Articles | Volume 6, issue 4
https://doi.org/10.5194/gchron-6-521-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gchron-6-521-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An optimization tool for identifying multiple-diffusion domain model parameters
Andrew L. Gorin
CORRESPONDING AUTHOR
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Berkeley Geochronology Center, Berkeley, CA, USA
Joshua M. Gorin
independent researcher
Marie Bergelin
Berkeley Geochronology Center, Berkeley, CA, USA
David L. Shuster
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Berkeley Geochronology Center, Berkeley, CA, USA
Related authors
Marie Bergelin, Andrew Gorin, Greg Balco, and William Cassata
EGUsphere, https://doi.org/10.5194/egusphere-2025-928, https://doi.org/10.5194/egusphere-2025-928, 2025
Short summary
Short summary
Helium gas accumulates over time in minerals, but loss can occur depending on temperature. If partially retained, its loss can potentially be used for determining past surface temperatures. This study uses a model that accounts for complex gas loss to analyze helium retention in two minerals commonly found on the surface of Antarctica. We find one of the minerals retains helium while the other loses nearly all of the gas within hundred years, making it unsuitable as a climate reconstruction.
Andrew G. Jones, Shaun A. Marcott, Andrew L. Gorin, Tori M. Kennedy, Jeremy D. Shakun, Brent M. Goehring, Brian Menounos, Douglas H. Clark, Matias Romero, and Marc W. Caffee
The Cryosphere, 17, 5459–5475, https://doi.org/10.5194/tc-17-5459-2023, https://doi.org/10.5194/tc-17-5459-2023, 2023
Short summary
Short summary
Mountain glaciers today are fractions of their sizes 140 years ago, but how do these sizes compare to the past 11,000 years? We find that four glaciers in the United States and Canada have reversed a long-term trend of growth and retreated to positions last occupied thousands of years ago. Notably, each glacier occupies a unique position relative to its long-term history. We hypothesize that unequal modern retreat has caused the glaciers to be out of sync relative to their Holocene histories.
Marie Bergelin, Greg Balco, and Richard A. Ketcham
EGUsphere, https://doi.org/10.5194/egusphere-2025-3033, https://doi.org/10.5194/egusphere-2025-3033, 2025
Short summary
Short summary
We developed a faster and simpler way to measure helium gas in rocks to determine how long they have been exposed at Earth's surface. Instead of separating minerals within the rocks by hand, our method uses heat to release gas from specific minerals. This reduces time, cost, and physical work, making it easier to collect large amounts of data when studying landscape change or when only small rock samples are available.
Marie Bergelin, Andrew Gorin, Greg Balco, and William Cassata
EGUsphere, https://doi.org/10.5194/egusphere-2025-928, https://doi.org/10.5194/egusphere-2025-928, 2025
Short summary
Short summary
Helium gas accumulates over time in minerals, but loss can occur depending on temperature. If partially retained, its loss can potentially be used for determining past surface temperatures. This study uses a model that accounts for complex gas loss to analyze helium retention in two minerals commonly found on the surface of Antarctica. We find one of the minerals retains helium while the other loses nearly all of the gas within hundred years, making it unsuitable as a climate reconstruction.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Andrew G. Jones, Shaun A. Marcott, Andrew L. Gorin, Tori M. Kennedy, Jeremy D. Shakun, Brent M. Goehring, Brian Menounos, Douglas H. Clark, Matias Romero, and Marc W. Caffee
The Cryosphere, 17, 5459–5475, https://doi.org/10.5194/tc-17-5459-2023, https://doi.org/10.5194/tc-17-5459-2023, 2023
Short summary
Short summary
Mountain glaciers today are fractions of their sizes 140 years ago, but how do these sizes compare to the past 11,000 years? We find that four glaciers in the United States and Canada have reversed a long-term trend of growth and retreated to positions last occupied thousands of years ago. Notably, each glacier occupies a unique position relative to its long-term history. We hypothesize that unequal modern retreat has caused the glaciers to be out of sync relative to their Holocene histories.
Natacha Gribenski, Marissa M. Tremblay, Pierre G. Valla, Greg Balco, Benny Guralnik, and David L. Shuster
Geochronology, 4, 641–663, https://doi.org/10.5194/gchron-4-641-2022, https://doi.org/10.5194/gchron-4-641-2022, 2022
Short summary
Short summary
We apply quartz 3He paleothermometry along two deglaciation profiles in the European Alps to reconstruct temperature evolution since the Last Glacial Maximum. We observe a 3He thermal signal clearly colder than today in all bedrock surface samples exposed prior the Holocene. Current uncertainties in 3He diffusion kinetics do not permit distinguishing if this signal results from Late Pleistocene ambient temperature changes or from recent ground temperature variation due to permafrost degradation.
