Articles | Volume 6, issue 1
https://doi.org/10.5194/gchron-6-21-2024
https://doi.org/10.5194/gchron-6-21-2024
Research article
 | 
17 Jan 2024
Research article |  | 17 Jan 2024

Calibration methods for laser ablation Rb–Sr geochronology: comparisons and recommendation based on NIST glass and natural reference materials

Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd

Related authors

A comparison between in situ monazite Lu–Hf and U–Pb geochronology
Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-29,https://doi.org/10.5194/gchron-2024-29, 2024
Preprint under review for GChron
Short summary
Insights into the tectonic evolution of the Svecofennian orogeny based on in situ Lu-Hf dating of garnet from Olkiluoto, SW Finland
Jon Engström, Kathryn Cutts, Stijn Glorie, Esa Heilimo, Ester M. Jolis, and Radoslaw M. Michallik
EGUsphere, https://doi.org/10.5194/egusphere-2024-2034,https://doi.org/10.5194/egusphere-2024-2034, 2024
Short summary
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024,https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
In situ Lu–Hf geochronology of calcite
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022,https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
In situ rubidium–strontium geochronology of white mica in young metamafic and metasomatic rocks from Syros: testing the limits of laser-ablation triple-quadrupole inductively coupled plasma mass spectrometer mica dating using different anchoring approaches
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024,https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster
Geochronology, 6, 521–540, https://doi.org/10.5194/gchron-6-521-2024,https://doi.org/10.5194/gchron-6-521-2024, 2024
Short summary
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024,https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024,https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
The daughter–parent plot: a tool for analyzing thermochronological data
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024,https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary

Cited articles

Balcaen, L., Bolea-Fernandez, E., Resano, M., and Vanhaecke, F.: Inductively coupled plasma – Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements – A tutorial review, Anal. Chim. Acta, 894, 7–19, https://doi.org/10.1016/j.aca.2015.08.053, 2015. 
Black, L.: SHRIMP U–Pb zircon ages obtained during 2006/07 for NSW Geological Survey projects, Geological Survey of New South Wales, Report GS2007/2298, 2007. 
Burtt, A. C. and Abbot, P. J.: The Taratap Granodioritite, South-East South Australia, MESA Journal, 10, 35–39, 1998. 
Flood, R. H. and Shaw, S. E.: A cordierite-bearing granite suite from the New England Batholith, N.S.W., Australia, Contrib. Mineral. Petr., 52, 157–164, https://doi.org/10.1007/BF00457291, 1975. 
Flood, R. H. and Shaw, S. E.: Two “S-type” granite suites with low initial 87Sr/86Sr ratios from the New England Batholith, Australia, Contrib. Mineral. Petr., 61, 163–173, https://doi.org/10.1007/BF00374365, 1977. 
Download
Short summary
Radiometric dating methods, involving laser ablation as the sample introduction, require robust calibrations to reference materials with similar ablation properties to the analysed samples. In the case of the rubidium–strontium dating method, calibrations are often conducted to nano powder with different ablation characteristics than the crystalline minerals. We describe the limitations of this approach and recommend an alternative calibration method involving natural minerals.