Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-241-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-5-241-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers
W. Marijn van der Meij
CORRESPONDING AUTHOR
Institute of Geography, University of Cologne, Zülpicher Str.
45, 50674 Cologne, Germany
Arnaud J. A. M. Temme
Department of Geography and Geospatial Sciences, Kansas State
University, 920 N17th Street, Manhattan, KS, USA
Steven A. Binnie
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Tony Reimann
Institute of Geography, University of Cologne, Zülpicher Str.
45, 50674 Cologne, Germany
Related authors
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
W. Marijn van der Meij
EGUsphere, https://doi.org/10.5194/egusphere-2024-1036, https://doi.org/10.5194/egusphere-2024-1036, 2024
Short summary
Short summary
A soil-landscape evolution model was used to calculate hillslope erosion rates from OSL-based deposition rates through inverse modelling, with consideration of uncertainties in model input. The results show that erosion rates differ systematically from the deposition rates, highlighting important shortcomings of assessing land degradation through measurable deposition rates.
W. Marijn van der Meij
SOIL, 8, 381–389, https://doi.org/10.5194/soil-8-381-2022, https://doi.org/10.5194/soil-8-381-2022, 2022
Short summary
Short summary
The development of soils and landscapes can be complex due to changes in climate and land use. Computer models are required to simulate this complex development. This research presents a new method to analyze and visualize the results of these models. This is done with the use of evolutionary pathways (EPs), which describe how soil properties change in space and through time. I illustrate the EPs with examples from the field and give recommendations for further use of EPs in soil model studies.
Linda Andrea Elisabeth Maßon, Svenja Riedesel, Stephan Opitz, Anja Zander, Anthony Bell, Hanna Cieszynski, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-806, https://doi.org/10.5194/egusphere-2025-806, 2025
Short summary
Short summary
We evaluate different methods for the potassium (K) concentration determination in feldspars and the impact of the K-concentrations on dose rate calculations for feldspar luminescence dating. Our results show discrepancies between published and our measured K-concentrations. Therefore, we emphasise to measure K-concentrations via bulk measurements and single-grain techniques to obtain more accurate results.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
Short summary
Short summary
We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024, https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary
Short summary
This research applies luminescence dating methods to a plaggic anthrosol in the eastern Netherlands to understand the formation history of the soil. To achieve this, we combined both quartz and feldspar luminescence dating methods. We developed a new method for feldspar to largely avoid the problem occurring from poorly bleached grains by examining two different signals from a single grain. Through our research, we were able to reconstruct the timing and processes of plaggic anthrosol formation.
W. Marijn van der Meij
EGUsphere, https://doi.org/10.5194/egusphere-2024-1036, https://doi.org/10.5194/egusphere-2024-1036, 2024
Short summary
Short summary
A soil-landscape evolution model was used to calculate hillslope erosion rates from OSL-based deposition rates through inverse modelling, with consideration of uncertainties in model input. The results show that erosion rates differ systematically from the deposition rates, highlighting important shortcomings of assessing land degradation through measurable deposition rates.
Anna-Maartje de Boer, Wolfgang Schwanghart, Jürgen Mey, Basanta Raj Adhikari, and Tony Reimann
Geochronology, 6, 53–70, https://doi.org/10.5194/gchron-6-53-2024, https://doi.org/10.5194/gchron-6-53-2024, 2024
Short summary
Short summary
This study tested the application of single-grain feldspar luminescence for dating and reconstructing sediment dynamics of an extreme mass movement event in the Himalayan mountain range. Our analysis revealed that feldspar signals can be used to estimate the age range of the deposits if the youngest subpopulation from a sample is retrieved. The absence of clear spatial relationships with our bleaching proxies suggests that sediments were transported under extremely limited light exposure.
Jürgen Mey, Wolfgang Schwanghart, Anna-Maartje de Boer, and Tony Reimann
Geochronology, 5, 377–389, https://doi.org/10.5194/gchron-5-377-2023, https://doi.org/10.5194/gchron-5-377-2023, 2023
Short summary
Short summary
This study presents the results of an outdoor flume experiment to evaluate the effect of turbidity on the bleaching of fluvially transported sediment. Our main conclusions are that even small amounts of sediment lead to a substantial change in the intensity and frequency distribution of light within the suspension and that flow turbulence is an important prerequisite for bleaching grains during transport.
