21-817-2025, https://doi.org/10.5194/cp-21-817-2025, 2025
Short summary
Short summary
Few tropical mercury (Hg) records extend beyond ~ 12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present an ~ 96 kyr Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial timescales.
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Jan Petřík, Katarína Adameková, Sándor Kele, Rastislav Milovský, Libor Petr, Peter Tóth, and Nicholas McKay
EGUsphere, https://doi.org/10.5194/egusphere-2023-118, https://doi.org/10.5194/egusphere-2023-118, 2023
Preprint archived
Short summary
Short summary
Our analysis of the Santovka sedimentary record in Slovakia uncovered two major climate shifts at 8.2 and 7.4 ka BP. These shifts likely impacted temperature and humidity, and/or air mass circulation, and were caused by the drying of the lake at 7.4 ka BP. The sedimentary infill provides important information on the region's past climate, and future research must focus on its impact on the last hunter gatherers and first farmers in the context of spreading agriculture in Europe.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Alice R. Paine, Joost Frieling, Timothy M. Shanahan, Tamsin A. Mather, Nicholas McKay, Stuart A. Robinson, David M. Pyle, Isabel M. Fendley, Ruth Kiely, and William D. Gosling
Clim. Past, 21, 817–839, https://doi.org/10.5194/cp-21-817-2025, https://doi.org/10.5194/cp-21-817-2025, 2025
Short summary
Short summary
Few tropical mercury (Hg) records extend beyond ~ 12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present an ~ 96 kyr Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial timescales.
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024, https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
Short summary
Climate field reconstruction encompasses methods that estimate the evolution of climate in space and time based on natural archives. It is useful to investigate climate variations and validate climate models, but its implementation and use can be difficult for non-experts. This paper introduces a user-friendly Python package called cfr to make these methods more accessible, thanks to the computational and visualization tools that facilitate efficient and reproducible research on past climates.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Jan Petřík, Katarína Adameková, Sándor Kele, Rastislav Milovský, Libor Petr, Peter Tóth, and Nicholas McKay
EGUsphere, https://doi.org/10.5194/egusphere-2023-118, https://doi.org/10.5194/egusphere-2023-118, 2023
Preprint archived
Short summary
Short summary
Our analysis of the Santovka sedimentary record in Slovakia uncovered two major climate shifts at 8.2 and 7.4 ka BP. These shifts likely impacted temperature and humidity, and/or air mass circulation, and were caused by the drying of the lake at 7.4 ka BP. The sedimentary infill provides important information on the region's past climate, and future research must focus on its impact on the last hunter gatherers and first farmers in the context of spreading agriculture in Europe.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022, https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Short summary
Annually banded lake sediment can track environmental change with high resolution in locations where alternatives are not available. Yet, information about chronology is often affected by poor appearance. Traditional methods struggle with these records. To overcome this obstacle we demonstrate a Bayesian approach that combines information from radiocarbon dating and laminations on cores from Columbine Lake, Colorado, expanding possibilities for producing high-resolution records globally.
Darrell S. Kaufman and Nicholas P. McKay
Clim. Past, 18, 911–917, https://doi.org/10.5194/cp-18-911-2022, https://doi.org/10.5194/cp-18-911-2022, 2022
Short summary
Short summary
Global mean surface temperatures are rising to levels unprecedented in over 100 000 years. This conclusion takes into account both recent global warming and likely future warming, which thereby enables a direct comparison with paleotemperature reconstructions on multi-century timescales.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Cited articles
Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic
Pliocene–Pleistocene stack of benthic δ18O using a profile
hidden Markov model, Dynamics and Statistics of the Climate System, 2,
dzx002, https://doi.org/10.1093/climsys/dzx002, 2017. a
Alley, R. B.: Ice-core evidence of abrupt climate changes,
P. Natl. Acad. Sci. USA, 97, 1331–1334, 2000. a
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M. L., Steffensen, J. P., Dahl-Jensen, D., and Vinther, B. M.: The Greenland ice core chronology 2005, 15–42 ka, Part 1: constructing the time scale, Quaternary Sci. Rev., 25, 3246–3257, 2006. a
Balco, G., Briner, J., Finkel, R. C., Rayburn, J. A., Ridge, J. C., and
Schaefer, J. M.: Regional beryllium−10 production rate calibration for
late-glacial northeastern North America, Quat. Geochronol., 4,
93–107, https://doi.org/10.1016/j.quageo.2008.09.001, 2009. a
Becker, R. A., Wilks, A. R., Minka, R. B. T. P., and Deckmyn, A.: maps: Draw
Geographical Maps, R package, version 3.3.0, available at: https://CRAN.R-project.org/package=maps (last access: 22 February 2021), 2018. a
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing,
J. Roy. Stat. Soc. B Met., 57, 289–300, 1995. a
Bhattacharya, T. and Coats, S.: Atlantic-Pacific Gradients Drive Last
Millennium Hydroclimate Variability in Mesoamerica, Geophys. Res. Lett., 47, e2020GL088061, https://doi.org/10.1029/2020GL088061, 2020. a, b
Blaauw, M.: Out of tune: the dangers of aligning proxy archives, Quaternary Sci. Rev., 36, 38–49, 2012. a
Blaauw, M., Christen, J., Mauquoy, D., van der Plicht, J., and Bennett, K.:
Testing the timing of radiocarbon-dated events between proxy archives,
Holocene, 17, 283–288, 2007. a
Blaauw, M., Wohlfarth, B., Christen, J. A., Ampel, L., Veres, D., Hughen,
K. A., Preusser, F., and Svensson, A.: Were last glacial climate events
simultaneous between Greenland and France? A quantitative comparison using
non-tuned chronologies, J. Quaternary Sci., 25, 387–394, 2010. a
Boers, N., Goswami, B., and Ghil, M.: A complete representation of uncertainties in layer-counted paleoclimatic archives, Clim. Past, 13, 1169–1180, https://doi.org/10.5194/cp-13-1169-2017, 2017. a
Boldt, B. R., Kaufman, D. S., McKay, N. P., and Briner, J. P.: Holocene summer temperature reconstruction from sedimentary chlorophyll content, with
treatment of age uncertainties, Kurupa Lake, Arctic Alaska, Holocene, 25, 641–650, https://doi.org/10.1177/0959683614565929, 2015. a, b, c
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar
Influence on North Atlantic Climate During the Holocene, Science, 294,
2130–2136, 2001. a
Bronk Ramsey, C.: Radiocarbon calibration and analysis of stratigraphy: The
OxCal program, Radiocarbon, 37, 425–430, 1995. a
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51,
337–360, 2009. a
Bronk Ramsey, C., Dee, M., Lee, S., Nakagawa, T., and Staff, R. A.:
Developments in the calibration and modeling of radiocarbon dates,
Radiocarbon, 52, 953–961, 2010. a
Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008. a
Charreau, J., Blard, P.-H., Zumaque, J., Martin, L. C., Delobel, T., and
Szafran, L.: Basinga: A cell-by-cell GIS toolbox for computing basin average
scaling factors, cosmogenic production rates and denudation rates,
Earth Surf. Proc. Land., 44, 2349–2365, 2019. a
Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., and Thompson, D. M.: A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives, Clim. Past, 10, 825–841, https://doi.org/10.5194/cp-10-825-2014, 2014. a, b, c, d, e
Corrick, E. C., Drysdale, R. N., Hellstrom, J. C., Capron, E., Rasmussen,
S. O., Zhang, X., Fleitmann, D., Couchoud, I., and Wolff, E.: Synchronous
timing of abrupt climate changes during the last glacial period, Science,
369, 963–969, 2020. a
Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson,
D. M.: PRYSM: An open-source framework for PRoxY System Modeling, with
applications to oxygen-isotope systems,
J. Adv. Model. Earth Sy., 7, 1220–1247, 2015. a
Deininger, M., McDermott, F., Mudelsee, M., Werner, M., Frank, N., and Mangini, A.: Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation, Clim. Dynam., 49, 595–618, 2017. a
