Articles | Volume 5, issue 1
https://doi.org/10.5194/gchron-5-91-2023
https://doi.org/10.5194/gchron-5-91-2023
Research article
 | 
07 Feb 2023
Research article |  | 07 Feb 2023

Calculation of uncertainty in the (U–Th) ∕ He system

Peter E. Martin, James R. Metcalf, and Rebecca M. Flowers

Related authors

The Geometric Correction Method for zircon (U–Th) ∕ He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations
Spencer D. Zeigler, Morgan Baker, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 6, 199–226, https://doi.org/10.5194/gchron-6-199-2024,https://doi.org/10.5194/gchron-6-199-2024, 2024
Short summary
A practical method for assigning uncertainty and improving the accuracy of alpha-ejection corrections and eU concentrations in apatite (U–Th) ∕ He chronology
Spencer D. Zeigler, James R. Metcalf, and Rebecca M. Flowers
Geochronology, 5, 197–228, https://doi.org/10.5194/gchron-5-197-2023,https://doi.org/10.5194/gchron-5-197-2023, 2023
Short summary
River patterns reveal two stages of landscape evolution at an oblique convergent margin, Marlborough Fault System, New Zealand
Alison R. Duvall, Sarah A. Harbert, Phaedra Upton, Gregory E. Tucker, Rebecca M. Flowers, and Camille Collett
Earth Surf. Dynam., 8, 177–194, https://doi.org/10.5194/esurf-8-177-2020,https://doi.org/10.5194/esurf-8-177-2020, 2020
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024,https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024,https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
The daughter–parent plot: a tool for analyzing thermochronological data
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024,https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary
Errorchrons and anchored isochrons in IsoplotR
Pieter Vermeesch
Geochronology, 6, 397–407, https://doi.org/10.5194/gchron-6-397-2024,https://doi.org/10.5194/gchron-6-397-2024, 2024
Short summary
Short communication: Resolving the discrepancy between U–Pb age estimates for the “Likhall” bed, a key level in the Ordovician timescale
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024,https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary

Cited articles

Anderson, G. M.: Error propagation by the Monte Carlo method in geochemical calculations, Geochim. Cosmochim. Ac., 40, 1533–1538, https://doi.org/10.1016/0016-7037(76)90092-2, 1976. 
Azzalini, A.: A Class of Distributions Which Includes the Normal Ones, Scand. J. Stat., 12, 171–178, 1985. 
Azzalini, A. and Capitanio, A.: Statistical applications of the multivariate skew normal distribution, J. Roy. Stat. Soc. Ser. B, 61, 579–602, https://doi.org/10.1111/1467-9868.00194, 1999. 
Bevington, P. and Robinson, D. K.: Data Reduction and Error Analysis for the Physical Sciences, 3rd Edn., McGraw-Hill Education, 344 pp., ISBN 13: 9780071199261, 2003. 
Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., and Fitzgerald, P.: Natural age dispersion arising from the analysis of broken crystals, Part I: Theoretical basis and implications for the apatite (U–Th) / He thermochronometer, Geochim. Cosmochim. Ac., 122, 478–497, https://doi.org/10.1016/j.gca.2013.05.041, 2013. 
Download
Short summary
There is currently no standardized method of performing uncertainty propagation in the (U–Th) / He system, causing data interpretation difficulties. We present two methods of uncertainty propagation and describe free, open-source software (HeCalc) to apply them. Compilation of real data using only analytical uncertainty as well as 2 % and 5 % uncertainties in FT yields respective median relative date uncertainties of 2.9 %, 3.3 %, and 5.0 % for apatites and 1.7 %, 3.3 %, and 5.0 % for zircons.