Cited articles
Axen, G. J., Grove, M., Stockli, D., Lovera, O. M., Rothstein, D. A., Fletcher, J. M., Farley, K., and Abbott, P. L.: Thermal evolution of Monte Blanco dome: Low‐angle normal faulting during Gulf of California rifting and late Eocene denudation of the eastern Peninsular Ranges, Tectonics, 19, 197–212, https://doi.org/10.1029/1999TC001123, 2000. a
Banks, N. G., Cornwall, H. R., Silberman, M. L., Creasey, S. C., and Marvin, R. F.: Chronology of Intrusion and Ore Deposition at Ray, Arizona; Part I, K-Ar Ages, Econ. Geol., 67, 864–878, https://doi.org/10.2113/gsecongeo.67.7.864, 1972. a, b
Dodson, M. H.: Closure temperature in cooling geochronological and petrological systems, Contrib. Miner. Petrol., 40, 259–274, https://doi.org/10.1007/BF00373790, 1973. a
Fechtig, H. and Kalbitzer, S.: The Diffusion of Argon in Potassium-Bearing Solids, in: Potassium Argon Dating, pp. 68–107, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-87895-4, https://doi.org/10.1007/978-3-642-87895-4_4, 1966. a, b
Flude, S., Halton, A. M., Kelley, S. P., Sherlock, S. C., Schwanethal, J., and Wilkinson, C. M.: Observation of centimetre-scale argon diffusion in alkali feldspars: implications for 40Ar/39 Ar thermochronology, Geol. Soc. Lond. Spec. Publ., 378, 265–275, https://doi.org/10.1144/SP378.25, 2014. a
Gillespie, A. R., Huneke, J. C., and Wasserburg, G. J.: An assessment of 40Ar–39Ar dating of incompletely degassed xenoliths, J. Geophys. Res.-Sol. Ea., 87, 9247–9257, https://doi.org/10.1029/JB087iB11p09247, 1982. a
Ginster, U. and Reiners, P. W.: Error Propagation in the Derivation of Noble Gas Diffusion Parameters for Minerals From Step Heating Experiments, Geochem. Geophy. Geosy., 19, 3706–3720, https://doi.org/10.1029/2018GC007531, 2018. a, b, c
Gorin, J. and Gorin, D.: dgorin1/mddtoolkit: MDD Tool Kit (0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.13921573, 2024. a
Grove, M., Lovera, O., and Harrison, M.: Late Cretaceous cooling of the east-central Peninsular Ranges Batholith (33 degrees N); relationship to La Posta Pluton emplacement, Laramide shallow subduction, and forearc sedimentation, in: Tectonic evolution of northwestern Mexico and the Southwestern USA, Geol. Soc. Am., ISBN 978-0-8137-2374-7, https://doi.org/10.1130/0-8137-2374-4.355, 2003. a
Harrison, T. M. and Lovera, O. M.: The multi-diffusion domain model: past, present and future, Geol. Soc. Lond. Spec. Publ., 378, 91–106, https://doi.org/10.1144/SP378.9, 2014. a, b, c
Harrison, T. M., Heizler, M. T., Lovera, O. M., Chen Wenji, and Grove, M.: A chlorine disinfectant for excess argon released from K-felsspar during step heating, Earth Planet. Sc. Lett., 123, 95–104, https://doi.org/10.1016/0012-821X(94)90260-7, 1994. a
Harrison, T. M., Copeland, P., Kidd, W. S. F., and Lovera, O. M.: Activation of the Nyainqentanghla Shear Zone: Implications for uplift of the southern Tibetan Plateau, Tectonics, 14, 658–676, https://doi.org/10.1029/95TC00608, 1995. a
Iman, R. L., Helton, J. C., and Campbell, J. E.: An Approach to Sensitivity Analysis of Computer Models: Part I – Introduction, Input Variable Selection and Preliminary Variable Assessment, J. Qual. Technol., 13, 174–183, https://doi.org/10.1080/00224065.1981.11978748, 1981. a
Kirby, E., Reiners, P. W., Krol, M. A., Whipple, K. X., Hodges, K. V., Farley, K. A., Tang, W., and Chen, Z.: Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from Ar and (U‐Th)/He thermochronology, Tectonics, 21, 1-1–1-20, https://doi.org/10.1029/2000TC001246, 2002. a
Lampinen, J.: A constraint handling approach for the differential evolution algorithm, in: Proceedings of the 2002 Congress on Evolutionary Computation, CEC'02 (Cat. No.02TH8600), 2, 1468–1473, IEEE, Honolulu, HI, USA, ISBN 978-0-7803-7282-5, https://doi.org/10.1109/CEC.2002.1004459, 2002. a