DeLong, K. L., Quinn, T. M., Taylor, F. W., Shen, C.-C., and Lin, K.: Improving coral-base paleoclimate reconstructions by replicating 350 years of coral variations,
Palaeogeogr. Palaeocl., 373, 6–24, https://doi.org/10.1016/j.palaeo.2012.08.019, 2013. a
Duan, W., Cheng, H., Tan, M., and Edwards, R. L.: Onset and duration of
transitions into Greenland Interstadials 15.2 and 14 in northern China
constrained by an annually laminated stalagmite, Sci. Rep.-UK, 6,
20844, https://doi.org/10.1038/srep20844, 2016. a
Ebisuzaki, W.: A Method to Estimate the Statistical Significance of a
Correlation When the Data Are Serially Correlated, J. Climate, 10,
2147–2153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2, 1997. a
Eggins, S. M., Grün, R., McCulloch, M. T., Pike, A. W., Chappell, J.,
Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C. V., and Spötl,
C.: In situ U-series dating by laser-ablation multi-collector ICPMS: new
prospects for Quaternary Geochronology, Quaternary Sci. Rev., 24,
2523–2538, 2005. a
Emile-Geay, J. and Tingley, M.: Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies, Clim. Past, 12, 31–50, https://doi.org/10.5194/cp-12-31-2016, 2016. a
Emile-Geay, J., McKay, N. P., Kaufman, D. S., et al.: A global multiproxy database for temperature reconstructions of the Common Era, Scientific Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88, 2017. a
Falster, G., Tyler, J., Grant, K., Tibby, J., Turney, C., Löhr, S.,
Jacobsen, G., and Kershaw, A. P.: Millennial-scale variability in south-east
Australian hydroclimate between 30 000 and 10 000 years ago, Quaternary Sci. Rev., 192, 106–122, 2018. a
Foster, G.: Wavelets for period analysis of unevenly sampled time series,
Astron. J., 112, 1709–1729, https://doi.org/10.1086/118137, 1996. a
Haam, E. and Huybers, P.: A test for the presence of covariance between
time-uncertain series of data with application to the Dongge Cave speleothem
and atmospheric radiocarbon records, Paleoceanography, 25, PA2209,
https://doi.org/10.1029/2008PA001713, 2010. a
Hanhijärvi, S., Tingley, M. P., and Korhola, A.: Pairwise comparisons to
reconstruct mean temperature in the Arctic Atlantic Region over the last
2000 years, Clim. Dynam., 41, 2039–2060, 2013. a
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010. a
Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies,
J. R. Stat. Soc. C-Appl., 57, 399–418, https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008. a
Heegaard, E., Birks, H. J. B., and Telford, R. J.: Relationships between
calibrated ages and depth in stratigraphical sequences: an estimation
procedure by mixed-effect regression, Holocene, 15, 612–618, 2005. a
Hu, J., Emile-Geay, J., and Partin, J.: Correlation-based interpretations of
paleoclimate data – where statistics meet past climates,
Earth Planet. Sc. Lett., 459, 362–371, https://doi.org/10.1016/j.epsl.2016.11.048, 2017. a, b, c
Huybers, P. and Wunsch, C.: A depth-derived Pleistocene age model:
Uncertainty estimates, sedimentation variability, and nonlinear climate
change, Paleoceanography, 19, PA1028, https://doi.org/10.1029/2002PA000857, 2004. a
Imbrie, J., Hays, J., Martinson, D., Mcintyre, A., Mix, A., Morley, J., Pisias, N., Prell, W., and Shackleton, N.: The orbital theory of Pleistocene climate change: Support from a revised chronology of the marine δ18O record, in: Milankovitch and Climate, edited by: Berger, A., Imbrie, J., Hays, J., and Kukla, J., 269–305, 1984. a
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2,
R J., 5, 144–161, available at:
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf (last access 22 February 2021), 2013. a
Kaufman, D., McKay, N., Routson, C., et al.: A global database of
Holocene paleotemperature records, Scientific Data, 7, 1–34,
2020b. a
Khider, D., Jackson, C. S., and Stott, L. D.: Assessing millennial-scale
variability during the Holocene: A perspective from the western tropical
Pacific, Paleoceanography, 29, 143–159, https://doi.org/10.1002/2013pa002534, 2014. a, b
Khider, D., Ahn, S., Lisiecki, L. E., Lawrence, C. E., and Kienast, M.: The
