Articles | Volume 4, issue 2
https://doi.org/10.5194/gchron-4-601-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-4-601-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ LA-ICPMS U–Pb dating of sulfates: applicability of carbonate reference materials as matrix-matched standards
Aratz Beranoaguirre
CORRESPONDING AUTHOR
Institut für Angewandte Geowissenschaften, Karlsruher Institut für Technologie, Adenauerring 20b, 76131 Karlsruhe, Germany
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
Geologia Saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena z/g, 48940 Leioa, Spain
Iuliana Vasiliev
Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Axel Gerdes
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
Related authors
Jesse B. Walters, Joshua M. Garber, Aratz Beranoaguirre, Leo J. Millonig, Axel Gerdes, Tobias Grützner, and Horst R. Marschall
Geochronology, 7, 309–333, https://doi.org/10.5194/gchron-7-309-2025, https://doi.org/10.5194/gchron-7-309-2025, 2025
Short summary
Short summary
Garnet U–Pb dating is useful for dating geologic events. However, contamination by U-rich minerals included in garnet is a risk. Inclusions are often spotted by high-U spikes or large errors in the age. We dated garnets in metamorphic rocks and calculated ages 10–15 Myr older than expected, reflecting contamination by the mineral zircon. We provide recommendations for identifying contamination and suggest that the bulk dating of zircon inclusions in garnet may also provide valuable information.
Jesse B. Walters, Joshua M. Garber, Aratz Beranoaguirre, Leo J. Millonig, Axel Gerdes, Tobias Grützner, and Horst R. Marschall
Geochronology, 7, 309–333, https://doi.org/10.5194/gchron-7-309-2025, https://doi.org/10.5194/gchron-7-309-2025, 2025
Short summary
Short summary
Garnet U–Pb dating is useful for dating geologic events. However, contamination by U-rich minerals included in garnet is a risk. Inclusions are often spotted by high-U spikes or large errors in the age. We dated garnets in metamorphic rocks and calculated ages 10–15 Myr older than expected, reflecting contamination by the mineral zircon. We provide recommendations for identifying contamination and suggest that the bulk dating of zircon inclusions in garnet may also provide valuable information.
Konstantina Agiadi, Iuliana Vasiliev, Antoine Vite, Stergios Zarkogiannis, Alba Fuster-Alonso, Jorge Mestre-Tomás, Efterpi Koskeridou, and Frédéric Quillévéré
EGUsphere, https://doi.org/10.1101/2024.12.28.630586, https://doi.org/10.1101/2024.12.28.630586, 2025
Preprint archived
Short summary
Short summary
How did the different organisms respond to the Pleistocene glacial-interglacial cycles? We tried to answer this question by analysing the chemical and isotopic signals from marine organisms that lived in the Eastern Mediterranean at the time. Our results suggest that while changes in production by phyto- and zooplankton affected biomass in the ocean, temperature changes severely impacted the vertical migration of mesopelagic fishes.
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Cited articles
Andreetto, F., Matsubara, K., Beets, C. J., Fortuin, A. R., Flecker, R., and
Krijgsman, W.: High Mediterranean water-level during the Lago-Mare
phase of the Messinian Salinity Crisis: insights from the Sr isotope records
of Spanish marginal basins (SE Spain), Paleogeogr. Paleocl., 562, 110139, https://doi.org/10.1016/j.palaeo.2020.110139, 2021.
Astilleros, J. M., Godelitsas, A., Rodríguez-Blanco, J. D.,
Fernández-Díaz, L., Prieto, M., Lagoyannis, A., and Harissopulos, S.: Interaction of gypsum with Pb – bearing aqueous solutions, Appl. Geochem., 25, 1008–1016, https://doi.org/10.1016/j.apgeochem.2010.04.007, 2010.
Babel, M. and Schreiber, B. C.: Geochemistry of evaporites and evolution of
seawater, in: Treatise on Geochemistry, 2nd edn., edited by: Turekian,
K. and Holland, H., Elsevier, Oxford, UK, 483–560, https://doi.org/10.1016/B978-0-08-095975-7.00718-X, 2014.
Brannon, J. C., Cole, S. C., Podosek, F. A., Ragan, V. M., Coveney, R. M.,
Wallace, M. W., and Bradley, A. J.: Th-Pb and U–Pb dating of ore-stage
calcite and Paleozoic fluid flow, Science, 271, 491–493,
https://doi.org/10.1126/science.271.5248.491, 1996.