Lovera, O. M.: Computer programs to model 40Ar/39Ar diffusion data from multidomain samples, Comput. Geosci., 18, 789–813, https://doi.org/10.1016/0098-3004(92)90025-M, 1992. a
Lovera, O. M., Richter, F. M., and Harrison, T. M.: The 40Ar/39 Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes, J. Geophys. Res.-Sol. Ea., 94, 17917–17935, https://doi.org/10.1029/JB094iB12p17917, 1989. a, b, c, d
Lovera, O. M., Heizler, M. T., and Harrison, T. M.: Argon diffusion domains in K-feldspar II: kinetic properties of MH-10, Contrib. Miner. Petrol., 113, 381–393, https://doi.org/10.1007/BF00286929, 1993. a, b
Lovera, O. M., Grove, M., Mark Harrison, T., and Mahon, K.: Systematic analysis of K-feldspar step heating results: I. Significance of activation energy determinations, Geochim. Cosmochim. Ac., 61, 3171–3192, https://doi.org/10.1016/S0016-7037(97)00147-6, 1997. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai
Luo, G., Nie, X., Wu, S., and Wang, Y.: Influence of compound silicate gangue containing potassium in baiyunebo iron ore on solid-phase reactions during sintering process, in: Recent Advances in Structural Integrity Analysis – Proceedings of the International Congress (APCF/SIF-2014), 473–476, Elsevier, ISBN 978-0-08-100203-2, https://doi.org/10.1533/9780081002254.473, 2014. a
Parsons, I., Brown, W. L., and Smith, J. V.: 40Ar/39Ar thermochronology using alkali feldspars: real thermal history or mathematical mirage of microtexture?, Contrib. Miner. Petrol., 136, 92–110, https://doi.org/10.1007/s004100050526, 1999. a, b, c
Popov, D. V. and Spikings, R. A.: Diffusion vs. fluid alteration in alkali feldspar 40Ar/39Ar thermochronology: Does cross-correlation of log(r/r0) and age spectra validate thermal histories?, Chem. Geol., 539, 119506, https://doi.org/10.1016/j.chemgeo.2020.119506, 2020. a, b, c
Popov, D. V., Spikings, R. A., and Kouzmanov, K.: Pathways for 39Ar loss during step-heating of alkali feldspar megacrysts from the Shap granite (UK): Combined evidence from diffusion experiments and characterisation of heating-induced texture modifications, Chem. Geol., 547, 119677, https://doi.org/10.1016/j.chemgeo.2020.119677, 2020a. a, b, c
Popov, D. V., Spikings, R. A., Scaillet, S., O'Sullivan, G., Chew, D., Badenszki, E., Daly, J. S., Razakamanana, T., and Davies, J. H.: Diffusion and fluid interaction in Itrongay pegmatite (Madagascar): Evidence from in situ 40Ar/39Ar dating of gem-quality alkali feldspar and U Pb dating of protogenetic apatite inclusions, Chem. Geol., 556, 119841, https://doi.org/10.1016/j.chemgeo.2020.119841, 2020b. a, b
Qiang, J. and Mitchell, C.: A Unified Differential Evolution Algorithm for Global Optimization, https://www.osti.gov/servlets/purl/1163659 (last access: 11 October 2024), 2014. a
Quidelleur, X., Grove, M., Lovera, O. M., Harrison, T. M., Yin, A., and Ryerson, F. J.: Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet, J. Geophys. Res.-Sol. Ea., 102, 2659–2679, https://doi.org/10.1029/96JB02483, 1997. a
Reiners, P. W.: Past, Present, and Future of Thermochronology, Rev. Miner. Geochem., 58, 1–18, https://doi.org/10.2138/rmg.2005.58.1, 2005. a, b
Reiners, P. W. and Farley, K. A.: Helium diffusion and (U–Th)/He thermochronometry of titanite, Geochim. Cosmochim. Ac., 63, 3845–3859, https://doi.org/10.1016/S0016-7037(99)00170-2, 1999. a
Reiners, P. W., Spell, T. L., Nicolescu, S., and Zanetti, K. A.: Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating, Geochim. Cosmochim. Ac., 68, 1857–1887, https://doi.org/10.1016/j.gca.2003.10.021, 2004. a
Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., and Schoene, B.: Geochronology and thermochronology, John Wiley & Sons, https://doi.org/10.1002/9781118455876, 2017. a
Shirvell, C. R., Stockli, D. F., Axen, G. J., and Grove, M.: Miocene‐Pliocene exhumation along the west Salton detachment fault, southern California, from (U‐Th)/He thermochronometry of apatite and zircon, Tectonics, 28, 2007TC002172, https://doi.org/10.1029/2007TC002172, 2009. a