Role of Uncertainty in Estimating Lead/Lag Relationships in Marine
Sedimentary Archives: A Case Study From the Tropical Pacific,
Paleoceanography, 32, 1275–1290, https://doi.org/10.1002/2016pa003057, 2017. a, b, c, d
Konecky, B. L., McKay, N. P., Churakova (Sidorova), O. V., Comas-Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M. J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Managave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani, H. R., Thomas, E. K., Thompson, D. M., Tyler, J. J., Abram, N. J., Atwood, A. R., Cartapanis, O., Conroy, J. L., Curran, M. A., Dee, S. G., Deininger, M., Divine, D. V., Kern, Z., Porter, T. J., Stevenson, S. L., von Gunten, L., and Iso2k Project Members: The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate, Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, 2020. a
Lin, L., Khider, D., Lisiecki, L., and Lawrence, C.: Probabilistic sequence
alignment of stratigraphic records, Paleoceanography, 29, 976–989,
https://doi.org/10.1002/2014PA002713, 2014. a
Lisiecki, L. E.: Links between eccentricity forcing and the 100 000 year glacial cycle, Nat. Geosci., 3, 349–352, https://doi.org/10.1038/NGEO828, 2010. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005. a, b, c
Liu, Y., Henderson, G., Hu, C., Mason, A., Charnley, N., Johnson, K., and Xie, S.: Links between the East Asian monsoon and North Atlantic climate during the 8200 year event, Nat. Geosci., 6, 117–120, 2013. a
Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent Laws and
Multifractal Cascades, Cambridge University Press, Cambridge University Press, New York, 508 pp., 2013. a
Mann, M. and Lees, J.: Robust Estimation of Background Noise and Signal
Detection in Climatic Time Series, Climate Change, 33, 409–445, 1996. a
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A Reconstruction
of Regional and Global Temperature for the Past 11 300 Years, Science, 339,
1198–1201, https://doi.org/10.1126/science.1228026, 2013. a, b
Masarik, J. and Beer, J.: An updated simulation of particle fluxes and
cosmogenic nuclide production in the Earth's atmosphere, (1984–2012)
J. Geophys. Res., 114, D11103, https://doi.org/10.1029/2008JD010557, 2009. a
Mathias, A., Grond, F., Guardans, R., Seese, D., Canela, M., and Diebner, H.:
Algorithms for Spectral Analysis of Irregularly Sampled Time Series,
J. Stat. Softw., 11, 1–27, https://doi.org/10.18637/jss.v011.i02, 2004. a
McKay, N. P.: neotoma2lipd package, GitHub, available at:
https://github.com/nickmckay/neotoma2lipd/ (last access: 22 February 2021), 2020. a
McKay, N. P.: Examples datasets for geoChronR, LiPDverse, available at: http://lipdverse.org/geoChronR-examples/, last access: 22 February 2021. a
McKay, N. P. and Emile-Geay, J.: Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology, Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, 2016. a, b
McKay, N. P. and Kaufman, D. S.: An extended Arctic proxy temperature database for the past 2000 years, Scientific Data, 1, 140026, https://doi.org/10.1038/sdata.2014.26, 2014. a, b, c, d
McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. P., and Zander, P. D.:
The onset and rate of Holocene Neoglacial cooling in the Arctic, Geophys. Res. Lett., 45, 12–487, 2018. a
McKay, N. P., Emile-Geay, J., and Khider, D.: Development repo for the GeoChronR paper, Github, available at: https://github.com/nickmckay/geochronr-paper, last access: 22 February 2021a. a
McKay, N. P., Emile-Geay, J., and Khider, D.: geoChronR: Tools to analyze and visualize time-uncertain data, Github, available at: https://github.com/nickmckay/geochronr, last access: 22 February 2021b. a
Meyers, S. R.: Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology, Paleoceanography, 27, PA3228, https://doi.org/10.1029/2012PA002307, 2012. a, b, c
Meyers, S. R.: The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic
testing and time scale optimization, Paleoceanography, 30, 1625–1640,
https://doi.org/10.1002/2015PA002850, 2015. a, b
Meyers, S. R. and Malinverno, A.: Proterozoic Milankovitch cycles and the
history of the solar system, P. Natl. Acad. Sci. USA,
115, 6363–6368, https://doi.org/10.1073/pnas.1717689115, 2018. a