Burisch, M., Walter, B. F., and Markl, G.: Silicification of Hydrothermal
Gangue Minerals in Pb-Zn-Cu-Fluorite-Quartz-595 Baryte Veins, Can. Mineral., 55, 501–514, https://doi.org/10.3749/canmin.1700005, 2017.
Burisch, M., Gerdes, A., Meinert, L., Albert, R., Seifert, T., and Gutzmer,
J.: The essence of time – fertile skarn formation in the Variscan Orogenic
Belt, Earth Planet. Sc. Lett., 519, 165–170, https://doi.org/10.1016/j.epsl.2019.05.015, 2019.
CIESM: The Messinian salinity crisis from mega-deposits to microbiology, in:
A consensus report. 33ème CIESM Workshop Monographs 33, edited by:
Briand, F., CIESM Publisher, Monaco, 91–96, 2008.
Clauer, N., Chaudhuri, S., Toulkeridis, T., and Blanc, G.: Fluctuations of
Caspian Sea level: beyond climatic variations?, Geology, 28, 1015–1018,
https://doi.org/10.1130/0091-7613(2000)28<1015:FOCSLB>2.0.CO;2, 2000.
Conley, R. F. and Bundy, W. M.: Mechanism of gypsification, Geochim.
Cosmochim. Ac., 15, 57–72, https://doi.org/10.1016/0016-7037(58)90010-3, 1958.
Costanzo, A., Cipriani, M., Feely, M., Cianfione, G., and Dominici, R.:
Messinian twinned selenite from the Catanzaro Trough, Calabria, Southern
Italy: field, petrographic and fluid inclusion perspectives, Carbonate.
Evaporite., 34, 743–756, https://doi.org/10.1007/s13146-019-00516-0, 2019.
Craig, G., Managh A. J., Stremtan, C., Lloyd, N. S., and Horstwood, M. S. A.:
Doubling Sensitivity in Multicollector ICPMS Using High-Efficiency, Rapid
Response Laser Ablation Technology, Anal. Chem., 90, 11564–11571,
https://doi.org/10.1021/acs.analchem.8b02896, 2018.
Craig, G., Bracciali, L., and Lloyd, N.: LA-ICP-MS for U-(Th)-Pb
geochronology: Which analytical capability is right for my laboratory?,
Thermo Fisher Scientific, Smart. Note 30581, 2020.
Cruset, D., Verges, J., Rodrigues, N., Belenguer, J., Pascual-Cebrian, E.,
Almar, Y., Perez-Caceres, I., Macchiavelli, C., Trave, A., Beranoaguirre,
A., Albert, R., Gerdes, A., and Messager, G.: U–Pb dating of carbonate
veins constraining timing of beef growth and oil generation within Vaca
Muerta Formation and compression history in the Neuquen Basin along the
Andean fold and thrust belt, Mar. Petrol. Geol., 132, 10520,
https://doi.org/10.1016/j.marpetgeo.2021.105204, 2021.
Deng, X. D., Li, J. W., Luo, T., and Wang, H. Q.: Dating magmatic and
hydrothermal processes using andradite-rich garnet U–Pb geochronometry,
Contrib. Mineral. Petr., 172, 71, https://doi.org/10.1007/s00410-017-1389-2, 2017.
Elisha, B., Nuriel, P., Kylander-Clark, A., and Weinberger, R.: Towards in situ U–Pb dating of dolomite, Geochronology, 3, 337–349, https://doi.org/10.5194/gchron-3-337-2021, 2021.
Evans, N. P., Turchyn, A. V., Gázquez, F., Bontognali, R. R., Chapman,
H. J., and Hodell, D. A.: Coupled measurements of δ18O and
δD of hydration water and salinity of fluid inclusions in gypsum
from the Messinian Yesares Member, Sorbas Basin (SE Spain), Earth Planet.
Sc. Lett., 430, 499–510, https://doi.org/10.1016/j.epsl.2015.07.071, 2015.