W. Marijn van der Meij
SOIL, 8, 381–389, https://doi.org/10.5194/soil-8-381-2022, https://doi.org/10.5194/soil-8-381-2022, 2022
Short summary
Short summary
The development of soils and landscapes can be complex due to changes in climate and land use. Computer models are required to simulate this complex development. This research presents a new method to analyze and visualize the results of these models. This is done with the use of evolutionary pathways (EPs), which describe how soil properties change in space and through time. I illustrate the EPs with examples from the field and give recommendations for further use of EPs in soil model studies.
Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
Short summary
Short summary
We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Moritz Nykamp, Jacob Hardt, Philipp Hoelzmann, Jens May, and Tony Reimann
E&G Quaternary Sci. J., 70, 1–17, https://doi.org/10.5194/egqsj-70-1-2021, https://doi.org/10.5194/egqsj-70-1-2021, 2021
Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
Short summary
Short summary
In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect
truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Cited articles
Alewell, C., Pitois, A., Meusburger, K., Ketterer, M., and Mabit, L.:
239+240Pu from “contaminant” to soil erosion tracer: Where do we stand?,
Earth-Sci. Rev., 172, 107–123,
https://doi.org/10.1016/j.earscirev.2017.07.009, 2017.
Amenu, G. G., Kumar, P., and Liang, X.-Z.: Interannual variability of
deep-layer hydrologic memory and mechanisms of its influence on surface
energy fluxes, J. Climate, 18, 5024–5045, 2005.
Anderson, R. S.: Particle trajectories on hillslopes: Implications for
particle age and 10Be structure, J. Geophys. Res.-Earth, 120, 1626–1644, https://doi.org/10.1002/2015JF003479, 2015.
Arata, L., Meusburger, K., Frenkel, E., A'Campo-Neuen, A., Iurian, A.-R.,
Ketterer, M. E., Mabit, L., and Alewell, C.: Modelling Deposition and
Erosion rates with RadioNuclides (MODERN) – Part 1: A new conversion model
to derive soil redistribution rates from inventories of fallout
radionuclides, J. Environ. Radioactiv., 162–163, 45–55,
https://doi.org/10.1016/j.jenvrad.2016.05.008, 2016a.
Arata, L., Alewell, C., Frenkel, E., A'Campo-Neuen, A., Iurian, A.-R.,
Ketterer, M. E., Mabit, L., and Meusburger, K.: Modelling Deposition and
Erosion rates with RadioNuclides (MODERN) – Part 2: A comparison of
different models to convert 239+240Pu inventories into soil redistribution
rates at unploughed sites, J. Environ. Radioactiv., 162–163,
97–106, https://doi.org/10.1016/j.jenvrad.2016.05.009, 2016b.
Arnold, L. J., Roberts, R. G., Galbraith, R. F., and DeLong, S. B.: A
revised burial dose estimation procedure for optical dating of youngand
modern-age sediments, Quat. Geochronol., 4, 306–325,
https://doi.org/10.1016/j.quageo.2009.02.017, 2009.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be
and 26Al benchmarked against geological calibration data, Quat.
Geochronol., 39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001,
2017.
Bierman, P. and Steig, E. J.: Estimating rates of denudation using
cosmogenic isotope abundances in sediment, Earth Surf. Proc.
Land., 21, 125–139, https://doi.org/10.1002/(SICI)1096-9837(199602)21:2<125::AID-ESP511>3.0.CO;2-8, 1996.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N.,
Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological
calibration of spallation production rates in the CRONUS-Earth project,
Quat. Geochronol., 31, 188–198,
https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Braucher, R., Bourlès, D., Merchel, S., Vidal Romani, J.,
Fernadez-Mosquera, D., Marti, K., Léanni, L., Chauvet, F., Arnold, M.,
Aumaître, G., and Keddadouche, K.: Determination of muon attenuation
lengths in depth profiles from in situ produced cosmogenic nuclides, Nucl.
