Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-241-2023
https://doi.org/10.5194/gchron-5-241-2023
Research article
 | 
04 May 2023
Research article |  | 04 May 2023

ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers

W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann

Related authors

Mixed Signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025,https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Translating deposition rates into erosion rates with landscape evolution modelling
W. Marijn van der Meij
EGUsphere, https://doi.org/10.5194/egusphere-2024-1036,https://doi.org/10.5194/egusphere-2024-1036, 2024
Short summary
Evolutionary pathways in soil-landscape evolution models
W. Marijn van der Meij
SOIL, 8, 381–389, https://doi.org/10.5194/soil-8-381-2022,https://doi.org/10.5194/soil-8-381-2022, 2022
Short summary
Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns
W. Marijn van der Meij, Arnaud J. A. M. Temme, Jakob Wallinga, and Michael Sommer
SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020,https://doi.org/10.5194/soil-6-337-2020, 2020
Short summary
Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach
W. Marijn van der Meij, Arnaud J. A. M. Temme, Christian M. F. J. J. de Kleijn, Tony Reimann, Gerard B. M. Heuvelink, Zbigniew Zwoliński, Grzegorz Rachlewicz, Krzysztof Rymer, and Michael Sommer
SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016,https://doi.org/10.5194/soil-2-221-2016, 2016
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Interpreting cooling dates and histories from laser ablation in situ (U–Th–Sm) ∕ He thermochronometry: a modelling perspective
Christoph Glotzbach and Todd A. Ehlers
Geochronology, 6, 697–717, https://doi.org/10.5194/gchron-6-697-2024,https://doi.org/10.5194/gchron-6-697-2024, 2024
Short summary
Short communication: Nanoscale heterogeneity of U and Pb in baddeleyite from atom probe tomography – 238U series alpha recoil effects and U atom clustering
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology, 6, 607–619, https://doi.org/10.5194/gchron-6-607-2024,https://doi.org/10.5194/gchron-6-607-2024, 2024
Short summary
In situ rubidium–strontium geochronology of white mica in young metamafic and metasomatic rocks from Syros: testing the limits of laser-ablation triple-quadrupole inductively coupled plasma mass spectrometer mica dating using different anchoring approaches
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024,https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024,https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
A statistical analysis of zircon age distributions in volcanic, porphyry and plutonic rocks
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-25,https://doi.org/10.5194/gchron-2024-25, 2024
Revised manuscript accepted for GChron
Short summary

Cited articles

Alewell, C., Pitois, A., Meusburger, K., Ketterer, M., and Mabit, L.: 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand?, Earth-Sci. Rev., 172, 107–123, https://doi.org/10.1016/j.earscirev.2017.07.009, 2017. 
Amenu, G. G., Kumar, P., and Liang, X.-Z.: Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes, J. Climate, 18, 5024–5045, 2005. 
Anderson, R. S.: Particle trajectories on hillslopes: Implications for particle age and 10Be structure, J. Geophys. Res.-Earth, 120, 1626–1644, https://doi.org/10.1002/2015JF003479, 2015. 
Arata, L., Meusburger, K., Frenkel, E., A'Campo-Neuen, A., Iurian, A.-R., Ketterer, M. E., Mabit, L., and Alewell, C.: Modelling Deposition and Erosion rates with RadioNuclides (MODERN) – Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides, J. Environ. Radioactiv., 162–163, 45–55, https://doi.org/10.1016/j.jenvrad.2016.05.008, 2016a. 
Arata, L., Alewell, C., Frenkel, E., A'Campo-Neuen, A., Iurian, A.-R., Ketterer, M. E., Mabit, L., and Meusburger, K.: Modelling Deposition and Erosion rates with RadioNuclides (MODERN) – Part 2: A comparison of different models to convert 239+240Pu inventories into soil redistribution rates at unploughed sites, J. Environ. Radioactiv., 162–163, 97–106, https://doi.org/10.1016/j.jenvrad.2016.05.009, 2016b. 
Download
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.