Flecker, R. and Ellam, R. M.: Identifying Late Miocene episodes of
connection and isolation in the Mediterranean–Paratethyan realm using Sr
isotopes, Sediment. Geol., 188–189, 189–203, https://doi.org/10.1016/j.sedgeo.2006.03.005, 2006.
Flecker, R., Krijgsman, W., Capella, W., de Castro Martíns, C.,
Dmitrieva, E., Mayser, J. P., Marzocchi, A., Modestu, S., Lozano, D. O.,
Simon, D., Tulbure, M., van den Berg, B., van der Schee, M., de Lange, G.,
Ellam, R., Govers, R., Gutjahr, M., Hilgen, F., Kouwenhoven, T., Lofi, J.,
Meijer, P., Sierro, F. J., Bachiri, N., Barhoun, N., Alami, A. C., Chacon, B., Flores, Jose A., Gregory, J., Howard, J., Lunt, D., Ochoa, M., Pancost, R., Vincent, S., and Yousfi, M. Z.: Evolution of the Late Miocene Mediterranean Atlantic gateways and their impact on regional and global environmental change, Earth-Sci. Rev., 150, 365–392, https://doi.org/10.1016/j.earscirev.2015.08.007, 2015.
Gerdes, A. and Zeh, A.: Combined U–Pb and Hf isotope LA-(MC-)ICP-MS
analyses of detrital zircons: comparison with SHRIMP and new constraints for
the provenance and age of an Armorican metasediment in Central Germany,
Earth Planet. Sc. Lett., 249, 47–61, https://doi.org/10.1016/j.epsl.2006.06.039, 2006.
Gerdes, A. and Zeh, A.: Zircon formation versus zircon alteration – new
insights from combined U–Pb and Lu-Hf in-situ LA-ICP-MS analyses, and
consequences for the interpretation of Archean zircon from the Central Zone
of the Limpopo Belt, Chem. Geol., 261, 230–243, https://doi.org/10.1016/j.chemgeo.2008.03.005, 2009.
Grandia, F., Asmerom, Y., Getty, S., Cardellach, E., and Canals, A.: U–Pb
dating of MVT ore-stage calcite: implications for fluid flow in a Mesozoic
extensional basin from Iberian Peninsula, J. Geochem. Explor., 69, 377–380, https://doi.org/10.1016/S0375-6742(00)00030-3, 2000.
Grothe, A., Andreetto, F., Reichart, G. J., Wolthers, M., Van Baak, C. G.,
Vasiliev, I., Stoica, M., Sangiorgi, F., Middelburg, J. J., Davies, G. R., and Krijgsman, W.: Paratethys pacing of the Messinian Salinity Crisis: low
salinity waters contributing to gypsum precipitation?, Earth Planet. Sc.
Lett., 532, 116029, https://doi.org/10.1016/j.epsl.2019.116029,
2020.
Guillong, M., Wotzlaw, J.-F., Looser, N., and Laurent, O.: Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material, Geochronology, 2, 155–167, https://doi.org/10.5194/gchron-2-155-2020, 2020.
Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N.
M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P.,
and Bowring, J. F.: Community-derived standards for LA-ICP-MS U-(Th-)Pb
geochronology-Uncertainty propagation, age interpretation and data
reporting, Geostand. Geoanal. Res., 40, 311–332, https://doi.org/10.1111/j.1751-908X.2016.00379.x, 2016.
Hsü, K. J., Ryan, W. B. F., and Cita, M. B.: Late Miocene desiccation of the
Mediterranean, Nature, 242, 240–244, https://doi.org/10.1038/242240a0, 1973.
Hsü, K. J., Montadert, L., Ross, D. A., and Neprochnov, Y. P.: Annotated
record of the detailed examination of Mn deposits from DSDP Leg 42 (Holes
372 and 379A), Pangaea [data set], https://doi.org/10.1594/PANGAEA.871889, 1978.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler, J.: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines, Geostand. Geoanal. Res., 35, 97–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Kameda, K., Hashimoto, Y., Wang., S.-L., Hirai, Y., and Miyahara, H.:
Simultaneous and continuous stabilization of As and Pb in contaminated
solution and soil by a ferrihydrite-gypsum sorbent, J. Hazard. Mater., 327,
171–179, https://doi.org/10.1016/j.jhazmat.2016.12.039, 2017.
Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S.:
Chronology, causes and progression of the Messinian Salinity Crisis, Nature,
400, 652–655, https://doi.org/10.1038/23231, 1999.
Krijgsman, W., Stoica, M., Vasiliev, I., and Popov, V. V.: Rise and fall of
the Paratethys Sea during the Messinian Salinity Crisis, Earth Planet. Sc.
Lett., 290, 183–191, https://doi.org/10.1016/j.epsl.2009.12.020, 2010.
Krijgsman, W., Capella, W., Simon, D., Hilgen, F. J., Kouwenhoven, T. J.,
Meijer, P. T., Sierro, F. J., Tulbure, M. A., van den Berg, B. C. J., van der
Schee, M., and Flecker, R.: The Gibraltar Corridor: watergate of the
Messinian Salinity Crisis, Mar. Geol., 403, 238–246, https://doi.org/10.1016/j.margeo.2018.06.008, 2018.
Laskar, J.: The limits of Earth orbital calculations for geological
time-scale use, in: Astronomical (Milankovitch) Calibration of the
Geological Time-Scale, edited by: Shackleton, N. J., McCave, I. N., and
Graham, P. W., Philos. T. Roy. Soc. A., 357, 1735–1759, https://doi.org/10.1098/rsta.1999.0399, 1999.
Lenoir, L., Blaise, T., Somogyi, A., Brigaud, B., Barbarand, J., Boukari, C., Nouet, J., Brézard-Oudot, A., and Pagel, M.: Uranium incorporation in fluorite and exploration of U–Pb dating, Geochronology, 3, 199–227, https://doi.org/10.5194/gchron-3-199-2021, 2021.
Lin, J., Sun, W., Desmarais, J., Chen, N., Feng, R., Zhang, P., Li, D.,
Lieu, A., Tse, J. S., and Pan, Y.: Uptake and speciation of uranium in
synthetic gypsum (CaSO4⋅ 2H2O): applications to
radioactive mine tailings, J. Environ. Radioactiv., 181, 8–17, https://doi.org/10.1016/j.jenvrad.2017.10.010, 2018.
Liu, D. J. and Hendry, M. J.: Controls on 226Ra during raffinate
neutralization at the Key Lake uranium mill, Saskatchewan, Canada, Appl.
Geochem., 26, 2113–2120, https://doi.org/10.1016/j.apgeochem.2011.07.009, 2011.
Ludwig, K. R.: User's Manual for Isoplot Version 3.75-4.15: a
Geochronological Toolkit for Microsoft Excel, Berkeley Geochronological
Center Special Publication, no. 5, 2012.
Lugli, S., Bassetti, M. A., Manzi, V., Barbieri, M., Longinelli, A., and
Roveri, M.: The Messinian “Vena del Gesso” evaporites revisited:
characterization of isotopic composition and organic matter, J. Geol. Soc.
Lond., 285, 179–190, https://doi.org/10.1144/SP285.11, 2007.
Lugli, S., Manzi, V., Roveri, M., and Schreiber, B. C.: The primary Lower
Gypsum in the Mediterranean: a new facies interpretation for the first stage
of the Messinian salinity crisis, Palaeogeogr. Palaeocl., 297, 83–99, https://doi.org/10.1016/j.palaeo.2010.07.017, 2010.
Mangenot, X., Gasparrini, M., Rouchon, V., and Bonifacie, M.: Basin-scale
thermal and fluid flow histories revealed by carbonate clumped isotopes
(Δ47) – Middle Jurassic carbonates of the Paris Basin depocentre,
Sedimentology, 65, 123–150, https://doi.org/10.1111/sed.12427, 2018.
Manzi, V., Gennari, R., Lugli, S., Roveri, M., and Schreiber, B. C.: The
Messinian “Calcare di Base” (Sicily, Italy) revisited, Geol. Soc. Am. Bull., 123, 347–370, https://doi.org/10.1130/B30262.1, 2011.
Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M.,
and Sierro, F. J.: Age refinement of the Messinian salinity crisis onset in
the Mediterranean, Terra Nova, 25, 315–322, https://doi.org/10.1111/ter.12038, 2013.