Meyers, S. R. and Sageman, B. B.: Quantification of deep-time orbital forcing
by average spectral misfit, Am. J. Sci., 307, 773–792,
https://doi.org/10.2475/05.2007.01, 2007. a, b
Mix, A. C., Le, J., and Shackleton, N.: Benthic foraminiferal stable isotope
stratigraphy of site 846: 0–1.8 Ma, in: Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., College Station, Texas, USA, 138, 839–854, https://doi.org/10.2973/odp.proc.sr.138.160.1995, 1995. a
Mudelsee, M.: TAUEST: a computer program for estimating persistence in
unevenly spaced weather/climate time series, Comput. Geosci., 28,
69–72, https://doi.org/10.1016/S0098-3004(01)00041-3, 2002. a
Mudelsee, M., Scholz, D., Röthlisberger, R., Fleitmann, D., Mangini, A., and Wolff, E. W.: Climate spectrum estimation in the presence of timescale errors, Nonlin. Processes Geophys., 16, 43–56, https://doi.org/10.5194/npg-16-43-2009, 2009. a, b
National Academies of Sciences, Engineering, and Medicine: A Vision for NSF
Earth Sciences 2020–2030: Earth in Time, The National Academies Press,
Washington DC, USA, 144 pp., https://doi.org/10.17226/25761, 2020. a
Neumaier, A. and Schneider, T.: Estimation of parameters and eigenmodes of
multivariate autoregressive models,
ACM T. Math. Software, 27, 27–57, 2001. a
Noren, A., Brigham-Grette, J., Lehnert, K., Peters, S., Williams, J., Ito, E., Anderson, D., and Grimm, E.: Cyberinfrastructure for Paleogeoscience,
workshop report, NSF EarthCube, Minneapolis, MN, 4–6 February 2013, report number 1, 6 pp., 2013. a
PAGES2K Consortium: Continental-scale temperature variability during
the past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797,
2013. a
Paillard, D.: Glacial cycles: Toward a new paradigm, Rev. Geophys., 39,
325–346, https://doi.org/10.1029/2000RG000091, 2001. a
Park, J., Smith, C., Sugihara, G., and Deyle, E.: rEDM: Empirical Dynamic
Modeling (“EDM”), R package, version 1.5.0, available at: https://CRAN.R-project.org/package=rEDM (last access: 22 February 2021), 2020. a
Parnell, A. C., Buck, C. E., and Doan, T. K.: A review of statistical
chronology models for high-resolution, proxy-based Holocene
palaeoenvironmental reconstruction, Quaternary Sci. Rev., 30, 2948–2960, https://doi.org/10.1016/j.quascirev.2011.07.024, 2011. a, b
Preisendorfer, R. W. and Mobley, C. D.: Principal component analysis in
meteorology and oceanography, in: Developments in atmospheric science, Elsevier, Amsterdam, The Netherlands, Vol. 17, 1988. a
Reimer, P. J., Baillie, M., Bard, E., Bayliss, A., Beck, J., Blackwell, P.,
Ramsey, C. B., Buck, C., Burr, G., Edwards, R., Friedrich, M., Grootes, P.,
Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kaiser, K.,
Kromer, B., McCormac, F., Manning, S., Reimer, R., Richards, D., Southon, J.,
Talamo, S., Turney, C., van der Plicht, J., and Weyhenmeyer, C.: IntCal09 and
Marine09 Radiocarbon Age Calibration Curves, 0–50 000 Years cal BP,
Radiocarbon, 51, 1111–1150, https://doi.org/10.1017/S0033822200034202, 2011. a
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G.,
Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP, Radiocarbon, 55, 1869–1887, 2013. a
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020. a
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H., Shuman,
B. N., Rodysill, J. R., and Ault, T.: Mid-latitude net precipitation
decreased with Arctic warming during the Holocene, Nature, 568, 83–87, 2019. a
Roweis, S. T.: EM algorithms for PCA and SPCA, in: Advances in Neural Information Processing Systems, 10, edited by: Jordan, M., Kearns, M., and Solla, S., MIT Press, Cambridge, MA, 626–632, 1998. a
Santos, G. M., Southon, J. R., Drenzek, N. J., Ziolkowski, L. A., Druffel,
E. R., Xu, X., Zhang, D., Trumbore, S. E., Eglinton, T. I., and Hughen,
K. A.: Blank assessment for ultra-small radiocarbon samples: chemical
extraction and separation versus AMS, Radiocarbon, 52, 1322–1335, 2010. a
Scholz, D., Hoffmann, D. L., Hellstrom, J., and Bronk Ramsey, C.: A comparison of different methods for speleothem age modelling,
Quat. Geochronol., 14, 94–104, https://doi.org/10.1016/j.quageo.2012.03.015, 2012. a
Shackleton, N. J.: New data on the evolution of Pliocene climatic
