Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-263-2023
https://doi.org/10.5194/gchron-5-263-2023
Short communication/technical note
 | 
17 May 2023
Short communication/technical note |  | 17 May 2023

Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions

Alex Lipp and Pieter Vermeesch

Related authors

Broken 206Pb/238U carbonate chronometers and 207Pb/235U fixes
Pieter Vermeesch, Noah McLean, Anton Vaks, Tzahi Golan, Sebastian F. M. Breitenbach, and Randall Parris
EGUsphere, https://doi.org/10.5194/egusphere-2025-432,https://doi.org/10.5194/egusphere-2025-432, 2025
Short summary
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Technical note: In situ U–Th–He dating by 4He ∕ 3He laser microprobe analysis
Pieter Vermeesch, Yuntao Tian, Jae Schwanethal, and Yannick Buret
Geochronology, 5, 323–332, https://doi.org/10.5194/gchron-5-323-2023,https://doi.org/10.5194/gchron-5-323-2023, 2023
Short summary
Origin of Great Unconformity Obscured by Thermochronometric Uncertainty
Matthew Fox, Adam G. G. Smith, Pieter Vermeesch, Kerry Gallagher, and Andrew Carter
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-23,https://doi.org/10.5194/gchron-2022-23, 2022
Publication in GChron not foreseen
Short summary
An algorithm for U–Pb geochronology by secondary ion mass spectrometry
Pieter Vermeesch
Geochronology, 4, 561–576, https://doi.org/10.5194/gchron-4-561-2022,https://doi.org/10.5194/gchron-4-561-2022, 2022
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
New controls on sedimentation and climate in the central equatorial Pacific Ocean
Allison W. Jacobel, Kassandra M. Costa, Lily M. Applebaum, and Serena Conde
Geochronology, 7, 123–138, https://doi.org/10.5194/gchron-7-123-2025,https://doi.org/10.5194/gchron-7-123-2025, 2025
Short summary
Measuring varve thickness using micro-computed tomography (µCT): a comparison with thin section
Marie-Eugénie Meusseunan Pascale Jamba, Pierre Francus, Antoine Gagnon-Poiré, and Guillaume St-Onge
Geochronology, 7, 83–111, https://doi.org/10.5194/gchron-7-83-2025,https://doi.org/10.5194/gchron-7-83-2025, 2025
Short summary
Controls on zircon age distributions in volcanic, porphyry and plutonic rocks
Chetan Nathwani, Dawid Szymanowski, Lorenzo Tavazzani, Sava Markovic, Adrianna L. Virmond, and Cyril Chelle-Michou
Geochronology, 7, 15–33, https://doi.org/10.5194/gchron-7-15-2025,https://doi.org/10.5194/gchron-7-15-2025, 2025
Short summary
Interpreting cooling dates and histories from laser ablation in situ (U–Th–Sm) ∕ He thermochronometry: a modelling perspective
Christoph Glotzbach and Todd A. Ehlers
Geochronology, 6, 697–717, https://doi.org/10.5194/gchron-6-697-2024,https://doi.org/10.5194/gchron-6-697-2024, 2024
Short summary
Short communication: Nanoscale heterogeneity of U and Pb in baddeleyite from atom probe tomography – 238U series alpha recoil effects and U atom clustering
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology, 6, 607–619, https://doi.org/10.5194/gchron-6-607-2024,https://doi.org/10.5194/gchron-6-607-2024, 2024
Short summary

Cited articles

Amidon, W. H., Burbank, D. W., and Gehrels, G. E.: Construction of detrital mineral populations: insights from mixing of U–Pb zircon ages in Himalayan rivers, Basin Res., 17, 463–485, https://doi.org/10.1111/j.1365-2117.2005.00279.x, 2005. a
Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G.: Iterative Bregman Projections for Regularized Transportation Problems, SIAM J. Sci. Comput., 2, A1111–A1138, https://doi.org/10.1137/141000439, 2015. a
Berry, R. F., Jenner, G. A., Meffre, S., and Tubrett, M. N.: A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?, Earth Planet. Sc. Lett., 192, 207–222, https://doi.org/10.1016/S0012-821X(01)00436-8, 2001. a
Cawood, P., Hawkesworth, C., and Dhuime, B.: Detrital zircon record and tectonic setting, Geology, 40, 875–878, https://doi.org/10.1130/G32945.1, 2012. a
Condie, K. C., Belousova, E., Griffin, W. L., and Sircombe, K. N.: Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra, Gondwana Res., 15, 228–242, https://doi.org/10.1016/j.gr.2008.06.001, 2009. a
Download
Short summary
We propose using the Wasserstein-2 distance (W2) as an alternative to the widely used Kolmogorov–Smirnov (KS) statistic for analysing distributional data in geochronology. W2 measures the horizontal distance between observations, while KS measures vertical differences in cumulative distributions. Using case studies, we find that W2 is preferable in scenarios where the absolute age differences in observations provide important geological information. W2 has been added to the R package IsoplotR.
Share