Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-263-2023
https://doi.org/10.5194/gchron-5-263-2023
Short communication/technical note
 | 
17 May 2023
Short communication/technical note |  | 17 May 2023

Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions

Alex Lipp and Pieter Vermeesch

Related authors

Broken 206Pb/238U carbonate chronometers and 207Pb/235U fixes
Pieter Vermeesch, Noah McLean, Anton Vaks, Tzahi Golan, Sebastian F. M. Breitenbach, and Randall Parris
EGUsphere, https://doi.org/10.5194/egusphere-2025-432,https://doi.org/10.5194/egusphere-2025-432, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
Origin of Great Unconformity Obscured by Thermochronometric Uncertainty
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23,https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022,https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Interpreting cooling dates and histories from laser ablation in situ (U–Th–Sm) ∕ He thermochronometry: a modelling perspective
Christoph Glotzbach and Todd A. Ehlers
Geochronology, 6, 697–717, https://doi.org/10.5194/gchron-6-697-2024,https://doi.org/10.5194/gchron-6-697-2024, 2024
Short summary
Short communication: Nanoscale heterogeneity of U and Pb in baddeleyite from atom probe tomography – 238U series alpha recoil effects and U atom clustering
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology, 6, 607–619, https://doi.org/10.5194/gchron-6-607-2024,https://doi.org/10.5194/gchron-6-607-2024, 2024
Short summary
In situ rubidium–strontium geochronology of white mica in young metamafic and metasomatic rocks from Syros: testing the limits of laser-ablation triple-quadrupole inductively coupled plasma mass spectrometer mica dating using different anchoring approaches
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024,https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024,https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
A statistical analysis of zircon age distributions in volcanic, porphyry and plutonic rocks
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-25,https://doi.org/10.5194/gchron-2024-25, 2024
Revised manuscript accepted for GChron
Short summary

Cited articles

Amidon, W. H., Burbank, D. W., and Gehrels, G. E.: Construction of detrital mineral populations: insights from mixing of U–Pb zircon ages in Himalayan rivers, Basin Res., 17, 463–485, https://doi.org/10.1111/j.1365-2117.2005.00279.x, 2005. a
Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G.: Iterative Bregman Projections for Regularized Transportation Problems, SIAM J. Sci. Comput., 2, A1111–A1138, https://doi.org/10.1137/141000439, 2015. a
Berry, R. F., Jenner, G. A., Meffre, S., and Tubrett, M. N.: A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?, Earth Planet. Sc. Lett., 192, 207–222, https://doi.org/10.1016/S0012-821X(01)00436-8, 2001. a
Cawood, P., Hawkesworth, C., and Dhuime, B.: Detrital zircon record and tectonic setting, Geology, 40, 875–878, https://doi.org/10.1130/G32945.1, 2012. a
Condie, K. C., Belousova, E., Griffin, W. L., and Sircombe, K. N.: Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra, Gondwana Res., 15, 228–242, https://doi.org/10.1016/j.gr.2008.06.001, 2009. a
Download
Short summary
We propose using the Wasserstein-2 distance (W2) as an alternative to the widely used Kolmogorov–Smirnov (KS) statistic for analysing distributional data in geochronology. W2 measures the horizontal distance between observations, while KS measures vertical differences in cumulative distributions. Using case studies, we find that W2 is preferable in scenarios where the absolute age differences in observations provide important geological information. W2 has been added to the R package IsoplotR.
Share