Instrum. Meth. B, 294, 484–490,
https://doi.org/10.1016/j.nimb.2012.05.023, 2013.
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F.:
Denudation rates determined from the accumulation of in situ-produced 10Be
in the Luquillo Experimental Forest, Puerto Rico, Earth Planet.
Sc. Lett., 129, 193–202,
https://doi.org/10.1016/0012-821X(94)00249-X, 1995.
Brown, E. T., Colin, F., and Bourlès, D. L.: Quantitative evaluation of
soil processes using in situ-produced cosmogenic nuclides, C.R.
Geosci., 335, 1161–1171, https://doi.org/10.1016/j.crte.2003.10.004,
2003.
Brubaker, S. C., Holzhey, C. S., and Brasher, B. R.: Estimating the
water-dispersible clay content of soils, Soil Sci. Soc. Am.
J., 56, 1226–1232, https://doi.org/10.2136/sssaj1992.03615995005600040036x, 1992.
Calitri, F., Sommer, M., Norton, K., Temme, A., Brandová, D., Portes,
R., Christl, M., Ketterer, M. E., and Egli, M.: Tracing the temporal
evolution of soil redistribution rates in an agricultural landscape using
239+240Pu and 10Be, Earth Surf. Proc. Land., 44, 1783–1798,
https://doi.org/10.1002/esp.4612, 2019.
Campforts, B., Vanacker, V., Vanderborght, J., Baken, S., Smolders, E., and
Govers, G.: Simulating the mobility of meteoric 10Be in the landscape
through a coupled soil-hillslope model (Be2D), Earth Planet. Sc.
Lett., 439, 143–157, https://doi.org/10.1016/j.epsl.2016.01.017, 2016.
Canti, M. G.: Earthworm Activity and Archaeological Stratigraphy: A Review
of Products and Processes, J. Archaeol. Sci., 30, 135–148,
https://doi.org/10.1006/jasc.2001.0770, 2003.
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D.:
Determination of the 10Be half-life by multicollector ICP-MS and liquid
scintillation counting, Nucl. Instrum. Meth. B, 268, 192–199,
https://doi.org/10.1016/j.nimb.2009.09.012, 2010.
Crusius, J. and Kenna, T. C.: Ensuring confidence in radionuclide-based
sediment chronologies and bioturbation rates, Estuar. Coast. Shelf
S., 71, 537–544, https://doi.org/10.1016/j.ecss.2006.09.006, 2007.
Cunningham, A. C. and Wallinga, J.: Realizing the potential of fluvial
archives using robust OSL chronologies, Quat. Geochronol., 12,
98–106, https://doi.org/10.1016/j.quageo.2012.05.007, 2012.
Dashtgard, S. E., Gingras, M. K., and Pemberton, S. G.: Grain-size controls
on the occurrence of bioturbation, Palaeogeogr. Palaeocl., 257, 224–243, https://doi.org/10.1016/j.palaeo.2007.10.024,
2008.
Dotterweich, M.: The history of soil erosion and fluvial deposits in small
catchments of central Europe: Deciphering the long-term interaction between
humans and the environment – A review, Geomorphology, 101, 192–208,
https://doi.org/10.1016/j.geomorph.2008.05.023, 2008.
Duller, G. A. T.: Single-grain optical dating of Quaternary sediments: why
aliquot size matters in luminescence dating, Boreas, 37, 589–612,
https://doi.org/10.1111/j.1502-3885.2008.00051.x, 2008.
Dunai, T. J.: Cosmogenic nuclides: principles, concepts and applications in
the earth surface sciences, Cambridge University Press, https://doi.org/10.1017/CBO9780511804519, 2010.
Durcan, J. A., King, G. E., and Duller, G. A.: DRAC: Dose Rate and Age
Calculator for trapped charge dating, Quat. Geochronol., 28, 54–61,
2015.
Ellis, B. and Foth, H.: Soil fertility, CRC Press, Boca Raton, Florida, https://doi.org/10.1201/9780203739341,
1996.
Evans, D., Rodés, Á., and Tye, A.: The sensitivity of cosmogenic
radionuclide analysis to soil bulk density: Implications for soil formation
rates, Eur. J. Soil Sci., 72, 174–182,
https://doi.org/10.1111/ejss.12982, 2021.