variability, in: Paleoclimate and Evolution, with Emphasis on Human Origins,
edited by: Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H.,
Yale University Press, New Haven, Connecticut, USA, 242–248, 1995. a
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–54, 2012. a
Stacklies, W., Redestig, H., Scholz, M., Walther, D., and Selbig, J.:
pcaMethods – a Bioconductor package providing PCA methods for incomplete
data, Bioinformatics, 23, 1164–1167, 2007. a
Thomas, E., Castaneda, I., McKay, N. P., Briner, J., Salacup, J., Nguyen, K., and Schweinsberg, A.: Arctic hydroclimate intensification coincident with
hemispheric warming 8000 years ago, Geophys. Res. Lett., 45, 10637–10647, 2018. a
van Albada, S. and Robinson, P.: Transformation of arbitrary distributions to
the normal distribution with application to EEG test–retest reliability,
J. Neurosci. Meth., 161, 205–211, https://doi.org/10.1016/j.jneumeth.2006.11.004, 2007. a, b
Van der Plas, J. T.: Understanding the Lomb–Scargle Periodogram,
Astrophys. J. Suppl. S., 236, 28 pp., https://doi.org/10.3847/1538-4365/aab766, 2018. a
Vaughan, S., Bailey, R. J., and Smith, D. G.: Detecting cycles in stratigraphic data: Spectral analysis in the presence of red noise, Paleoceanography, 26, PA4211, https://doi.org/10.1029/2011PA002195, 2011. a, b
Vautard, R. and Ghil, M.: Singular spectrum analysis in nonlinear dynamics,
with applications to paleoclimatic time series, Physica D, 35, 395–424,
1989. a
Vautard, R., Yiou, P., and Ghil, M.: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Physica D, 58, 95–126, https://doi.org/10.1016/0167-2789(92)90103-T, 1992. a
Ventura, V., Paciorek, C. J., and Risbey, J. S.: Controlling the Proportion of Falsely Rejected Hypotheses when Conducting Multiple Tests with
Climatological Data, J. Climate, 17, 4343–4356,
https://doi.org/10.1175/3199.1, 2004. a, b
Werner, J. P. and Tingley, M. P.: Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model, Clim. Past, 11, 533–545, https://doi.org/10.5194/cp-11-533-2015, 2015. a
Werner, J. P., Divine, D. V., Charpentier Ljungqvist, F., Nilsen, T., and Francus, P.: Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia, Clim. Past, 14, 527–557, https://doi.org/10.5194/cp-14-527-2018, 2018. a
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York, USA, available at: https://ggplot2.tidyverse.org (last access: 22 February 2021), 2016. a
Williams, J. W., Grimm, E. C., Blois, J. L., Charles, D. F., Davis, E. B.,
Goring, S. J., Graham, R. W., Smith, A. J., Anderson, M., Arroyo-Cabrales,
J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K., Buckland,
P. I., Curry, B. B., Giesecke, T., Jackson, S. T., Latorre, C., Nichols, J.,
Purdum, T., Roth, R. E., Stryker, M., and Takahara, H.: The Neotoma
Paleoecology Database, a multiproxy, international, community-curated data
resource, Quaternary Res., 89, 156–177, https://doi.org/10.1017/qua.2017.105, 2018. a
Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O., and Svensson, A.: Millennial-scale variability during the last glacial: The ice core record, Quaternary Sci. Rev., 29, 2828–2838, 2010. a
Zander, P. D., Szidat, S., Kaufman, D. S., Żarczyński, M.,
Poraj-Górska, A. I., Boltshauser-Kaltenrieder, P., and Grosjean, M.:
Miniature radiocarbon measurements (<150 µg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age–depth models, Geochronology, 2, 63–79, 2020. a
Zhang, H., Ait Brahim, Y., Li, H., Zhao, J., Kathayat, G., Tian, Y., Baker, J., Wang, J., Zhang, F., Ning, Y., Edwards, R. L., and Cheng, H.: The Asian summer monsoon:
Teleconnections and forcing mechanisms – A review from Chinese speleothem
δ18O records, Quaternary, 2, 26, https://doi.org/10.3390/quat2030026, 2019. a
Zhu, F., Emile-Geay, J., McKay, N. P., Hakim, G. J., Khider, D., Ault, T. R.,
Steig, E. J., Dee, S., and Kirchner, J. W.: Climate models can correctly
simulate the continuum of global-average temperature variability, P. Natl. Acad. Sci. USA, 116, 8728, https://doi.org/10.1073/pnas.1809959116, 2019. a, b, c
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
This paper describes geoChronR, an R package that streamlines the process of quantifying age...