Manzi, V., Gennari, R., Lugli, S., Persico, D., Reghizzi, M., Roveri, M.,
Schreiber, B. C., Calvo, R., Gavrieli, I., and Gvirtzman, Z.: The onset of
the Messinian salinity crisis in the deep Eastern Mediterranean basin, Terra
Nova, 30, 189–198, https://doi.org/10.1111/ter.12325, 2018.
Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V.,
Flecker, R., Waldmann, N. D., Spaulding, S. A., Bialik, O. M., and Boudinot,
F. G.: Chronology with a pinch of salt: integrated stratigraphy of Messinian
evaporites in the deep Eastern Mediterranean reveals long-lasting halite
deposition during Atlantic connectivity, Earth-Sci. Rev., 194, 374–398, https://doi.org/10.1016/j.earscirev.2019.05.011, 2019
Millonig, L. J., Albert, R., Gerdes, A., Avigad, D., and Dietsch, C.:
Exploring laser ablation U–Pb dating of regional metamorphic garnet – The
Straits Schist, Connecticut, USA, Earth Planet. Sc. Lett., 552, 116589,
https://doi.org/10.1016/j.epsl.2020.116589, 2020.
Montano, D., Gasparrini, M., Gerdes, A., Albert, R., Rohais, S., and Della
Porta, G.: In-situ carbonate U–Pb analysis by LA-ICP-MS: From absolute
dating to understanding the U–Pb partitioning in lacustrine systems,
Goldschmidt 2019 Abstracts, Abstract no, 2323, 2019.
Montano, D., Gasparrini, M., Gerdes, A., Della Porta, G., and Albert, R.:
In-situ U–Pb dating of Ries Crater lacustrine carbonates (Miocene,
South-West Germany): implications for continental carbonate
chronostratigraphy, Earth Planet. Sc. Lett., 568, 117011, https://doi.org/10.1016/j.epsl.2021.117011, 2021.
Montano, D., Gasparrini, M., Rohais, S., Albert, R., and Gerdes, A.:
Depositional age models in lacustrine systems from zircon and carbonate U–Pb
geochronology, Sedimentology, in press,
https://doi.org/10.1111/sed.13000, 2022.
Morales, J., Astilleros, J. M., Jiménez, A., Göttlicher, J.,
Steininger, R., and Fernández-Díaz, L.: Uptake of dissolved lead by
anhydrite surfaces, Appl. Geochem., 40, 89–96,
https://doi.org/10.1016/j.apgeochem.2013.11.002, 2014.
Murray, R. C.: Origin and diagenesis of gypsum and anhydrite, SEPM Journal of Sedimentary Research, 34, 512–523,
https://doi.org/10.1306/74D710D2-2B21-11D7-8648000102C1865D, 1964.
Natalicchio, M., Dela Pierre, F., Lugli, S., Lowenstein, T. K., Feiner, S. J., Ferrando, S., Manzi, V., Roveri, M., and Clari, P.: Did Late Miocene
(Messinian) gypsum precipitate from evaporated marine brines? Insights from
the Piedmont Basin (Italy), Geology, 42, 179–182, https://doi.org/10.1130/G34986.1, 2014.
Nuriel, P., Wotzlaw, J.-F., Ovtcharova, M., Vaks, A., Stremtan, C., Šala, M., Roberts, N. M. W., and Kylander-Clark, A. R. C.: The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U–Pb geochronology of calcite, Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, 2021.
Ossorio, M., Van Driessche, A. E. S., Pérez, P., and García-Ruiz,
J. M.: The gypsum-anhydrite paradox revisited, Chem. Geol., 386, 16–21, https://doi.org/10.1016/j.chemgeo.2014.07.026, 2014.
Pagel, M., Bonifacie, M., Schneider, D. A., Gautheron, C., Brigaud, B.,
Calmels, D., Cros, A., Saint-Bezar, B., Landrein, P., Sutcliffe, C., and
Davis, D.: Improving paleohydrological and diagenetic reconstructions in
calcite veins and breccia of a sedimentary basin by combining Δ47
temperature, δ18O water and U-Pb age, Chem. Geol., 481, 1–17, https://doi.org/10.1016/j.chemgeo.2017.12.026, 2018.