Freeman, T. G.: Calculating catchment area with divergent flow based on a
regular grid, Comput. Geosci., 17, 413–422,
https://doi.org/10.1016/0098-3004(91)90048-I, 1991.
Fuchs, M. and Lang, A.: Luminescence dating of hillslope deposits – a
review, Geomorphology, 109, 17–26,
https://doi.org/10.1016/j.geomorph.2008.08.025, 2009.
Furbish, D. J., Roering, J. J., Almond, P., and Doane, T. H.: Soil particle
transport and mixing near a hillslope crest: 1. Particle ages and residence
times, J. Geophys. Res.-Earth, 123, 1052–1077,
https://doi.org/10.1029/2017JF004315, 2018a.
Furbish, D. J., Roering, J. J., Keen-Zebert, A., Almond, P., Doane, T. H.,
and Schumer, R.: Soil particle transport and mixing near a hillslope crest:
2. Cosmogenic nuclide and optically stimulated luminescence tracers, J. Geophys. Res.-Earth, 123, 1078–1093,
https://doi.org/10.1029/2017JF004316, 2018b.
Gabet, E. J., Reichman, O. J., and Seabloom, E. W.: The effects of
bioturbation on soil processes and sediment transport, Annu. Rev.
Earth Planet. Sc., 31, 249–273,
https://doi.org/10.1146/annurev.earth.31.100901.141314, 2003.
Gliganic, L. A., May, J.-H., and Cohen, T. J.: All mixed up: Using
single-grain equivalent dose distributions to identify phases of pedogenic
mixing on a dryland alluvial fan, Quaternary Int., 362, 23–33,
https://doi.org/10.1016/j.quaint.2014.07.040, 2015.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides:
theory and application, Quaternary Sci. Rev., 20, 1475–1560,
https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Graly, J. A., Bierman, P. R., Reusser, L. J., and Pavich, M. J.: Meteoric
10Be in soil profiles – A global meta-analysis, Geochim. Cosmochim.
Ac., 74, 6814–6829, https://doi.org/10.1016/j.gca.2010.08.036, 2010.
Granger, D. E., Kirchner, J. W., and Finkel, R.: Spatially averaged
long-term erosion rates measured from in situ-produced cosmogenic nuclides
in alluvial sediment, J. Geol., 104, 249–257, 1996.
Gray, H. J., Jain, M., Sawakuchi, A. O., Mahan, S. A., and Tucker, G. E.:
Luminescence as a sediment tracer and provenance tool, Rev.
Geophys., 57, 987–1017, 2019.
Gray, H. J., Keen-Zebert, A., Furbish, D. J., Tucker, G. E., and Mahan, S.
A.: Depth-dependent soil mixing persists across climate zones, P.
Natl. Acad. Sci. USA, 117, 8750–8756,
https://doi.org/10.1073/pnas.1914140117, 2020.
Gregory, P. J.: Roots, rhizosphere and soil: the route to a better
understanding of soil science?, Eur. J. Soil Sci., 57, 2–12,
https://doi.org/10.1111/j.1365-2389.2005.00778.x, 2006.
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: The
soil production function and landscape equilibrium, Nature, 388, 358–361,
https://doi.org/10.1038/41056, 1997.
Heimsath, A. M., Chappell, J., Spooner, N. A., and Questiaux, D. G.:
Creeping soil, Geology, 30, 111–114, 2002.
Hippe, K.: Constraining processes of landscape change with combined in situ
cosmogenic 14C-10Be analysis, Quaternary Sci. Rev., 173, 1–19,
https://doi.org/10.1016/j.quascirev.2017.07.020, 2017.
Hippe, K., Jansen, J. D., Skov, D. S., Lupker, M., Ivy-Ochs, S., Kober, F.,
Zeilinger, G., Capriles, J. M., Christl, M., Maden, C., Vockenhuber, C., and
Egholm, D. L.: Cosmogenic in situ 14C-10Be reveals abrupt Late Holocene soil
loss in the Andean Altiplano, Nat. Commun., 12, 2546,
https://doi.org/10.1038/s41467-021-22825-6, 2021.
