Articles | Volume 6, issue 4
https://doi.org/10.5194/gchron-6-521-2024
https://doi.org/10.5194/gchron-6-521-2024
Research article
 | 
17 Oct 2024
Research article |  | 17 Oct 2024

An optimization tool for identifying multiple-diffusion domain model parameters

Andrew L. Gorin, Joshua M. Gorin, Marie Bergelin, and David L. Shuster

Related authors

Four North American glaciers advanced past their modern positions thousands of years apart in the Holocene
Andrew G. Jones, Shaun A. Marcott, Andrew L. Gorin, Tori M. Kennedy, Jeremy D. Shakun, Brent M. Goehring, Brian Menounos, Douglas H. Clark, Matias Romero, and Marc W. Caffee
The Cryosphere, 17, 5459–5475, https://doi.org/10.5194/tc-17-5459-2023,https://doi.org/10.5194/tc-17-5459-2023, 2023
Short summary

Related subject area

Geochronological data analysis/statistics/modelling
Short communication: Nanoscale heterogeneity of U and Pb in baddeleyite from atom probe tomography – 238U series alpha recoil effects and U atom clustering
Steven Denyszyn, Donald W. Davis, and Denis Fougerouse
Geochronology, 6, 607–619, https://doi.org/10.5194/gchron-6-607-2024,https://doi.org/10.5194/gchron-6-607-2024, 2024
Short summary
In situ rubidium–strontium geochronology of white mica in young metamafic and metasomatic rocks from Syros: testing the limits of laser-ablation triple-quadrupole inductively coupled plasma mass spectrometer mica dating using different anchoring approaches
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024,https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
Technical note: RA138 calcite U–Pb LA-ICP-MS primary reference material
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024,https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024,https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
The daughter–parent plot: a tool for analyzing thermochronological data
Birk Härtel and Eva Enkelmann
Geochronology, 6, 429–448, https://doi.org/10.5194/gchron-6-429-2024,https://doi.org/10.5194/gchron-6-429-2024, 2024
Short summary

Cited articles

Axen, G. J., Grove, M., Stockli, D., Lovera, O. M., Rothstein, D. A., Fletcher, J. M., Farley, K., and Abbott, P. L.: Thermal evolution of Monte Blanco dome: Low‐angle normal faulting during Gulf of California rifting and late Eocene denudation of the eastern Peninsular Ranges, Tectonics, 19, 197–212, https://doi.org/10.1029/1999TC001123, 2000. a
Banks, N. G., Cornwall, H. R., Silberman, M. L., Creasey, S. C., and Marvin, R. F.: Chronology of Intrusion and Ore Deposition at Ray, Arizona; Part I, K-Ar Ages, Econ. Geol., 67, 864–878, https://doi.org/10.2113/gsecongeo.67.7.864, 1972. a, b
Crank, J.: The Mathematics of Diffusion, Oxford University Press,2nd Edn., ISBN 0198533446, 1975. a, b, c
Dodson, M. H.: Closure temperature in cooling geochronological and petrological systems, Contrib. Miner. Petrol., 40, 259–274, https://doi.org/10.1007/BF00373790, 1973. a
Fechtig, H. and Kalbitzer, S.: The Diffusion of Argon in Potassium-Bearing Solids, in: Potassium Argon Dating, pp. 68–107, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-87895-4, https://doi.org/10.1007/978-3-642-87895-4_4, 1966. a, b
Download
Short summary
The multiple-diffusion domain (MDD) model quantifies the temperature dependence of noble gas diffusivity in minerals. However, current methods for tuning MDD parameters can yield biased results, leading to underestimates of sample temperatures through geologic time. Our "MDD Tool Kit" software optimizes all MDD parameters simultaneously, overcoming these biases. We then apply this software to a previously published 40Ar/39Ar dataset (Wong, 2023) to showcase its efficacy.