Parrish, R. R., Parrish, C. M., and Lasalle, S.: Vein calcite dating reveals
Pyrenean orogen as cause of Paleogene deformation in southern England, J.
Geol. Soc., 175, 425–442, https://doi.org/10.1144/jgs2017-107, 2018.
Petrash, D. A., Bialik, O. M., Bontognali, T. R. R., Vasconcelos, C., Roberts, J. A., McKenzie, J. A., and Konhauser, K. O.: Microbially catalyzed dolomite formation: From near-surface to burial, Earth-Sci. Rev., 171, 558–582, https://doi.org/10.1016/j.earscirev.2017.06.015, 2017.
Piccione, G., Rasbury, E. T., Elliott, B. A., Kyle, J. R., Jaret, S. J., Acerbo, A. S., Lanzirotti, A., Northrup, P., Wooton, K., and Parrish, R. R.: Vein fluorite U-Pb dating demonstrates post-6.2 Ma rare-earth element
mobilization associated with Rio Grande rifting, Geosphere, 15, 1958–1972, https://doi.org/10.1130/GES02139.1, 2019.
Rasbury, E. T. and Cole, J. M.: Directly dating geologic events: U-Pb
dating of carbonates, Reviews of Geophysics, 47, RG3001, https://doi.org/10.1029/2007RG000246, 2009.
Ring, U. and Gerdes, A.: Kinematics of the Alpenrhein-Bodensee graben system
in the Central Alps: Oligocene/Miocene transtension due to formation of the
Western Alps arc, Tectonics, 35, 1367–1391, https://doi.org/10.1002/2015TC004085, 2016.
Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood,
M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U–Pb
geochronology, Geochem. Geophy. Geosy., 18, 2807–2814, https://doi.org/10.1002/2016GC006784, 2017.
Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., and Lee, J. K.: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations, Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, 2020.
Rouchy, J. M. and Caruso, A.: The Messinian salinity crisis in the
Mediterranean basin: a reassessment of the data and an integrated scenario,
Sediment. Geol., 188–189, 35–67, https://doi.org/10.1016/j.sedgeo.2006.02.005, 2006.
Roveri, M., Lugli, S., Manzi, V., and Schreiber, B. C.: The Messinian
Sicilian stratigraphy revisited: toward a new scenario for the Messinian
salinity crisis, Terra Nova, 20, 483–488, https://doi.org/10.1111/j.1365-3121.2008.00842.x, 2008a.
Roveri, M., Bertini, A., Cosentino, D., Di Stefano, A., Gennari, R.,
Gliozzi, E., Grossi, F., Iaccarino, S. M., Lugli, S., Manzi, V., and Taviani,
M.: A high-resolution stratigraphic framework for the latest Messinian
events in the Mediterranean area, Stratigraphy, 5, 323–342, 2008b.
Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V.,
Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R.,
Hilgen, F. J., Hübscher, C., Meijer, P. T., and Stoica, M.: The Messinian
Salinity Crisis: past and future of a great challenge for marine sciences,
Mar. Geol., 352, 25–58, https://doi.org/10.1016/j.margeo.2014.02.002, 2014a.
Roveri, M., Lugli, S., Manzi, V., Gennari, R., and Schreiber, B. C.: High-resolution strontium isotope stratigraphy of the Messinian deep
Mediterranean basins: implications for marginal to central basins
correlation, Mar. Geol., 349, 113–125, https://doi.org/10.1016/j.margeo.2014.01.002, 2014b.
Ryan, W. B.: Decoding the Mediterranean salinity crisis, Sedimentology, 56, 95–136, https://doi.org/10.1111/j.1365-3091.2008.01031.x, 2009.
Schaltegger, U., Schmitt, A. K., and Horstwood, M. S. A.: U–Th–Pb zircon
geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes,
interpretations, and opportunities, Chem. Geol., 402, 89–110, https://doi.org/10.1016/j.chemgeo.2015.02.028, 2015.
Selli, R.: Il Messiniano Mayer-Eymar 1867. Proposta di un neostratotipo,
Giornale di Geologia, 28, 1–33, 1960.