Ivy-Ochs, S. and Kober, F.: Surface exposure dating with cosmogenic nuclides, E&G Quaternary Sci. J., 57, 179–209, https://doi.org/10.3285/eg.57.1-2.7, 2008.
Jagercikova, M., Cornu, S., Bourlès, D., Antoine, P., Mayor, M., and
Guillou, V.: Understanding long-term soil processes using meteoric 10Be: A
first attempt on loessic deposits, Quat. Geochronol., 27, 11–21,
https://doi.org/10.1016/j.quageo.2014.12.003, 2015.
Johnson, M. O., Mudd, S. M., Pillans, B., Spooner, N. A., Keith Fifield, L.,
Kirkby, M. J., and Gloor, M.: Quantifying the rate and depth dependence of
bioturbation based on optically-stimulated luminescence (OSL) dates and
meteoric 10Be, Earth Surf. Proc. Land., 39, 1188–1196,
https://doi.org/10.1002/esp.3520, 2014.
Kappler, C., Kaiser, K., Tanski, P., Klos, F., Fülling, A., Mrotzek, A.,
Sommer, M., and Bens, O.: Stratigraphy and age of colluvial deposits
indicating Late Holocene soil erosion in northeastern Germany, CATENA, 170,
224–245, https://doi.org/10.1016/j.catena.2018.06.010, 2018.
Kappler, C., Kaiser, K., Küster, M., Nicolay, A., Fülling, A., Bens,
O., and Raab, T.: Late Pleistocene and Holocene terrestrial
geomorphodynamics and soil formation in northeastern Germany: A review of
geochronological data, Phys. Geogr., 1–28,
https://doi.org/10.1080/02723646.2019.1573621, 2019.
Ketterer, M. E., Hafer, K. M., Jones, V. J., and Appleby, P. G.: Rapid
dating of recent sediments in Loch Ness: inductively coupled plasma mass
spectrometric measurements of global fallout plutonium, Sci. Total Environ.,
322, 221–229, https://doi.org/10.1016/j.scitotenv.2003.09.016, 2004.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K.,
Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., and Von Gostomski, C.
L.: A new value for the half-life of 10Be by heavy-ion elastic recoil
detection and liquid scintillation counting, Nucl. Instrum. Meth. B,
268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Kristensen, J., Thomsen, K., Murray, A., Buylaert, J.-P., Jain, M., and
Breuning-Madsen, H.: Quantification of termite bioturbation in a savannah
ecosystem: Application of OSL dating, Quat. Geochronol., 30, 334–341,
https://doi.org/10.1016/j.quageo.2015.02.026, 2015.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104,
424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lifton, N., Sato, T., and Dunai, T. J.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sc. Lett., 386, 149–160,
https://doi.org/10.1016/j.epsl.2013.10.052, 2014.
Lupker, M., Hippe, K., Wacker, L., Kober, F., Maden, C., Braucher, R.,
Bourlès, D., Romani, J. R. V., and Wieler, R.: Depth-dependence of the
production rate of in situ 14C in quartz from the Leymon High core, Spain,
Quat. Geochronol., 28, 80–87,
https://doi.org/10.1016/j.quageo.2015.04.004, 2015.
Madsen, A. T., Murray, A. S., Andersen, T. J., Pejrup, M., and
Breuning-Madsen, H.: Optically stimulated luminescence dating of young
estuarine sediments: a comparison with 210Pb and 137Cs dating, Mar.
Geol., 214, 251–268, https://doi.org/10.1016/j.margeo.2004.10.034, 2005.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate
of Europe during the Holocene: a gridded pollen-based reconstruction and its
multi-proxy evaluation, Quaternary Sci. Rev., 112, 109–127,
https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.
Minasny, B., Finke, P., Stockmann, U., Vanwalleghem, T., and McBratney, A.
B.: Resolving the integral connection between pedogenesis and landscape
evolution, Earth-Sci. Rev., 150, 102–120,
https://doi.org/10.1016/j.earscirev.2015.07.004, 2015.
