Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-263-2023
https://doi.org/10.5194/gchron-5-263-2023
Short communication/technical note
 | 
17 May 2023
Short communication/technical note |  | 17 May 2023

Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions

Alex Lipp and Pieter Vermeesch

Related authors

Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
Origin of Great Unconformity Obscured by Thermochronometric Uncertainty
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23,https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022,https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary
Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers
Yang Li and Pieter Vermeesch
Geochronology, 3, 415–420, https://doi.org/10.5194/gchron-3-415-2021,https://doi.org/10.5194/gchron-3-415-2021, 2021
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Short communication: Resolving the discrepancy between U–Pb age estimates for the “Likhall” bed, a key level in the Ordovician timescale
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024,https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary
Navigating the complexity of detrital rutile provenance: methodological insights from the Neotethys Orogen in Anatolia
Megan A. Mueller, Alexis Licht, Andreas Möller, Cailey B. Condit, Julie C. Fosdick, Faruk Ocakoğlu, and Clay Campbell
Geochronology, 6, 265–290, https://doi.org/10.5194/gchron-6-265-2024,https://doi.org/10.5194/gchron-6-265-2024, 2024
Short summary
Solving crustal heat transfer for thermochronology using physics-informed neural networks
Ruohong Jiao, Shengze Cai, and Jean Braun
Geochronology, 6, 227–245, https://doi.org/10.5194/gchron-6-227-2024,https://doi.org/10.5194/gchron-6-227-2024, 2024
Short summary
Minimizing the effects of Pb loss in detrital and igneous U–Pb zircon geochronology by CA-LA-ICP-MS
Erin E. Donaghy, Michael P. Eddy, Federico Moreno, and Mauricio Ibañez-Mejia
Geochronology, 6, 89–106, https://doi.org/10.5194/gchron-6-89-2024,https://doi.org/10.5194/gchron-6-89-2024, 2024
Short summary

Cited articles

Amidon, W. H., Burbank, D. W., and Gehrels, G. E.: Construction of detrital mineral populations: insights from mixing of U–Pb zircon ages in Himalayan rivers, Basin Res., 17, 463–485, https://doi.org/10.1111/j.1365-2117.2005.00279.x, 2005. a
Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G.: Iterative Bregman Projections for Regularized Transportation Problems, SIAM J. Sci. Comput., 2, A1111–A1138, https://doi.org/10.1137/141000439, 2015. a
Berry, R. F., Jenner, G. A., Meffre, S., and Tubrett, M. N.: A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?, Earth Planet. Sc. Lett., 192, 207–222, https://doi.org/10.1016/S0012-821X(01)00436-8, 2001. a
Cawood, P., Hawkesworth, C., and Dhuime, B.: Detrital zircon record and tectonic setting, Geology, 40, 875–878, https://doi.org/10.1130/G32945.1, 2012. a
Condie, K. C., Belousova, E., Griffin, W. L., and Sircombe, K. N.: Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra, Gondwana Res., 15, 228–242, https://doi.org/10.1016/j.gr.2008.06.001, 2009. a
Download
Short summary
We propose using the Wasserstein-2 distance (W2) as an alternative to the widely used Kolmogorov–Smirnov (KS) statistic for analysing distributional data in geochronology. W2 measures the horizontal distance between observations, while KS measures vertical differences in cumulative distributions. Using case studies, we find that W2 is preferable in scenarios where the absolute age differences in observations provide important geological information. W2 has been added to the R package IsoplotR.