Seman, S., Stockli, D. F., and McLean, N. M.: U-Pb geochronology of
grossular-andradite garnet, Chem. Geol., 460, 106–116,
https://doi.org/10.1016/j.chemgeo.2017.04.020, 2017.
Sindern, S., Havenith, V., Gerdes, A., Meyer, F. M., Adelmann, D., and
Hellmann, A.: Dating of anatase-forming diagenetic reactions in Rotliegend
sandstones of the North German Basin, Int. J. Earth Sci., 108, 1275–1292, https://doi.org/10.1007/s00531-019-01705-x, 2019.
Sylvester, P. (Ed.): Matrix effects in Laser ablation-ICP-MS, in: Laser
Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding
Issues, Mineralogical association of Canada, 67–78, 2008.
Van Driessche, A. E. S., Stawski, T., and Kellermeier, M.: Calcium sulfate
precipitation pathways in natural and engineering environments, Chem. Geol.,
530, 119274, https://doi.org/10.1016/j.chemgeo.2019.119274, 2019.
Vasiliev, I., Mezger, E. M., Lugli, S., Reichart, G. J., Manzi, V., and
Roveri, M.: How dry was the Mediterranean during the Messinian salinity
crisis?, Paleogeogr. Paleocl., 471, 120–133,
https://doi.org/10.1016/j.palaeo.2017.01.032, 2017.
Wafforn, S., Seman, S., Kyle, J. R., Stockli, D., Leys, C., Sonbait, D., and
Cloos, M.: Andradite garnet U–Pb geochronology of the big Gossan skarn,
Ertsberg-Grasberg mining district, Indonesia, Econ. Geol., 113, 769–778, https://doi.org/10.5382/econgeo.2018.4569, 2018.
Warren, J. K.: Evaporites: A Geological Compendium, Springer, Berlin, https://doi.org/10.1007/978-3-319-13512-0, 2016.
Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J. A., and Karpoff,
A. M.: Bacterially induced dolomite precipitation in anoxic culture
experiments, Geology, 28, 1091–1094, https://doi.org/10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2, 2000.
Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine,
P., and Taylor, E.: U–Pb geochronology of speleothems by MC-ICPMS, Quat.
Geochronol., 1, 208–221, https://doi.org/10.1016/j.quageo.2006.08.002, 2006.
Woodhead, J., Hellstrom, J., Pickering, R., Drysdale, R., Paul, B., and
Bajo, P.: U and Pb variability in older speleothems and strategies for their
chronology, Quat. Geochronol., 14, 105–113, https://doi.org/10.1016/j.quageo.2012.02.028, 2012.
Yan, S., Zhou, R. J., Niu, H. C., Feng, Y. X., Nguyen, A. D., Zhao, Z. H., Yang, W. B., Qian, D., and Zhao, J. X.: LA-MC-ICP-MS U–Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanic-hosted iron mineralization system, Awulale belt, Central Asia, Geol. Soc. Am. Bull., 132, 1031–1045, https://doi.org/10.1130/B35214.1, 2020.
Yang, Y. H., Wu, F. Y., Yang, J. H., Mitchell, R. H., Zhao, Z. F., Xie, L. W., Huang, C., Ma, Q., Yang, M., and Zhao, H.: U–Pb age determination of
schorlomite garnet by laser ablation inductively coupled plasma mass
spectrometry, J. Anal. Atom. Spectrom., 33, 231–239, https://doi.org/10.1039/c7ja00315c, 2018.
Zachariasse, W. J., van Hinsbergen, D. J. J., and Fortuin, A. R.: Mass wasting and uplift on Crete and Karpathos during the early Pliocene related to initiation of south Aegean left-lateral, strike-slip tectonics, Geol. Soc.
Am. Bull., 120, 976–993, https://doi.org/10.1130/B26175.1, 2008.
Short summary
U–Pb dating by the in situ laser ablation mass spectrometry (LA-ICPMS) technique requires reference materials of the same nature as the samples to be analysed. Here, we have explored the suitability of using carbonate materials as a reference for sulfates, since there is no sulfate reference material. The results we obtained are satisfactory, and thus, from now on, the sulfates can also be analysed.
U–Pb dating by the in situ laser ablation mass spectrometry (LA-ICPMS) technique requires...