Minasny, B., Stockmann, U., Hartemink, A. E., and McBratney, A. B.:
Measuring and Modelling Soil Depth Functions, in: Digital Soil
Morphometrics, edited by: Hartemink, A. E. and Minasny, B., Springer
International Publishing, Cham, 225–240,
https://doi.org/10.1007/978-3-319-28295-4_14, 2016.
Mohren, J., Binnie, S. A., Rink, G. M., Knödgen, K., Miranda, C., Tilly, N., and Dunai, T. J.: A photogrammetry-based approach for soil bulk density measurements with an emphasis on applications to cosmogenic nuclide analysis, Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, 2020.
Montgomery, D. R.: Soil erosion and agricultural sustainability, P. Natl. Acad. Sci. USA, 104, 13268–13272,
https://doi.org/10.1073/pnas.0611508104, 2007.
Mudd, S. M.: Detection of transience in eroding landscapes, Earth Surf.
Proc. Land., 42, 24–41, https://doi.org/10.1002/esp.3923, 2017.
Olley, J. M., Murray, A., and Roberts, R. G.: The effects of disequilibria
in the uranium and thorium decay chains on burial dose rates in fluvial
sediments, Quaternary Sci. Rev., 15, 751–760,
https://doi.org/10.1016/0277-3791(96)00026-1, 1996.
Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K.,
Flores-Renteria, D., Hermans, K., Jobbagy, E., Kurz, W., Li, D., Sonwa, D.
J., and Stringer, L.: Land Degradation, in: Climate change and land: an IPCC
special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., in press, 2019.
Ott, R. F., Gallen, S. F., and Granger, D. E.: Cosmogenic nuclide weathering biases: corrections and potential for denudation and weathering rate measurements, Geochronology, 4, 455–470, https://doi.org/10.5194/gchron-4-455-2022, 2022.
Phillips, W. M.: Estimating cumulative soil accumulation rates with in
situ-produced cosmogenic nuclide depth profiles, Nucl. Instrum.
Meth. B, 172, 817–821, https://doi.org/10.1016/S0168-583X(00)00125-7, 2000.
Pierik, H. J., Van Lanen, R. J., Gouw-Bouman, M. T., Groenewoudt, B. J.,
Wallinga, J., and Hoek, W. Z.: Controls on late-Holocene drift-sand
dynamics: The dominant role of human pressure in the Netherlands,
Holocene, 28, 1361–1381, https://doi.org/10.1177/0959683618777052, 2018.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates
for luminescence and ESR dating: large depths and long-term time variations,
Radiat. Meas., 23, 497–500,
https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Riebe, C. S., Kirchner, J. W., and Granger, D. E.: Quantifying quartz
enrichment and its consequences for cosmogenic measurements of erosion rates
from alluvial sediment and regolith, Geomorphology, 40, 15–19,
https://doi.org/10.1016/S0169-555X(01)00031-9, 2001.
Ritchie, J. C. and McHenry, J. R.: Application of radioactive fallout
cesium-137 for measuring soil erosion and sediment accumulation rates and
patterns: a review, J. Environ. Qual., 19, 215–233,
https://doi.org/10.2134/jeq1990.00472425001900020006x, 1990.
Roering, J. J.: Soil creep and convex-upward velocity profiles: Theoretical
and experimental investigation of disturbance-driven sediment transport on
hillslopes, Earth Surf. Proc. Land., 29, 1597–1612,
https://doi.org/10.1002/esp.1112, 2004.
Román-Sánchez, A., Reimann, T., Wallinga, J., and Vanwalleghem, T.:
Bioturbation and erosion rates along the soil-hillslope conveyor belt, part
1: insights from single-grain feldspar luminescence, Earth Surf. Proc.
Land., 44, 2051–2065, https://doi.org/10.1002/esp.4628, 2019a.
Román-Sánchez, A., Laguna, A., Reimann, T., Giraldez, J., Peña,
A., and Vanwalleghem, T.: Bioturbation and erosion rates along the
soil-hillslope conveyor belt, part 2: quantification using an analytical
solution of the diffusion-advection equation, Earth Surf. Proc.
Land., 44, 2066–2080, https://doi.org/10.1002/esp.4626, 2019b.