Shuster, D. L., Farley, K. A., Sisterson, J. M., and Burnett, D. S.: Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He, Earth Planet. Sc. Lett.s, 217, 19–32, https://doi.org/10.1016/S0012-821X(03)00594-6, 2004. a
Spell, T. L., McDougall, I., and Tulloch, A. J.: Thermochronologic constraints on the breakup of the Pacific Gondwana margin: The Paparoa metamorphic core complex, South Island, New Zealand, Tectonics, 19, 433–451, https://doi.org/10.1029/1999TC900046, 2000. a
Spikings, R. A. and Popov, D. V.: Thermochronology of Alkali Feldspar and Muscovite at T>150 °C Using the 40Ar/39Ar Method: A Review, Minerals, 11, 1025, https://doi.org/10.3390/min11091025, 2021. a, b
Storn, R. and Price, K.: Differential Evolution – A simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optim., 11, 341–359, https://doi.org/10.1023/A:1008202821328, 1997. a, b, c, d
Turner, G.: The Distribution of Potassium and Argon in Chondrites, in: Origin and Distribution of the Elements, Elsevier, 387–398, ISBN 978-0-08-012835-1, https://doi.org/10.1016/B978-0-08-012835-1.50039-8, 1968. a
Villa, I. M.: Multipath Ar transport in K-feldspar deduced from isothermal heating experiments, Earth Planet. Sc. Lett., 122, 393–401, https://doi.org/10.1016/0012-821X(94)90010-8, 1994. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van Der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., Van Mulbregt, P., SciPy 1.0 Contributors, Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J. L., De Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., and Vázquez-Baeza, Y.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a, b, c
Wagner, A.: Cooling ages derived by apatite fission-track, mica Rb-Sr and K-Ar dating; the uplift and cooling history of the Central Alps, Mem. Inst. Geol. Mineral., Univ. of Padova, 30, 1–27, https://cir.nii.ac.jp/crid/1570854175293805312 (last access: 11 October 2024), 1977. a
Warnock, A. C. and Zeitler, P. K.: 40Ar/39Ar thermochronometry of K-feldspar from the KTB borehole, Germany, Earth Planet. Sc. Lett., 158, 67–79, https://doi.org/10.1016/S0012-821X(98)00044-2, 1998. a
Weirich, J., Isachsen, C., Johnson, J., and Swindle, T.: Variability of diffusion of argon in albite, pyroxene, and olivine in shocked and unshocked samples, Geochim. Cosmochim. Ac., 77, 546–560, https://doi.org/10.1016/j.gca.2011.10.040, 2012. a
Wong, M. S., Gleason, D. M., O’Brien, H. P., and Idleman, B. D.: Confirmation of a low pre-extensional geothermal gradient in the Grayback normal fault block, Arizona: Structural and AHe thermochronologic evidence, Geol. Soc. Am. Bull., 127, 200–210, https://doi.org/10.1130/B31033.1, 2015. a, b, c
Wong, M. S., Gans, P. B., and Roesler, D.: Field calibration of 40Ar/39Ar K-feldspar multiple diffusion domain (MDD) thermal histories at the Grayback normal fault block, Arizona, USA, Geology, 51, 885–889, https://doi.org/10.1130/G51319.1, 2023. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag
Zeitler, P. K.: Argon diffusion in partially outgassed alkali feldspars: Insights from analysis, Chem. Geol., 65, 167–181, https://doi.org/10.1016/0168-9622(87)90071-6, 1987. a, b, c, d
Short summary
The multiple-diffusion domain (MDD) model quantifies the temperature dependence of noble gas diffusivity in minerals. However, current methods for tuning MDD parameters can yield biased results, leading to underestimates of sample temperatures through geologic time. Our "MDD Tool Kit" software optimizes all MDD parameters simultaneously, overcoming these biases. We then apply this software to a previously published 40Ar/39Ar dataset (Wong, 2023) to showcase its efficacy.
The multiple-diffusion domain (MDD) model quantifies the temperature dependence of noble gas...