Rothacker, L., Dosseto, A., Francke, A., Chivas, A. R., Vigier, N.,
Kotarba-Morley, A. M., and Menozzi, D.: Impact of climate change and human
activity on soil landscapes over the past 12,300 years, Sci. Rep., 8, 247,
https://doi.org/10.1038/s41598-017-18603-4, 2018.
Šamonil, P., Daněk, P., Schaetzl, R., Vašíčková,
I., and Valtera, M.: Soil mixing and genesis as affected by tree uprooting
in three temperate forests, Eur. J. Soil Sci., 66, 589–603,
https://doi.org/10.1111/ejss.12245, 2015.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12,000 years
of human land use, P. Natl. Acad. Sci. USA, 114, 9575–9580,
https://doi.org/10.1073/pnas.1706103114, 2017.
Saunders, I. and Young, A.: Rates of surface processes on slopes, slope
retreat and denudation, Earth Surf. Proc. Land., 8, 473–501,
https://doi.org/10.1002/esp.3290080508, 1983.
Schaller, M., Ehlers, T. A., Blum, J. D., and Kallenberg, M. A.: Quantifying
glacial moraine age, denudation, and soil mixing with cosmogenic nuclide
depth profiles, J. Geophys. Res.-Earth, 114, F01012,
https://doi.org/10.1029/2007JF000921, 2009.
Sellwood, E. L., Guralnik, B., Kook, M., Prasad, A. K., Sohbati, R., Hippe,
K., Wallinga, J., and Jain, M.: Optical bleaching front in bedrock revealed
by spatially-resolved infrared photoluminescence, Sci. Rep., 9, 2611,
https://doi.org/10.1038/s41598-019-38815-0, 2019.
Sommer, M., Gerke, H. H., and Deumlich, D.: Modelling soil landscape genesis
– A “time split” approach for hummocky agricultural landscapes,
Geoderma, 145, 480–493, https://doi.org/10.1016/j.geoderma.2008.01.012,
2008.
Stockmann, U., Minasny, B., Pietsch, T. J., and McBratney, A. B.:
Quantifying processes of pedogenesis using optically stimulated
luminescence, Eur. J. Soil Sci., 64, 145–160,
https://doi.org/10.1111/ejss.12012, 2013.
Temme, A. J. A. M. and Vanwalleghem, T.: LORICA – A new model for linking
landscape and soil profile evolution: development and sensitivity analysis,
Comput. Geosci., 90, 131–143,
https://doi.org/10.1016/j.cageo.2015.08.004, 2016.
Temme, A. J. A. M., Claessens, L., Veldkamp, A., and Schoorl, J. M.:
Evaluating choices in multi-process landscape evolution models,
Geomorphology, 125, 271–281,
https://doi.org/10.1016/j.geomorph.2010.10.007, 2011.
Temme, A. J. A. M., Keiler, M., Karssenberg, D., and Lang, A.: Complexity
and non-linearity in earth surface processes – concepts, methods and
applications, Earth Surf. Proc. Land., 40, 1270–1274,
https://doi.org/10.1002/esp.3712, 2015.
Temme, A. J. A. M., Armitage, J., Attal, M., van Gorp, W., Coulthard, T. J.,
and Schoorl, J. M.: Developing, choosing and using landscape evolution
models to inform field-based landscape reconstruction studies, Earth Surf.
Proc. Land., 42, 2167–2183, https://doi.org/10.1002/esp.4162,
2017.
Tranter, G., Minasny, B., McBratney, A. B., Murphy, B., McKenzie, N. J.,
Grundy, M., and Brough, D.: Building and testing conceptual and empirical
models for predicting soil bulk density, Soil Use Manage., 23,
437–443, https://doi.org/10.1111/j.1475-2743.2007.00092.x, 2007.
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth
Surf. Proc. Land., 35, 28–50,
https://doi.org/10.1002/esp.1952, 2010.
van der Meij, W. M.: Evolutionary pathways in soil-landscape evolution models, SOIL, 8, 381–389, https://doi.org/10.5194/soil-8-381-2022, 2022.
van der Meij, W. M. and Temme, A. J. A. M.: ChronoLorica v1.0 (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7875033, 2022.
van der Meij, W. M., Temme, A. J. A. M., de Kleijn, C. M. F. J. J., Reimann, T., Heuvelink, G. B. M., Zwoliński, Z., Rachlewicz, G., Rymer, K., and Sommer, M.: Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach, SOIL, 2, 221–240, https://doi.org/10.5194/soil-2-221-2016, 2016.
Van der Meij, W. M., Temme, A., Wallinga, J., Hierold, W., and Sommer, M.:
Topography reconstruction of eroding landscapes – A case study from a
hummocky ground moraine (CarboZALF-D), Geomorphology, 295, 758–772,
https://doi.org/10.1016/j.geomorph.2017.08.015, 2017.
Van der Meij, W. M., Temme, A. J. A. M., Lin, H. S., Gerke, H. H., and
Sommer, M.: On the role of hydrologic processes in soil and landscape
evolution modeling: concepts, complications and partial solutions,
Earth-Sci. Rev., 185, 1088–1106,
https://doi.org/10.1016/j.earscirev.2018.09.001, 2018.
Van der Meij, W. M., Reimann, T., Vornehm, V. K., Temme, A. J., Wallinga,
J., van Beek, R., and Sommer, M.: Reconstructing rates and patterns of
colluvial soil redistribution in agrarian (hummocky) landscapes, Earth
Surf. Proc. Land., 44, 2408–2422,
https://doi.org/10.1002/esp.4671, 2019.
van der Meij, W. M., Temme, A. J. A. M., Wallinga, J., and Sommer, M.: Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns, SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, 2020.
Van Oost, K., Govers, G., and Van Muysen, W.: A process-based conversion
model for caesium-137 derived erosion rates on agricultural land: an
integrated spatial approach, Earth Surf. Proc. Land., 28,
187–207, https://doi.org/10.1002/esp.446, 2003.
Van Oost, K., Govers, G., Quine, T. A., Heckrath, G., Olesen, J. E., De
Gryze, S., and Merckx, R.: Landscape-scale modeling of carbon cycling under
the impact of soil redistribution: The role of tillage erosion, Global
Biogeochem. Cy., 19, GB4014, https://doi.org/10.1029/2005GB002471, 2005.
Walker, M.: Quaternary Dating Methods, John Wiley and Sons, Chichester, 286
pp., 2005.
Wallinga, J., Sevink, J., van Mourik, J. M., and Reimann, T.: Luminescence
dating of soil archives, in: Reading the Soil Archives, edited by: van Mourik, J. M. and van der Meer, J. J. M., Vol. 18, Elsevier
Ltd, Academic Press, 115–162, https://doi.org/10.1016/B978-0-444-64108-3.00004-5, 2019.
Wilken, F., Ketterer, M., Koszinski, S., Sommer, M., and Fiener, P.: Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling, SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, 2020.
Wilkinson, M. T. and Humphreys, G. S.: Exploring pedogenesis via
nuclide-based soil production rates and OSL-based bioturbation rates, Soil
Res., 43, 767, https://doi.org/10.1071/SR04158, 2005.
Wilkinson, M. T., Richards, P. J., and Humphreys, G. S.: Breaking ground:
Pedological, geological, and ecological implications of soil bioturbation,
Earth-Sci. Rev., 97, 257–272,
https://doi.org/10.1016/j.earscirev.2009.09.005, 2009.
Willenbring, J. K. and von Blanckenburg, F.: Meteoric cosmogenic
Beryllium-10 adsorbed to river sediment and soil: Applications for
Earth-surface dynamics, Earth-Sci. Rev., 98, 105–122,
https://doi.org/10.1016/j.earscirev.2009.10.008, 2010.
Wittmann, H., von Blanckenburg, F., Bouchez, J., Dannhaus, N., Naumann, R.,
Christl, M., and Gaillardet, J.: The dependence of meteoric 10Be
concentrations on particle size in Amazon River bed sediment and the
extraction of reactive ratios, Chem. Geol., 318–319,
126–138, https://doi.org/10.1016/j.chemgeo.2012.04.031, 2012.
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil...